Иннервация внутреннего уха осуществляется черепными нервами. Инородные тела или вода в слуховом проходе. Заболевания среднего и внутреннего уха

Внутри пирамиды височной кости находится барабанная полость (объем - 1 см 3), сообщающаяся с сосцевидной пещерой и через нее - с ячейками сосцевидного отростка; слуховая труба связывает барабанную полость с носоглоткой. Слуховые косточки лежат в барабанной полости, связанные между собой и некоторыми стенками суставами, мышцами и мембранами. Среднее и наружное ухо осуществляют воздушную проводимость звуковых волн. Кроме того, существует костная проводимость звука через слуховые косточки и стенки барабанной полости.

Стенки барабанной полости:

· верхняя (покрышечная ) стенка – на передней поверхности пирамиды височной кости;

· нижняя (яремная ) стенка - в области яремной ямки на нижней поверхности пирамиды с началом сосцевидного канальца для ушной ветви X пары;

· медиальная (лабиринтная ) стенка с мысом, окном преддверия (овальным), выступом лицевого канала и окном улитки (круглым), закрытым вторичной барабанной перепонкой;

· задняя (сосцевидная ) стенка - с пирамидальным возвышением для стременной мышцы и отверстием входа в сосцевидную пещеру;

· передняя (сонная ) стенка - с барабанным отверстием слуховой трубы и сонно-барабанными канальцами для одноименных сосудов и нервов;

· латеральная (перепончатая ) стенка - первичная барабанная перепонка, прикрепляющаяся к костному краю наружного слухового прохода под углом в 45-55 градусов.

Узкое, щелевидное пространство, расположенное в барабанной полости над первичной перепонкой, называется надбарабанным мешком. Его заболевание, например гнойное воспаление, может разрушить слуховые косточки, что приведет к снижению костной и воздушной проводимости звука.

Слуховые косточки:

·молоточек – состоящий из головки и рукоятки с латеральным и передним отростками на ней;

·наковальня – включающее тело с суставной поверхностью, две ножки – короткую и длинную с чечевицеобразным отростком и суставной поверхностью на нем;

·стремя – имеющее головку, переднюю и заднюю ножки, соединенные основанием стремени.

Суставы, связки, мышцы слуховых косточек

1. Наковаленно-молоточковый, наковаленно-стременной суставы образуются так, что наковальня располагается между молоточком и стременем.

2. Рукоятка молоточка прирастает к первичной барабанной перепонке, образуя пупок – умбо.

3. Основание стремени подвижно закреплено кольцевой связкой в овальном окне преддверия.

4. Стременная мышца, начавшись от пирамидального возвышения задней барабанной стенки, прикрепляется к задней ножке стремени.

Поражение слуховых косточек и суставов нарушает костную проводимость звука.

Слуховая труба (длина - 35 мм, диаметр – 2 мм) начинается барабанным отверстием, расположенным в верхней части передней (сонной) стенки барабанной полости, а заканчивается глоточным отверстием с трубным валиком вокруг него (трубная миндалина) в боковой стенке носоглотки.

Слуховая (Евстахиева) труба имеет следующий состав:

·костная часть (1/3 трубы) – это слуховой полуканал в мышечно-трубном канале височной кости; он заканчивается в передней стенке барабанной полости барабанным отверстием;

·хрящевая часть (2/3 трубы) - из эластического хряща с латеральной и медиальной хрящевыми пластинками и перепонкой между ними; открывается в носоглотку глоточным отверстием с трубным валиком вокруг (трубная миндалина);

·перешеек трубы - самая узкая часть, до 1 мм в диаметре - находится на переходе костной в хрящевую часть.

Слуховую трубу считают типичным путем, по которому инфекция попадает в среднее ухо .

От хрящевой части трубы начинаются мышцы: подниматель и напряжитель мягкого неба, а в мышечной части мышечно-трубного канала лежит напряжитель первичной барабанной перепонки. Оба напряжителя иннервирует тройничный нерв. При сокращении мышц поднимающих и напрягающих мягкое небо хрящевая часть трубы расширяется, и воздух из глотки проходит в барабанную полость.

Поражение напряжителя барабанной перепонки снижает воздушную проводимость среднего уха .

Сосуды среднего уха: 1) верхняя барабанная артерия - из средней менингеальной артерии, 2) передняя барабанная артерия - из верхнечелюстной артерии. 3) Сонно-барабанные артерии – из внутренней сонной артерии, 4) задняя барабанная и шилососцевидная - из задней ушной артерии. В первичной барабанной перепонке возникает две сосудистые сети: кожная и слизистая .

Слуховая труба имеет артерии: переднюю барабанную и ветви восходящей глоточной и средней менингеальной артерий; артерию крыловидного канала. Вены впадают в глоточное сплетение, внутреннюю яремную и занижнечелюстную вены.

Лимфатический отток от наружного и среднего уха осуществляется в сосцевидные и околоушные узлы головы, глубокие шейные латеральные узлы (внутренние яремные) и заглоточные лимфатические узлы.

В слизистой барабанной полости образуется нервное сплетение - из ветви языкоглоточного, соединительной ветви лицевого, сонно-барабанных симпатических нервов. Оно продолжается в слизистую слуховой трубы. Иннервация мышц: напрягатель барабанной перепонки - ветвь тройничного нерва, стремянная мышца - лицевой нерв.

11.Внутреннее ухо: костный и перепончатый лабиринты.

Во внутреннем ухе располагаются рецепторы органа слуха и равновесия или иначе слухового и вестибулярного анализатора. Они представлены волосковыми сенсорно-эпителиальными клетками, которые находятся внутри улитки в спиральном органе - слуховой рецептор и внутри расширений преддверия и полукружных каналов - вестибулярный рецептор.

Костный и перепончатый лабиринт – скелет внутреннего уха, располагается в пирамиде височной кости, имеет следующие составные части:

·преддверие , занимающее срединное положение;

·улитку , лежащую кпереди от преддверия;

·три полукружных канала , расположенных кзади от преддверия.

Стенки, отверстия и другие образования преддверия

·Латеральная стенка располагает двумя окнами: овальным (окно преддверия закрыто основанием стремени и кольцевой связкой), круглым (окно улитки закрыто вторичной барабанной перепонкой).

·Задняя стенка отличается 5-ю мелкими отверстиями, через которые открываются полукружные каналы.

·Передняя стенка имеет крупное отверстие канала улитки.

·Медиальная стенка - гребень преддверия разделяет две ямки: переднюю - сферическую, и заднюю - эллиптическую, в которой имеется внутреннее отверстие водопровода преддверия.

· Изнутри костные стенки преддверия выстланы фиброзной тканью, которая на медиальной стенке заключает эллиптический и сферический мешочки (утрикулус и саккулус ).

Мешочки лежат в одноименных углублениях преддверия и связаны друг с другом протоком, от которого отходит эндолимфатический канал, а книзу еще и соединительный проток к улитковому каналу. В эллиптический мешочек открывается пять отверстий полукружных протоков.

При поражении лабиринта развивается синдром Меньера.

Улитка занимает горизонтальное положение и делится на следующие части:

·основание - обращенное к внутреннему слуховому проходу; у начала барабанной лестницы имеющее внутреннее отверстие канальца улитки;

·купол - направленный к барабанной полости;

·стержень (модиолус) с продольными канальцами для улиткового нерва - внутренняя ось улитки, проходящая между основанием и куполом;

·спиральная пластинка - вокруг стержня (оси улитки) в виде винтовой лестницы в 2,5 оборота;

·спиральный канал - вокруг спиральной пластинки, в куполе имеющий овальное отверстие - хеликотрему;

·барабанная и преддверная лестница .

Внутри костной улитки находится перепончатая улитка, фиброзными перемычками срастающаяся с костной улиткой. Между костной и перепончатой частью находится перилимфа, внутри перепончатой части - эндолимфа.

Костные полукружные каналы

· Передний канал перпендикулярен продольной оси пирамиды, соответствует дугообразному возвышению на ее передней поверхности.

· Задний канал - самый длинный, параллелен задней поверхности пирамиды.

· Латеральный канал - самый короткий, имеет на лабиринтной стенке барабанной полости выступ. Этот канал соответствует плоскости естественной ориентировки головы.

Полукружные каналы имеют по две костные ножки , но у переднего и заднего они сливаются в одну общую, которая открывается в преддверие одним отверстием, остальные – четырьмя. Одна из полукружных ножек при впадении в преддверие расширяется, поэтому называется ампулярной, а другая - простой.

Перепончатый лабиринт находится внутри костного лабиринта. Стенка его образована тонкой фиброзной пластинкой с плоским эпителием на ней и повторяет очертания костного лабиринта. Между костной и фиброзной стенкой лабиринта располагается перилимфатическое пространство с перилимфой. Оно сообщается через перилимфатический проток канальца улитки с подпаутинным пространством головного мозга. Внутри перепончатого лабиринта циркулирует эндолимфа. Через эндолимфатический проток водопровода преддверия она оттекает в эндолимфатический мешок в толще твердой мозговой оболочки на задней поверхности пирамиды.

В преддверии перепончатая часть по медиальной стенке образует эллиптический и сферический мешочки, соединенные протоком. В эллиптический мешочек открываются полукружные каналы, а из сферического мешочка выходит эндолимфатический проток. Полукружные перепончатые протоки заканчиваются ампулами: передней, задней и латеральной. Пятна эллиптического и сферического мешочков, ампулярные гребешки полукружных каналов содержат волосковые сенсорные клетки, которые через отолитовую мембрану и желатинозную купулу воспринимают колебания эндолимфы. Это и есть рецепторный аппарат органа равновесия

Перепончатый лабиринт улитки включает улитковый проток с барабанной и преддверной стенкой. Он занимает среднюю часть костного спирального канала и отделяет барабанную лестницу (нижнюю) от преддверной (верхней лестницы). Барабанная лестница заканчивается в основании улитки у овального окна, закрытого вторичной барабанной перепонкой. Лестница преддверия сообщается с перилимфатическим пространством преддверия. Между собой обе лестницы связаны в куполе через хеликотрему (просветленное отверстие).

Внутри улиткового протока находится спиральный орган :

1) из базилярной пластинки (124 тыс. натянутых коллагеновых волокон);

2) поддерживающих и волосковых сенсорно-эпителиальных клеток, погруженных в желатинозную массу;

3) покровной мембраны.

Это и составляет рецепторный аппарат органа слуха – слухового анализатора.

Внутренние сенсорные волосковые эпителиоциты (около 3500) обладают микроворсинками (стереоцилиями), способными отклоняться при движениях эндолимфы, которые появляются после воздействия звуковой энергии на базилярную мембрану. Колебания стереоцилий возбуждают сенсорные эпителиоциты и вызывают рецепторный потенциал, который улавливается волокнами улиткового нерва, замыкающегося на рецепторе. Импульс по нерву достигает улитковых ядер в мосту. Из них передается по волокнам латеральной петли в нижние холмики среднего мозга и зрительный бугор. Таламокортикальные слуховые волокна образуют лучистость, занимающую конечный отдел задней ножки внутренней капсулы. Отсюда слуховые волокна приходят в поперечные бороздки и извилины, находящиеся на верхней височной извилине - в корковом конце слухового анализатора.

Сосуды внутреннего уха – это мелкие лабиринтные артерии из базилярной артерии. Вены - лабиринтные, канальца улитки и водопровода впадают в верхний каменистый синус и внутреннюю яремную вену.

Ушная раковина снабжается кровью довольно обиль­но, хотя ухо, как известно, в двигательных реакциях, осо­бенно у человека, не участвует; является практически не­подвижным и следовательно не требует заметных энергети­ческих затрат. Однако богатое кровоснабжение уха не­обходимо для поддержания нормальной температуры в нем, так как почти полное отсутствие жировой ткани в ухе способствует боль­шим тепловым потерям.

Кровоснабжение уха осуществляется из бас­сейна наружной сонной артерии (a. carotis externa) от следующих крупных ее ветвей (Р. Д. Синельников, 1978): I- поверхностной височной артерии (a. temporalis superficialis), II-заты­лочной артерии (a. occipitalis), III-задней уш­ной артерии (a. auricularis posterior), IV- внутренней челюстной артерии (a. maxilaris interna).

I. Поверхностная ви­сочная артерия прохо­дит впереди уха (рис.2) и отдает к ушной раковине три небольшие ар­терии-передние ушные ветви (rami auriculares anteriores), которые соответсг енно называются верхней "(superior), средней (media) и нижней (inferior) передними ушнымл ветвями. Иногда число таких ветвей достигает пяти.

Верхняя ветвь распределяется у места подъема завитка, в треугольной ямке и доходит до верхнего края желоба за­витка (скафа). Часть ветвей переходит на внутреннюю по­верхность уха в области завитка.

Средняя ветвь распределяется в области раковины в ножке завитка, в козелке, в начальной части наружного слухового прохода. В область ушной раковины входят отдельные ветви и от других артерий (задней ушной).

Нижняя ветвь распределяется в основном в области моч­ки уха, частично подходит к межкозелковой вырезке, к козелку и противокозелку, к хвосту завитка.

Указанные ветви, а также ветви других артерий уха тесно анастомозируются друг с другом, так что определить точные границы ветвления различных артерий уха невоз­можно, да и нет в этом необходимости.

II. Затылочная артерия (рис. 2), в отличие от височной, проходит далеко от уха и на уровне сосцевидного отростка отдает к ушной раковине длинную ушную ветвь (ramus auricularis), которая на своем пути к внутренней поверх­ности уха анастомозируется с другими ветвями затылочной артерии, а также с ветвями височной и задней ушной арте­рии. Таким образом, кровоснабжение наружной и внутрен­ней поверхностей уха не осуществляется из строго раздель­ных каналов, а охватывает бассейн артерий, расположен­ных на височной и затылочной областях головы. Следова­тельно, при воздействии на ушную раковину и активации симпатических периваскулярных сплетений местная со­судистая реакция может распространяться на достаточно большую площадь в пределах бассейна указанных арте­рий. Здесь речь идет не о рефлекторных реакциях с вовле­чением центральной нервной системы, а лишь о прямой передаче волны возбуждения по симпатическим сосуди­стым сплетениям.



Как показал наш опыт, кратковременный, но интенсив­ный массаж ушной раковины, особенно ее внутренней по­верхности, вызывает расширение сосудов височной и заты­лочной области и способствует купированию головных бо­лей (сосудистого происхождения), вызывает незначительное (15-20 мм рт. ст.) снижение артериального давления (когда оно повышено) и снимает чувство напряжения.

III. Задняя ушная артерия (рис. 2) отходит непосред­ственно от наружной сонной артерии и уходит назад к уш­ной раковине вблизи сосцевидного отростка. Далее распо­лагается на височной кости позади уха. Эта артерия обра­зует три большие ветви, одна из которых - ушная ветвь (ramus auricularis) разветвляется на внутренней (медиаль­ной) поверхности уха, преимущественно в нижней ее части. Она отдает самую большую ветвь, на наружную (латераль­ную) поверхность уха, разветвляясь в области желоба между завитком и противозавитком. Следовательно, ушная ветвь задней ушной артерии преимущественно разветвля­ется на наружной поверхности уха. Внутренняя поверх­ность уха снабжается кровью за счет другой ветви задней ушной артерии, которая называется затылочной ветвью "(ramus occipitalis). Эта ветвь распределяется почти по всей внутренней поверхности уха, за исключением верхнего полюса и вместе с ушной ветвью затылочной артерии снаб­жает кровью эту область.

IV. Внутренняя челюстная артерия в самом начале

Образует небольшой стволик - ушную глубокую артерию

(a. auricularis profunda), которая поворачивает назад и вверх к наружному слуховому проходу и подходит до ба­рабанной перепонки (В. П. Воробьев, 1942). Участие этой артерии в кровоснабжении ушной раковины весьма сомни­тельно. Можно говорить лишь о кровоснабжении слухового прохода.

Венозный отток от уха осуществляется по двум основ­ным венам: поверхностной височной и задней ушной, ко­торые располагаются вместе с одноименными артериями. Ушная раковина снабжена богатой сетью лимфатических

Сосудов. С наружной поверхности ушной раковины лимфа

Оттекает в передние ушные лимфатические узлы (nodi lymphatici auriculares anteriores), которые расположены впереди козелка. Под ушной раковиной расположены ниж­ние ушные лимфатические узлы (nodi lymphatici auricula

Res inferiores), куда оттекает лимфа мочки уха и нижней ловерхности слухового прохода. С внутренней поверхно­сти уха лимфа собирается в задние лимфатические узлы (nodi lymphatic; auriculares posteriores) и в околоушные лимфатические железы.

Расположение лимфатических узлов ушного бассейна необходимо знать, так как при инфицировании уха в связи

с. иглоукалыванием первые признаки воспаления могут появиться в них.

Волокна улиткового корешка заканчиваются в латеральном углу ромбовидной ямки на клетках вентрального ядра (nucl. ventralis) и дорсального улиткового ядра (nucl. dorsalis). Таким образом, клетки спирального ганглия вместе с периферическими отростками, идущими к нейроэпителиальным волосковым клеткам органа Корти, и центральными отростками, заканчивающимися в ядрах моста, составляют I нейрон слухового анализатора. На уровне кохлеарных ядер расположен ряд ядерных образований, принимающих участие в формировании дальнейших путей для проведения слуховых раздражений: ядро трапециевидного тела, верхняя олива, ядро боковой петли. От вентрального и дорсального ядер начинается II нейрон слухового анализатора. Меньшая часть волокон этого нейрона идет по одноименной стороне, a большая часть в виде striae acusticae перекрещиваются и переходят на противоположную сторону моста, заканчиваясь в оливе и трапециевидном теле. Волокна III нейрона в составе боковой петли идут к ядрам четверохолмия и медиального коленчатого тела, откуда уже волокна IV нейрона после второго частичного перекреста направляются в височную долю мозга и оканчиваются в корковом отделе слухового анализатора, располагаясь преимущественно в поперечных височных извилинах Гешля.

Проведение импульсов от кохлеарных рецепторов по обеим сторонам мозгового ствола объясняет то обстоятельство, что одностороннее нарушение слуха возникает только в случае поражения среднего и внутреннего уха, а также кохлеовестибулярного нерва и его ядер в мосту. При одностороннем поражении латеральной петли, подкорковых и корковых слуховых центров импульсы от обоих кохлеарных рецепторов проводятся по непораженной стороне в одно из полушарий и расстройства слуха может не быть.

Слуховая система обеспечивает восприятие звуковых колебаний, проведение нервных импульсов к слуховым нервным центрам, анализ получаемой информации.

Вестибулярный анализатор . Рецепторные клетки вестибулярного анализатора контактируют с окончаниями периферических отростков биполярных нейронов вестибулярного ганглия (gangl. vestibulare), расположенного во внутреннем слуховом проходе. Центральные отростки этих нейронов формируют вестибулярную порцию преддверно-улиткового (VIII) нерва, который проходит во внутреннем слуховом проходе, выходит в заднюю черепную ямку и в области мостомозжечкового угла внедряется в вещество мозга. В вестибулярных ядрах продолговатого мозга, в дне четвертого желудочка, заканчивается I нейрон. Вестибулярный ядерный комплекс включает четыре ядра: латеральное, медиальное, верхнее и нисходящее. От каждого ядра идет с преимущественным перекрестом II нейрон.

Высокие адаптационные возможности вестибулярного анализатора обусловлены наличием множества ассоциативных путей ядерного вестибулярного комплекса (рис. 5.18). С позиций клинической анатомии важно отметить пять основных связей вестибулярных ядер с различными образованиями центральной и периферической нервной системы.

*Вестибулоспинальные связи. Начинаясь от латеральных ядер продолговатого мозга, в составе вестибулоспинального тракта, они проходят в передних рогах спинного мозга, обеспечивая связь вестибулярных рецепторов с мышечной системой. *Вестибулоглазодвигательные связи осуществляются через систему заднего продольного пучка: от медиального и нисходящего ядер продолговатого мозга идет перекрещенный путь, а от верхнего ядра - неперекрещенный, к глазодвигательным ядрам. *Вестибуловегетативные связи осуществляются от медиального ядра к ядрам блуждающего нерва, ретикулярной фармации, диэнцефальной области.

*Вестибуломозжечковые пути проходят во внутреннем отделе нижней ножки мозжечка и связывают вестибулярные ядра с ядрами мозжечка.

*Вестибулокортикальные связи обеспечиваются системой волокон, идущих от всех четырех ядер к зрительному бугру. Прерываясь в последнем, далее эти волокна идут к височной доле мозга, где вестибулярный анализатор имеет рассеянное представительство. Кора и мозжечок выполняют регулирующую функцию по отношению к вестибулярному анализатору.

Посредством указанных связей реализуются разнообразные сенсорные, вегетативные и соматические вестибулярные реакции.

Звукопроводящий аппарат.

Звукопроведение осуществляется при участии ушной раковины, наружного слухового прохода, барабанной перепонки, цепи слуховых косточек, жидкостей внутреннего уха, мембраны окна улитки, а также рейсснеровой, базилярной и покровной мембран (рис. 5.21).

Основной путь доставки звуков к рецептору - воздушный. Звуковые колебания поступают в наружный слуховой проход, достигают барабанной перепонки и вызывают ее колебания. В фазе повышенного давления барабанная перепонка вместе с рукояткой молоточка движется кнутри. При этом тело наковальни, соединенное с головкой молоточка благодаря подвешивающим связкам смещается кнаружи, а длинный отросток наковальни - кнутри, смещая таким образом кнутри и стремя. Вдавливаясь в окно преддверия, стремя толчкообразно приводит к смещению перилимфы преддверия. Дальнейшее распространение звуковой волны происходит по пери-

Рис. 5.20. Схема звукопроводящей и звуковоспринимающей систем: 1 - наружное ухо; 2 - среднее ухо; 3 - внутреннее ухо; 4 - проводящие пути; 5 - корковый центр; А - звукопроводящий аппарат; Б - звуковоспринимающий аппарат

Рис. 5.21. Схема передачи звуковых колебаний к спиральному органу

лимфе лестницы преддверия, через геликотрему передается на барабанную лестницу и в конечном счете вызывает смещение мембраны окна улитки в сторону барабанной полости. Колебания перилимфы через преддверную мембрану Рейсснера передаются на эндолимфу и базилярную мембрану, на которой находится спиральный орган с чувствительными волосковыми клетками. Распространение звуковой волны в перилимфе возможно благодаря наличию эластичной

мембраны окна улитки, а в эндолимфе - вследствие эластичного эндолимфатического мешка, сообщающегося с эндолимфатическим пространством лабиринта через эндолимфатический проток.

Воздушный путь доставки звуковых волн во внутреннее ухо является основным. Однако существует и другой путь проведения звуков к кортиеву органу - костно-тканевой, когда звуковые колебания попадают на кости черепа, распространяются в них и доходят до улитки.

Различают инерционный и компрессионный типы костного проведения (рис. 5.22). При воздействии низких звуков череп колеблется как целое, и благодаря инерции цепи слуховых косточек получается относительное перемещение капсулы лабиринта относительно стремени, что вызывает смещение столба жидкости в улитке и возбуждение спирального органа. Это инерционный тип костного проведения звуков. Компрессионный тип имеет место при передаче высоких звуков, когда энергия звуковой волны вызывает периодическое сжатие волной капсулы лабиринта, что приводит к выпячиванию мембраны окна улитки и в меньшей степени основания стремени. Так же как и воздушная проводимость, инерционный путь передачи звуковых волн нуждается в нормальной подвижности мембран обоих окон. При компрессионном типе костной проводимости достаточно подвижности одной из мембран.

Колебание костей черепа можно вызвать прикосновением к нему звучащего камертона или костного телефона аудиометра. Костный путь передачи приобретает особое значение при нарушении передачи звуков через воздух.

Рассмотрим роль отдельных элементов органа слуха в проведении звуковых волн.

Ушная раковина играет роль своеобразного коллектора, направляющего высокочастотные звуковые колебания во вход в наружный слуховой проход. Ушные раковины имеют также определенное значение в вертикальной ототопике. При изменении положения ушных раковин вертикальная ототопика искажается, а при выключении их путем введения в наружные слуховые проходы полых трубочек полностью исчезает. Однако при этом не нарушается способность локализовать источники звука по горизонтали.

Ушная раковина и фиброзно-хрящевой отдел наружного слухового прохода (за исключением внутреннего его отдела) получают кровь из ветвей системы наружной сонной артерии: передняя поверхность снабжается a. auricularis anterior, задняя-a. auricularis posterior, а костный его отдел и внутренняя часть хрящевого-a. auricularis profunda (из a. maxillaris interna). Эта артерия дает веточку к наружной поверхности барабапной перепонки.

Вены, обычно парные , следуют прохождению артериальных стволов, они анастомозируют с венамп околоушной железы, а также с венамп сосцевидпой области. Вены наружной поверхности барабанной перепонки анастомозируют с таковымп внутренней поверхности посредством vv. perforantes.

Лимфатические сосуды наружной поверхности ушной раковины и переднего отдела наружного слухового прохода тянутся к лимфатическим узлам, располагающимся непосредственно перед козелком и на околоушной железе (как и в толще ее), а также к глубоким верхним шейным лимфатическим узлам, прикрытым верхней частью грудино-ключично-сосковой мышцы.

Лимфатические сосуды внутренней поверхности ушной раковины и задпего отдела наружного слухового прохода идут к лимфатическим узлам на сосцевидном отростке и частично к упомянутым глубоким шейным верхним лимфатическим узлам.

При воспалительных процессах наружного уха указанные лимфатические узлы нередко припухают и иногда дают повод к дифференциальной диагностике между лимфаденитом, с одной стороны, п паротитом или мастоидитом-с другой.

Иннервация ушной раковины осуществляется n. auricularis magnus (из верхнего шейного сплетения), n. occipitalis minor (из того же сплетения), лицевым п блуждающим нервами и n. auriculo-temporalis (из третьей ветви тройничного нерва). По данным А. М. Талышинского, заднюю поверхность ушной раковины иниервируют большой ушной нерв, малый затылочный (или, по терминологии этого автора,-малый затылочно-ушной) нерв, задняя ушная ветвь лицевого нерва и ушная ветвь блуждающего нерва.

Позадиушную область иннервируют те же нервы , за исключением блуждающего. В иннервации передней поверхности ушной раковины участвуют большой ушной нерв и ветви ушно-височного нерва, идущие к наружному слуховому проходу. Мышцы ушной раковины инвервируются лицевым нервом. Наружный слуховой проход иннервируется ramus auricularis n. vagi (вступающим в проход через заднюю его стенку) и ушно-височный нервом, отдающим одну веточку-n. membranae tympani-к барабанной перепонке.

Ветви ушно-височного нерва , идущие к наружному слуховому проходу, почти всегда представлены двумя стволами (передневерхним и задненижним), которые входят в слуховой проход на границе его хрящевого и костного отделов. Поэтому целесообразно для анестезии наружного слухового прохода при радикальной операции вводить новокаин в нижне-заднюю и передневерхнюю стенки на границе хрящевого н костного отделов.

Нервы многочисленны в наружных слоях стенки слухового прохода. Большинство из них безмякотны. Нервные пучки часто проходят параллельно кровеносным сосудам и интимно связаны с железами.

Механическое раздражение кожи наружного слухового прохода (например, при введении воронки) вызывает кашлевой рефлекс вследствие раздражения блуждающего нерва, а тактильное или калорическое раздражение кожи дистального отдела наружного слухового прохода вызывает зажмуривание глаз-ауропальпебральный рефлекс (с тройничного нерва на лицевой) пли значительно менее постоянный ауролакримальный (слезотечение).


Оглавление темы "Наружное ухо. Барабанная перепонка и полость":

Кровоснабжение внутреннего уха осуществляется лабиринтной артерией, которая в 65% отходит от передней нижне-мозжечковой артерии, в 29% ─ от базилярной артерии, в 0,5% ─ от задненижней мозжечковой артерии и в 5,5% ─ от различных источников с правой и левой стороны (мозжечковые и базилярные артерии) (рис. 4).

Рис. 4 Артерии вестибулярного аппарата (обозначения на рисунке) [по 17]

Arteria labyrinthi вступает во внутренний слуховой проход вместе с лицевым и статоакустическим нервом. Артерия лабиринта является конечной артерией, т. е. не имеющей значительных анастомозов с другими артериями, крайне редко она даёт ветви к нижне-передней мозжечковой артерии. Ход этой артерии чаще всего прямой (при отхождении от нижне-передней мозжечковой артерии) или дугообразный (при отхождении от основной артерии). Ширина просвета лабиринтной артерии мала и может быть отнесена к субмиллиметрическим . При входе во внутреннее ухо лабиринтная артерия делится на передне-преддверную артерию и общую улитковую артерию, которая заканчивается делением на преддверно-улитковую и улитковую артерии. Передняя преддверная артерия кровоснабжает верхние отделы вестибулярного лабиринта, включая горизонтальный полукружный канал, макулу утрикулюса и вестибулярный нерв. Общая улитковая артерия питает нижние отделы вестибулярного лабиринта и улитку. Между этими ветвями лабиринтной артерии почти нет анастомозов на уровне верхних отделов лабиринта в отличие от наличия коллатералей на уровне нижних отделов лабиринта .

Эти анатомические особенности и обуславливают различную чувствительность отделов лабиринта к ишемии. Чувствительность к ишемии перепончатого лабиринта как органа равновесия и слуха обусловлена также тем, что отсутствует коллатеральное кровообращение со стороны сосудов ушной капсулы .

Ушной лабиринт наиболее чувствителен к развитию ишемических состояний в вертебрально-базилярном бассейне . Головокружение в этих условиях обуславливается разницей между кровотоком по правой и левой лабиринтным артериям или более крупным сосудам вертебрально-базиляр-ной системы, а следовательно, разницей в кровоснабжении правого и левого лабиринта .

Вестибулярные ядра занимают значительную зону в латеральных отделах ствола головного мозга и кровоснабжаются проникающими веточками от позвоночных и основной артерий. Клинически важным является то, что эта область особенно подвержена как ишемическому, так и геморрагическому поражению .

3. Функции вестибулярной системы.

Вестибулярная система выполняет три основные функции (рис.1): ориентация в пространстве, управление равновесием и стабилизация изображения.

3.1 Ориентация в пространстве

Функция ориентации в пространстве чрезвычайно важна - необходимое условие для управления позой тела, передвижения и взаимодействия с окружающей средой . Для оптимальной реализации этой функции необходимо получать информацию от всех органов чувств. Вестибулярный аппарат является частью сложной системы сенсорной интерпретации и интеграции . Визуальное наблюдение нашего положения в среде помогает определить абсолютное положение. Пациенты, имеющие патологию вестибулярного аппарата, компенсируют эту патологию в значительной степени зрительной информацией. Рассогласование функционирования вестибулярной, зрительной и проприоцептивной систем и отсутствие синхронной афферентации в центры обуславливает развитие неустойчивости .

3.2 Стабилизация изображения

Изображение, перемещающееся по сетчатке быстрее, чем 2-3 градуса в секунду, не может быть обработано зрительной системой без размывания изображения. По этой причине движущееся изображение долж­но быть стабилизировано в сетчатке. Если мишень движется, то глазодвигательный аппарат способен перемещать взгляд, позволяя ему, благодаря оптокинетическому рефлексу, следовать за мишенью. Если мишень неподвижна, изображение мишени на сетчатке также будет перемещаться, если индивидуум совершит движение головой. В этой ситуации стабилизация изображения достигается путем движения глаз в направлении, противоположном тому, в котором движется голова (компенсаторное движение глаз, или вестибуло-окулярный рефлекс) .

3. 2.1 Саккадический взор

Глазодвигательная реакция в виде рывкового движения обоих глаз в сторону заинтересовавшего объекта называется саккады (от франц: saccade – внезапная задержка коня рывком) по . Изображение, появляющееся в периферическом поле зрения, быстро перемещается в область центральной ямки сетчатки (область наибольшего пространственного разрешения) для детального анализа путем быстрого скачкообразного движения (подергивания) глаз, на протяжении которого зрение кратковременно подавляется. Точность этих движений постоянно регулируется за счет обратной зрительной связи. При этом стимул от коры головного мозга достигает ядра отводящего нерва противоположной стороны и – после перекреста в верхних отделах моста – ипсилатерального ядра глазодвигательного нерва. Это приводит к одновременному сокращению соответственно латеральной прямой мышцы одного глаза и медиальной прямой мышцы противоположного глаза и как следствие к содружественному повороту глазных яблок. Такой гармоничный нервный механизм возможен в силу синхронной работы волокон в рамках медиального продольного пучка.

3.2.2 Следящие движения глаз

Глазодвигательная система также способна следить за мишенью, когда та приходит в движение. Вовлеченный в этот процесс рефлекс называется плавным слежением. Рефлекс зрительного прослеживания управляет процессами на пути от центральной ямки сетчатки через латеральное коленчатое тело (corpus geniculatumlaterale) в таламусе (зрительный бугор) к зрительной зоне коры головного мозга (19-е поле теменно – затылочной области). В результате поступает моторная команда через кортико – тектальные и кортико – тегментальные волокна в средний мозг и варолиев мост, мозжечок и вестибулярные ядра к глазодвигательному ядру и косым (extra-ocular) глазодвигательным мышцам. Время запаздывания составляет 70 миллисекунд. При плавном слежении движения должны быть очень точны, поскольку центральная ямка сетчатки занимает область только в 1 дуговой градус - изображение движущегося предмета может легко выскользнуть из этой области. Для офтальмологически здорового человека скорость движения стимула по сетчатке не должна превышать 30 – 60 градусов в секунду . При более высоких скоростях этот механизм становится неадекватным и требуются коррекционные саккады для фиксации мишени в центральной ямке сетчатки.

3.2.3. Оптокинетический рефлекс

В коре оптокинетический рефлекс проходит тот же самый путь, что и рефлекс плавного слежения, однако он использует информацию, получаемую от всей сетчатки. Например, когда мы смотрим на проезжающий мимо поезд, изображение поезда перемещается по сетчатке и зрительная система подсчитывает скорость перемещения изображения в зрительной зоне коры головного мозга. На основании этой информации генерируются парные (конъюгированные) движения глаз (оптокинетический нистагм) со скоростью, которая соответствует скорости пере­мещения мишени. Инициация медленного компонента оптокинетического нистагма определяется прохождением отражений по периферической части сетчатки. Быстрый компонент нистагма играет более активную роль с привлечением высших корковых центров, связанных с фиксационным рефлексом. Подкорковый оптокинетический рефлекс позволяет младенцам стабилизировать зрительные образы, перемещающиеся по сетчатке. В течение первых месяцев жизни зрение плохо развито; нет способности плавно отслеживать перемещение предмета, и создается впечатление, что малышами воспринимаются только большие предметы, привлекающие внимание. Скорость передвижения образа подсчитывается каждым глазом по отдельности в обоих ядрах оптического тракта через память хранения значений скорости (расположена в ядре перед ядром подъязычного нерва и мозжечке), и в зависимости от данных о ней производится активация косых (ехtra – ocular) глазодвигательных мышц. Этот путь также активен у взрослых, когда происходит подсознательное наблюдение за мишенью. Подкорковый путь начинает функционировать с момента рождения, обходя центр взгляда в ретикулярной формации Варолиева моста, который отвечает за согласованность движений обоих глаз. Поэтому у новорожденных оптокинетические рефлексы проявляются для каждого глаза независимо, пока не разовьется бинокулярное зрение, в котором участвует кора головного мозга. Для формирования коркового оптокинетического рефлекса нужно время. До того как глаза начнут двигаться, должна быть заполнена память хранения значений скорости. Остаточная активность, хранимая в памяти, отвечает за движение глаз (нистагм), которое происходит в том случае, если зрительный стимул внезапно исчезнет. Это явление называется "оптокинетический эффект после нистагма" ("optokinematic after nystagmus") (OKAN) и часто используется для выяснения того, не повреждена ли функция хранения информации о скорости. Дисфункция системы хранения информации о скорости или снижение объема информации, поступающей от лабиринтов (недостаточность лабиринтов) обычно приводит к укорачиванию поствращательных (post-rotatory) ответных реакций. Пассивный ответ на оптокинетический стимул можно получить при помощи оптокинетичнского барабана .

3.2.4.Глазовестибулярные рефлексы

Образ мишени на сетчатке будет перемещаться также в том случае, когда индивидуум перемещает свою голову, хотя мишень может быть и неподвижной. Рефлексы, ответственные за движение глаз в процессе зрения, обычно действуют слишком медленно, чтобы стабилизировать изображение на сетчатке, если перемещение головы производится быстро. Глазовестибулярные рефлексы - достаточно быстрый механизм, в то время как движения глаз в соответствии со скоростью вызываются непосредственно стимуляцией лабиринтов. Этот рефлекс, возможно, срабатывает в теле быстрее всех, так как время задержки составляет 7-10 миллисекунд (из которых 2 миллисекунды уходят на механический процесс, приводимый в действие из-за преломления света, и около 5 миллисекунд - на проведение нервного импульса и сокращеие/ расслабление косых (extra-ocular) глазодвигательных мышц).

От лабиринтов информация передается в вестибулярное ядро ствола мозга и затем к глазодвигательному ядру, производя компенсационные движения глаз. В результате скорость перемещения образа по сетчатке минимизируется за счет передвижения глаз в направлении, противоположном тому, в котором движется голова. Далее осуществляется зрительная обратная связь: зрительная зона коры головного мозга обрабатывает информацию об остающемся движении образа и посылает сигнал вестибулярному ядру через центры взгляда в варолиевом мосту и мозжечок для регулировки силы рефлекса. В лабораторных условиях сила рефлекса регулируется в диапазоне до 30 % в течение нескольких минут .

3.3 Восприятие.

Различные области в теменной и височной зоне коры головного мозга активируются стимулами, исходящими от лабиринтов, органов зрения и проприоцепторов. Предположительно, эти области со многими сенсорами участвуют в ориентации в пространстве и восприятии движения. По этой причине функция вестибулярной зоны коры головного мозга, видимо, распределена между несколькими областями со многими сенсорами и интегрируется в большую сеть для "пространственного внимания" и сенсорно-двигательного управления. Вестибулярная зона теменно-островковой области коры головного мозга считается основной зоной в вестибулярной системе коры. Она представлена с обеих сторон, при этом доминирующую роль играет правое полушарие.

КОНТРОЛЬНЫЕ ВОПРОСЫ:

1. Чем обусловлено разнообразие вестибулярных реакций, развивающихся при предъявлении надпорогового стимула.

2.Что является адекватным раздражителем для ампулярного и отолитового аппарата.

3. Чем обусловлена различная чувствительность отделов ушного лабиринта к ишемии.

4. Из какого артериального бассейна кровоснабжается внутреннее ухо.

5. Чем обусловлен быстрый и медленный компонент оптокинетического нистагма.