Какая функция не характерна для углеводов. Углеводный обмен в организме человека. Нужна помощь по изучению какой-либы темы

Основная функция углеводов  обеспечение энергией всех процессов в организме. Действительно, при окислении 1 грамма углеводов организм получает 4,1 ккал энергии. Клетки способны получать из углеводов энергию, как при их окислении кислородом, так и в анаэробных условиях (без доступа кислорода). Боль в мышцах после тяжелой работы  результат действия на клетки молочной кислоты, которая образуется при анаэробном распаде углеводов, когда для обеспечения работы мышечных клеток не хватает кислорода, поступающего с кровью.

Общую схему анаэробного негидролитического расщепления углеводов  гликолиза  можно представить следующим образом:

С

молочная кислота

6 H 12 O 6 + 2H 3 PO 4 + 2АДФ 2CH 3 CH(OH)COOH + 2АТФ

Углеводы также способны стимулировать окисление промежуточных продуктов метаболизма жирных кислот. Они являются составной частью молекул некоторых аминокислот, участвуют в построении ферментов, образовании нуклеиновых кислот, являются предшественниками образования жиров, иммуно-глобулинов, играющих важную роль в системе иммунитета, и гликопротеидов  комплексов углеводов и белков, которые являются важнейшими компонентами клеточных оболочек. Гиалуроновые кислоты и другие мукополисахариды образуют защитную прослойку между всеми клетками, из которых состоит организм.

В отличие от растений, способных получать углеводы в процессе фотосинтеза, животные организмы синтезировать углеводы не способны и получают их только с растительной пищей. Резкое ограничение углеводов в диете ведет к значительным нарушениям метаболизма. Особенно страдает при этом белковый обмен. При достаточном поступлении углеводов с пищей белки используются, главным образом, для пластического обмена, а не для производства энергии. При дефиците углеводов белки используются не по назначению: они становятся источником энергии и участниками некоторых важных химических реакций. Это приводит к повышенному образованию азотистых веществ и, как следствие, к повышенной нагрузке на почки, нарушениям солевого обмена и другим, вредным для здоровья, последствиям. Таким образом, углеводы необходимы для рационального использования белков.

При дефиците углеводов в пище организм использует для получения энергии не только белки, но и жиры. При усиленном распаде жиров могут возникнуть нарушения обменных процессов, связанные с ускоренным образованием кетонов (к этому классу веществ относится известный всем ацетон) и накоплением их в организме. Избыточное образование кетонов при усиленном окислении жиров и частично белков может привести к «закислению» внутренней среды организма и отравлению тканей мозга вплоть до развития ацидотической комы с потерей сознания.

Основным средством депонирования (накопления) углеводов в растениях является крахмал. У животных в этом качестве выступает гликоген.

Некоторые представители углеводов

Глюкоза самый важный простой углевод.

Из всех моносахаридов наиболее важным является глюкоза, так как она является структурной единицей для построения молекул большинства ди- и полисахаридов, поступающих в организм с пищей. Все полисахариды, представленные в пище человека, за редкими исключениями, являются полимерами глюкозы.

Полисахариды в процессе движения по желудочно-кишечному тракту (ЖКТ) расщепляются до моносахаридов и всасываются в кровь в тонком кишечнике. С кровью воротной вены большая часть глюкозы (около половины) из кишечника поступает в печень, остальная глюкоза через общий кровоток транспортируется в другие ткани. Концентрация глюкозы в крови в норме поддерживается на постоянном уровне и составляет 3,33-5,55 мкмоль/л, что соответствует 80-100 мг в 100 мл крови. Транспорт глюкозы в клетки регулируется во многих тканях гормоном поджелудочной железы  инсулином. В клетке в ходе многостадийных химических реакций глюкоза превращаются в другие вещества, которые в конечном итоге окисляются до углекислого газа и воды, при этом выделяется энергия, используемая организмом для обеспечения жизнедеятельности. При снижении уровня глюкозы в крови или ее высокой концентрации (и невозможности использования в полном объеме), как это происходит при диабете, наступает сонливость, а в некоторых случаях  потеря сознания (гипогликемическая кома ).

Без присутствия инсулина глюкоза не поступает в клетки и не может быть использована в качестве топлива. В этом случае ее роль выполняют жиры (это характерно для людей с сахарным диабетом). Скорость поступления глюкозы в ткани мозга и печени не зависит от инсулина и определяется только концентрацией ее в крови. Эти ткани называются инсулинонезависимыми .

Фруктоза вкусный углевод.

Является одним из самых распространенных углеводов фруктов. В отличие от глюкозы она может без участия инсулина проникать из крови в клетки тканей. По этой причине фруктоза рекомендуется в качестве наиболее безопасного источника углеводов для больных диабетом. Часть фруктозы попадает в клетки печени, которые превращают ее в более универсальное топливо  глюкозу, поэтому фруктоза тоже способна повышать уровень сахара в крови, хотя и в значительно меньшей степени, чем другие простые сахара. Основным преимуществом фруктозы является то, что она в 2,5 раза слаще глюкозы и в 1,7  сахарозы. Ее применение вместо сахара позволяет снизить общее потребление углеводов.

Галактоза молочный углевод.

В продуктах в свободном виде не встречается. Она образует дисахарид с глюкозой  лактозу (молочный сахар)  основной углевод молока и молочных продуктов.

Галактоза, образующаяся при расщеплении лактозы, превращает-ся в печени в глюкозу. При врожденном наследственном недостатке или отсутствии фермента, превращающего галактозу в глюкозу, развивается тяжелое заболевание  галактоземия, которая ведет к умственной отсталости.

Сахароза «пустой» углевод.

Содержание сахарозы в сахаре составляет 95%. Сахар быстро расщепляется в ЖКТ, глюкоза и фруктоза всасываются в кровь и служат источником энергии и наиболее важным предшественником гликогена и жиров. Его часто называют «носителем пустых калорий», так как сахар  это чистый углевод, он не содержит других питательных веществ, таких как, например, витамины, минеральные соли. При соединении двух молекул глюкозы образуется мальтоза  солодовый сахар. Ее содержат мед, солод, пиво, патока и хлебо-булочные и кондитерские изделия, изготовленные с добавлением патоки.

Избыток сахарозы оказывает влияние на жировой обмен, усиливая жирообразование. Таким образом, количество поступающе-го сахара может служить в известной степени фактором, регулирующим жировой обмен. Обильное потребление сахара приводит к нарушению обмена холестерина и повышению его уровня в сыворотке крови. Избыток сахара отрицательно сказывается на функции кишечной микрофлоры. При этом повышается удельный вес гнилостных микроорганизмов, усиливается интенсивность гнилостных процессов в кишечнике, развивается метеоризм.

Установлено, что в наименьшей степени эти недостатки проявляются при потреблении фруктозы.

Крахмал распространенный углевод.

Основной из перевариваемых полисахаридов. На его долю приходится до 80% потребляемых с пищей углеводов. Источником крахмала служат растительные продукты, в основном злаковые: крупы, мука, хлеб, а также картофель. Больше всего крахмала содержат крупы: от 60% в гречневой крупе (ядрице) до 70%  в рисовой. Много крахмала содержится и в бобовых продуктах  от 40% в чечевице до 44% в горохе. По причине высокого содержания крахмала в картофеле (15-18%) в диетологии его относят не к овощам, где основные углеводы представлены моно- и дисахаридами, а к крахмалистым продуктам наравне со злаковыми и зернобобовыми.

Основное отличие крахмала от других полисахаридов состоит с том, что расщепление крахмала начинается уже в полости рта при участии слюны, которая частично расщепляет гликозидные связи, образуя менее крупные, чем крахмал молекулы  декстрины. Затем процесс переваривания крахмала происходит постепенно на протяжении всего ЖКТ.

Гликоген углевод прозапас.

Молекула гликогена содержит до 1 млн. остатков глюкозы, следовательно, на синтез расходуется значительное количество энергии. Необходимость превращения глюкозы в гликоген связана с тем, что накопление значительного количества глюкозы в клетке привело бы к повышению осмотического давления, так как глюкоза хорошо растворимое вещество. Напротив, гликоген содержится в клетке в виде гранул и малорастворим. Распад гликогена  гликогенолиз  происходит в период между приемами пищи. Таким образом, гликоген  удобная форма накопления углеводов, имеющая активно разветвленную структуру, что позволяет быстро и эффектив-но расщеплять гликоген на глюкозу и оперативно использовать как источник энергии.

Гликоген запасается, главным образом, в печени (до 6% от массы печени) и в мышцах, где его содержание редко превышает 1%. Запасы углеводов в организме нормального взрослого человека (массой 70 кг) после приема пищи составляют около 327 г.

Функция мышечного гликогена состоит в том, что он является легкодоступным источником глюкозы, используемой в энергети-ческих процессах в самой мышце. Гликоген печени используется для поддержания физиологических концентраций глюкозы в крови, прежде всего в промежутках между приемами пищи. Через 12-18 ч после приема пищи запас гликогена в печени почти полностью истощается. Содержание мышечного гликогена заметно снижается только после продолжительной и напряженной физической работы.

Пищевые волокна комплексный углевод.

Это комплекс углеводов: клетчатки (целлюлозы), гемицеллюлозы, пектинов, камедей (гумми), слизи, а также не являющегося углеводом лигнина. Таким образом, пищевые волокна  это большая группа веществ различной химической природы, источником которых служат растительные продукты. Пищевых волокон много в отрубях, непросеянной муке и хлебе из нее, крупах с оболочками, бобовых, орехах. Меньше пищевых волокон в большинстве овощей, фруктов и ягод и особенно в хлебе из муки тонкого помола, макаронах, в очищенных от оболочек крупах (рис, манная крупа и др.)

Для полноценной работы и поддержания жизнедеятельности человеческому организму необходимы белки, жиры и углеводы. Причем их состав должен быть сбалансированным. Углеводы являются важным источником энергии, они необходимы для стабильной работы всех систем организма. Однако функции углеводов не ограничиваются только обеспечением энергии.

Углеводы и их классификация

Углеводами принято считать органические вещества, которые состоят из углерода, водорода и кислорода. Иначе их еще называют сахаридами. Они получили широкое распространение в природе: так, растительные клетки на 70-80% состоят из углеводов в пересчете на сухое вещество, животные - всего на 2%. Функции углеводов в организме предполагают, что они играют важную роль в энергетическом балансе. В большей степени они откладываются в печени в виде гликогена и при необходимости расходуются.

В зависимости от величины молекулы углеводы делят на 3 группы:

  • Моносахара - состоят из 1 молекулы углевода (еще их называют кетозами или альдозами). Кстати, всем известные глюкоза и фруктоза являются моносахарами.
  • Олигосахара - состоят из 2-10 молекул или моносахаров. Это лактоза, сахароза и мальтоза.
  • Полисахара - содержат в своем составе более 10 молекул. К полисахарам относят крахмал, гиалуроновую кислоту и другие.

Чтобы лучше понять значение этих веществ для организма, необходимо выяснить, какие функции углеводов есть.

Энергетическая функция

Углеводы - это один из важных источников энергии для организма. Энергия выделяется при окислении под влиянием ферментов. Так, при расщеплении 1 грамма углеводов образуется 17,6 кДж энергии. В результате окисления и освобождения энергии образуется также вода и углекислый газ. Такой процесс играет большую роль в энергетической цепочке живых организмов, поскольку углеводы могут расщепляться с выделением энергии как в присутствии кислорода, так и без него. А это очень важно при дефиците кислорода. Источниками служат гликоген и крахмал.

Строительная функция

Структурная или строительная функция углеводов в клетке состоит в том, что они являются строительным материалом. Клеточные стенки растений состоят из целлюлозы на 20-40%, а она, как известно, придает высокую прочность. Вот почему клетки растений хорошо поддерживают свою форму и защищают таким образом внутриклеточные соки.

Хитин также является строительным материалом и является главным компонентом оболочек грибов и внешнего скелета членистоногих. Некоторые олигосахара присутствуют в составе цитоплазмы клеток животных и образуют гликокаликс. Углеводсодержащие компоненты играют роль рецептора и принимают сигналы из окружающей среды, затем передают информацию клеткам.

Защитная функция

Слизь (вязкий секрет), которая образуется разными железами, содержит большое количество углеводов и его производных. В комплексе они защищают дыхательные пути, половые органы, органы пищеварения и другие от воздействий окружающей среды (химических, механических факторов, проникновения патогенных микроорганизмов). Гепарин предотвращает свертывание крови и входит в состав противосвертывающей системы. Таким образом, защитные функции углеводов просто необходимы живому организму.

Запасающая функция

Полисахариды являются запасным питательным веществом любого организма, они играют роль главного поставщика энергии. Поэтому запасающая и энергетическая функции углеводов в организме тесно взаимодействуют.

Регуляторная функция

Продукты, которыми питается человек, содержат много клетчатки. Благодаря грубой структуре она раздражает слизистую ткань желудка и кишечника, при этом обеспечивая перистальтику (продвижение пищевого комка). В крови содержится глюкоза. Она регулирует осмотическое давление в крови и поддерживает стабильность гомеостаза.

Все перечисленные функции углеводов играют важную роль в жизнедеятельности организма, без которых просто невозможна жизнь.

В каких продуктах больше углеводов

Самыми известными считаются глюкоза и фруктоза. Рекордное количество содержится в натуральном меде. По сути, мед - это совместный продукт растительного и животного мира.

В продуктах животного происхождения меньше углеводов. Самым ярким представителем является лактоза, больше известная как молочный сахар. Она содержится в молоке и молочных продуктах. Лактоза необходима при заселении кишечника полезными бактериями, а они, в свою очередь, предотвращают опасные для здоровья процессы брожения в кишечнике.

Человек основную массу углеводов получает с пищей растительного происхождения. Например, много глюкозы в вишне, винограде, малине, персиках, тыкве, сливе и яблоках. Источником фруктозы служат все вышеперечисленные ягоды и фрукты, а также смородина. Сахарозу мы получаем из свеклы, земляники, моркови, слив, дыни и арбуза. Плоды и овощи также богаты полисахаридами, особенно много их в оболочке. Источником мальтозы являются кондитерские лакомства и хлебобулочные изделия, а также крупы, мука и пиво. А рафинад, к которому мы все так привыкли, представляет собой сахарозу почти в 100% виде. Это результат жесткой очистки. Углеводы выполняют функции, обеспечивающие нормальную работу всех органов, поэтому важно употреблять достаточное количество овощей и фруктов, чтобы не нарушить естественный баланс.

Мнение диетологов

Такие свойства полисахаридов, как медленное расщепление крахмала, плохая усвояемость грубых волокон и наличие пектина привлекают внимание диетологов. Большинство из них рекомендует включать в рацион до 80% полисахаридов. Если уж хочется булочек и выпечки - то только из муки грубого помола, ягоды следует употреблять в свежем виде. Ну а кондитерские изделия лучше позволять себе только по праздникам, поскольку в них содержится большое количество «быстрых» углеводов, которые могут привести к резкому увеличению массы тела. Иными словами, пирожные и торты - это верный путь к лишним килограммам. Все, что не потратилось, организм откладывает в печени в виде гликогена. Избыток углеводов в организме может вызвать серьезное заболевание - сахарный диабет. Поэтому диетологи советуют употреблять все в меру: и сладкое, и мучное. Только так удастся сохранить баланс, функция углеводов в клетке и в организме в целом не нарушится. Если не забывать об этом, питание всегда будет правильным и сбалансированным.

Таким образом, функции углеводов играют важную роль в жизни организма, главное - научиться понимать «язык» своего тела и стремиться к здоровому образу жизни.


Углеводы составляют основную часть пищевого рациона и обеспечивают 50-60% его энергоценности. При окислении 1 г усвояемых углеводов в организме выделяется 4 ккал.

Углеводов выполняют следующие физиологические функции:

энергетическая - при всех видах физического труда отмечается повышенная потребность в углеводах. Углеводы - основной источник энергии для центральной нервной системы.

пластическая - они входят в состав структур многих клеток и тканей, участвуют в синтезе нуклеиновых кислот. Глюкоза постоянно содержится в крови, гликоген - в печени и мышцах, галактоза входит в состав липидов мозга, лактоза - в состав женского молока и т.д. Углеводы в комплексе с белками и липидами образуют некоторые ферменты, гормоны, слизистые секреты желез, иммуноглобулины и другие биологически важные соединения.

Особое значение имеют клетчатка, пектины, гемицеллюлоза , которые почти не перевариваются в кишечнике и являются незначительными источниками энергии. Вместе с тем они являются основной составной частью пищевых волокон и крайне необходимы организму для нормальной работы пищеварительного тракта.

В организме углеводы могут образовываться из белков и жиров. Депонируются они ограниченно и запасы их у человека невелики. Содержатся углеводы, главным образом, в растительных продуктах.

В пищевых продуктах углеводы представлены в виде простых и сложных углеводов.

К простым углеводам относятся моносахариды (гексозы - глюкоза, фруктоза, галактоза; пентозы – ксилоза, рибоза, арабиноза), дисахариды (лактоза, сахароза, мальтоза), к сложным - полисахариды (крахмал, гликоген, клетчатка, пектины).

Простые углеводы обладают хорошей растворимостью, легко усваиваются и используются для образования гликогена.

Усвояемые углеводы являются основными поставщиками энергии для организма. Они имеют выраженный сладкий вкус. Относительная сладость их различна. В связи с тенденцией снижения калорийности пищи для регуляции массы тела, а также для больных сахарным диабетом в настоящее время используются пищевые добавки подсластители. В таблице 4 представлена сладость углеводов и заменителей сахара (за 100% принимается сахароза).

Таблица 4

Относительная сладость углеводов и заменителей сахара

Примечание. За исключением полисахаридов и сахароспирта маннита все вещества хорошо растворяются в воде.

Моносахариды

Глюкоза - является наиболее распространенным моносахаридом, образуется в организме в результате расщепления дисахаридов и крахмала пищи. Она всасывается в кровь через 5-10 мин. после поступления в желудок.

Глюкоза - главный поставщик энергии для нейронов головного мозга, мышечных клеток (в т.ч. сердечной мышцы) и эритроцитов, которые сильнее всего страдают от недостатка глюкозы. За сутки у человека головной мозг потребляет около 100 г глюкозы, поперечно-полосатые мышцы – 35 г, эритроциты – 30 г. Остальные ткани могут в условиях голодания использовать свободные жирные кислоты или кетоновые тела.

В сыворотке крови человека поддерживается постоянный уровень глюкозы (гликемия), натощак составляющий 3,3-5,5 ммоль/л, что обеспечивается постоянно протекающими процессами: гликогенолиз (расщепление гликогена с поступлением глюкозы в кровь) и глюконеогенез (синтез глюкозы из неуглеводных компонентов). Эти процессы регулируются гормонами поджелудочной железы (инсулин и глюкагон ) и коры надпочечников (глюкокортикоиды ).

Гипогликемия – пониженное содержание глюкозы в сыворотке крови.

Гипергликемия – повышенное содержание глюкозы в сыворотке крови.

Данные состояния могут развиваться как при различных метаболических заболеваниях, так и у здорового человека (реактивная гипергликемия наблюдается после приема пищи, гипогликемия – при голоде). Гипергликемия вследствие дефекта секреции или действия инсулина характерна для сахарного диабета.

Гипогликемия у здорового человека приводит к активации пищевого поведения, т.е. глюкоза участвует в регуляции аппетита, что необходимо учитывать при разработке диет, направленных на снижение веса.

В практике диетологии в конце ХХ века появилось понятие гликемический индекс (ГИ) , применяемый для определения способности углеводсодержащих продуктов и блюд повышать уровень глюкозы в крови. За точку отсчета берут ГИ глюкозы равный 100. Чем выше ГИ продуктов и блюд, тем быстрее после их употребления повышается уровень гликемии. При низких значениях ГИ продуктов и блюд глюкоза в кровь поступает медленно и равномерно. На величину ГИ влияет не только вид углеводов, но и количество пищи, содержание и соотношение в ней других компонентов – жиров, пищевых волокон. Сведения о ГИ разных продуктов приведены в таблице 5.

Таблица 5

Гликемический индекс некоторых пищевых продуктов

Таблица 6

Больше всего глюкозы содержится в меде - около 35%, много в винограде - 7,8%, в вишне, черешне, крыжовнике - арбузе, малине, черной смородине - около 4,5-5,5%, в грушах и яблоках – около 2% (табл.6).

Фруктоза из всех известных натуральных сахаров обладает наибольшей сладостью, для достижения вкусового эффекта ее требуется почти в 2 раза меньше, чем глюкозы и сахарозы. Фруктоза медленнее глюкозы усваивается в кишечнике.

Большая ее часть утилизируется тканями без инсулина, в то время как другая, меньшая, превращается в глюкозу, поэтому при сахарном диабете необходимо ограничивать поступление большого количества фруктозы. Следует отметить, что продукты с высоким содержанием фруктозы могут способствовать более быстрому набору веса, чем глюкозосодержащие. Содержание фруктозы в пищевых продуктах представлено в табл.6.

Галактоза - моносахарид животного происхождения, входит в состав лактозы. Участвует в образовании гликолипидов (цереброзидов), протеогликанов. Последние входят в состав межклеточного вещества соединительной ткани.

Пентозы в природе представлены главным образом в качестве структурных компонентов сложных некрахмальных полисахаридов (гемицеллюлоза, пектины), нуклеиновых кислот и других природных полимеров.

Дисахариды

Лактоза (молочный сахар) содержится в молочных продуктах. При гидролизе лактоза расщепляется на глюкозу и галактозу. Она нормализует состояние кишечной микрофлоры, ограничивает процессы брожения и гниения в кишечнике, улучшает всасывание кальция. Поступление лактозы способствует развитию молочнокислых бактерий, которые подавляют гнилостную микрофлору. При врожденном или приобретенном недостатке фермента лактазы в кишечнике нарушается ее гидролиз, что ведет к непереносимости молока с явлениями вздутия живота, болями и др. В таких случаях следует заменять цельное молоко на кисломолочные продукты, в которых содержание лактозы значительно меньше (в результате сквашивания ее до молочной кислоты).

Сахароза -один из самых распространенных углеводов,расщепляется в кишечнике на глюкозу и фруктозу. Основными поставщиками сахарозы служат сахар, кондитерские изделия, варенье, мороженое, сладкие напитки, а также некоторые овощи и фрукты (табл.6).

Длительное время сахар неоправданно считался вредным продуктом (сахар – «белая смерть»), повышающим риск возникновения сердечно-сосудистых, онкологических, аллергических заболеваний, сахарного диабета, ожирения, кариеса зубов, желчнокаменной болезни и др.

Согласно докладу экспертов ВОЗ «Диета, питание и профилактика хронических заболеваний» (2002), с позиций доказательной медицины пищевые сахара отнесены только к факторам риска развития кариеса зубов, но не сердечно-сосудистых и других массовых заболеваний.

Однако следует признать, что сахар как продукт питания имеет низкую пищевую ценность, т.к. содержит только сахарозу (99,8%). Сахар и богатые им продукты имеют высокие вкусовые качества и являются источниками легкоусвояемой энергии, но количество их в рационе должно определяться потребностями здорового или больного человека. Избыточное потребление сахара за счет других продуктов, являющихся источниками эссенциальных нутриетов и биологически активных веществ, снижает пищевую ценность рациона, хотя сам по себе сахар не опасен для здоровья человека.

Мальтоза (солодовый сахар) - промежуточный продукт расщепления крахмала амилазой в тонкой кишке и ферментами проросшего зерна (солода). Образующаяся мальтоза распадается до глюкозы. В свободном виде мальтоза содержится в меде, экстракте из солода (патоке мальтозной), пиве.

Полисахариды

К полисахаридам относятся крахмал, гликоген и некрахмальные полисахариды.

Крахмал составляет около 75-85% всех углеводов в питании. Больше всего крахмала содержится в крупах и макаронах (55-70%), бобовых (40-45%), хлебе (30-50%), картофеле (15%).

Крахмал состоит из двух фракций - амилозы и амилопектина, которые гидролизуются в пищеварительном тракте через ряд промежуточных продуктов (декстрины ) до мальтозы , а мальтоза расщепляется до глюкозы . Крахмалы имеют разную структуру и физико-химические свойства, изменяющиеся под влиянием воды, температуры и времени. В результате гидротермического воздействия изменяются специфические свойства и перевариваемость крахмала. Некоторые его фракции устойчивы к амилазному гидролизу и расщепляются только в толстом кишечнике (устойчивый крахмал). Например, крахмал морщинистого гороха сохраняется даже после разваривания, почти 40 % крахмала сырого картофеля, в отличие от вареного, не подвергается гидролизу в тонкой кишке.

При диетотерапии заболеваний, требующих щажения желудочно-кишечного тракта, принимают во внимание, что легче и быстрее переваривается крахмал из риса и манной крупы, чем из пшена, гречневой, перловой и ячневой круп, а из вареного картофеля и хлеба – легче по сравнению с горохом и фасолью. Крахмал в натуральном виде (кисели) усваивается очень быстро. Затрудняет усвоение крахмала пища из поджаренных круп.

Продукты, богатых крахмалом, предпочтительнее в качестве источника углеводов, чем сахар, т.к. с ними поступают витамины группы В, минеральные вещества, пищевые волокна.

Гликоген - углевод животных тканей. В организме гликоген используется для питания работающих мышц, органов и систем в качестве энергетического материала. Всего в организме содержится около 500 г гликогена. Больше его в печени - до 10%, в мышечной ткани - 0,3-1%. Эти запасы способны обеспечить организм глюкозой и энергией только в первые 1-2 дня голодания. Обеднение печени гликогеном способствует ее жировой инфильтрации .

Пищевыми источниками гликогена служат печень и мясо животных, птиц, рыба, обеспечивающие потребление 8-12 г гликогена в сутки.

Пищевые волокна комплекс углеводов: клетчатка (целлюлоза), гемицеллюлоза, пектины, камеди (гумми), слизи, а также не являющийся углеводом лигнин.

Источником пищевых волокон служат растительные продукты. Стенки растительных клеток состоят в основном из волокнистого полисахарида целлюлозы, межклеточное вещество из гемицеллюлозы, пектина и его производных. Различают растворимые в воде пищевые волокна (пектины, камеди, слизь) и нерастворимые (целлюлоза, лигнин, часть гемицеллюлозы).

Пищевых волокон много в отрубях, в черном хлебе, крупах с оболочками, бобовых, орехах. Меньше их содержится в большинстве овощей, фруктов и ягод, и особенно в хлебе из муки тонкого помола, макаронах, в очищенных от оболочек крупах (рис, манная крупа). Очищенные от кожуры фрукты содержат меньше волокон, чем неочищенные.

Клетчатка поступает в организм человека с растительными продуктами. В процессе пищеварения она механически раздражает стенки кишечника, возбуждает перистальтику (двигательную функцию кишечника) и тем самым способствует продвижению пищи по желудочно-кишечному тракту. В кишечнике человека нет ферментов, расщепляющих клетчатку. Она расщепляется ферментами микрофлоры толстого кишечника. В связи с этим клетчатка мало усваивается (до 30-40%) и не имеет значение как источник энергии. Клетчатки много в бобовых, овсяной, гречневой и ячневой крупах, хлебе из муки грубого помола, большинстве ягод и овощей (0,9-1,5%).

Чем нежнее клетчатка, тем легче она расщепляется. Нежная клетчатка содержится в картофеле, кабачках, тыкве, многих фруктах и ягодах. Варка и измельчение уменьшает действие клетчатки.

Клетчатка не только создает благоприятные условия для продвижения пищи, она нормализует кишечную микрофлору, способствует выделению из организма холестерина, снижает аппетит, создает чувство насыщения.

При дефиците клетчатки снижается продвижение пищи по кишечнику, каловые массы накапливаются в толстой кишке, что приводит к запору. Он характеризуется накоплением и всасыванием различных токсичных аминов, в том числе обладающих канцерогенной активностью.

Недостаток клетчатки в питании является одним из многих факторов риска развития синдрома раздраженной толстой кишки, рака толстой кишки, желчнокаменной болезни, метаболического синдрома, сахарного диабета, атеросклероза, варикозного расширения и тромбоза вен нижних конечностей и др.

В настоящее время в пищевых рационах жителей экономически развитых стран преобладают продукты, в значительной мере лишенные пищевых волокон. Эти продукты называются рафинированными . К ним относятся: сахар, изделия из белой муки, манная крупа, рис, макароны, кондитерские изделия и т.д. Рафинированные продукты ослабляют двигательную деятельность кишечника, ухудшают биосинтез витаминов и т.д. Следует ограничивать рафинированные углеводы в питании лиц пожилого возраста, умственного труда и людей, ведущих малоподвижный образ жизни.

Однако избыточное потребление клетчатки также оказывает неблагоприятное влияние на организм - ведет к брожению в толстом кишечнике, усиленному газообразованию с явлениями метеоризма (вздутие живота), ухудшению усвоения белков, жиров, витаминов и минеральных солей (кальция, магния, цинка, железа и др.) и ряда водорастворимых витаминов. У людей, страдающих гастритом, язвенной болезнью и другими заболеваниями желудочно-кишечного тракта, грубая клетчатка может вызвать обострение болезни.

Пектины представляют собой сложный комплекс коллоидных полисахаридов. Пектиновые вещества включают пектин и протопектин. Протопектины это нерастворимые в воде соединения пектинов с целлюлозой и гемицеллюлозой, содержащиеся в незрелых плодах и овощах. При созревании и тепловой обработке эти комплексы разрушаются, протопектины переходят в пектины (продукты размягчаются). Пектин относится к растворимым веществам.

Расщепление пектинов происходит под действием микроорганизмов толстого кишечника (до 95%).

Особенностью пектинов является их свойство преобразовываться в водном растворе в присутствии органических кислот и сахара в желе, что используется для приготовления мармелада, джема, пастилы и др.

Пектины в желудочно-кишечном тракте способны связывать тяжелые металлы (свинец, ртуть, кадмий и др.), радионуклиды и выводить их из организма. Они могут впитывать в себя вредные вещества в кишечнике и снижать степень интоксикации. Пектины способствуют уничтожению гнилостной микрофлоры кишечника и заживлению слизистой оболочки. С этим связана эффективность лечения больных желудочно-кишечными заболеваниями растительными диетами, например, морковной и яблочной.

Промышленностью выпускается сухой яблочный и свекловичный порошок, содержащий 16-25% пектина. Им обогащают фруктовые соки и пюре, кисели, мармелад, плодово-овощные консервы и т.д. Его добавляют после набухания в воде в конце приготовления первых и третьих блюд – супы, борщи, кисели, желе, муссы и т.д.

Пектин в относительно больших количествах содержится в овощах (0,4-0,6%), фруктах (от 0,4% в вишне до 1% в яблоках, но особенно много в яблочной кожице - 1,5%) и в ягодах (от 0,6% в винограде до 1,1% в черной смородине).

Потребность и нормирование углеводов в питании

По нормам питания России для здоровых взрослых людей требуется около 5 г/сут усвояемых углеводов на кг массы тела. При высокой физической активности (тяжелый физический труд, активные занятия спортом) потребность в углеводах возрастает до 8 г/сут/кг.

За счет углеводов должно обеспечиваться примерно 58% суточной энергии.

В последних отечественных рекомендациях по питанию (2001) потребление усвояемых углеводов для среднего взрослого человека составляет 365 г/сут, потребность в сахаре - 65 г/сут (18% от количества усвояемых углеводов), пищевых волокон – 30 г/сут (из них 13-15 г клетчатки).

В материалах ВОЗ (2002) ориентировочная норма потребления углеводов определена в 50-75% суточной энергоценности рационов, в т.ч. за счет свободных сахаров менее 10% (табл.1). Таким образом, в современной нутрициологии наметилась тенденция увеличения потребления углеводов за счет зерновых продуктов, бобовых, картофеля и овощей. Это положение объясняется отсутствием достоверных связей между большим потреблением крахмалов и сахарозы и массовыми алиментарными заболеваниями, а также тем, что углеводные рационы способствуют снижению потребления избыточного жира и энергии.

Увеличивают количество углеводов в лечебном питании, в диетах при повышенной функции щитовидной железы (тиреотоксикоз), при туберкулезе и т.д. В некоторых диетах важно увеличение не содержания углеводов выше физиологических норм, а их доли в суточной энергоценности рационов питания (почечная недостаточность).



Углеводы - органические соединения, состоящие из углерода, водорода и кислорода. Роль углеводов для организма определяется их энергетической функцией. Углеводы (в виде глюкозы) служат непосредственным источником энергии почти для всех клеток организма. В организме содержание углеводов составляет около 2% сухой массы. Особенно велика роль углеводов для клеток головного мозга. Глюкоза обеспечивает энергетическую базу мозговой ткани, она необходима для дыхания мозга, для синтеза макроэргических соединений и медиаторов, без которых не может функционировать нервная система. Велика также роль глюкозы для мышечной ткани, особенно в период активной мышечной деятельности, поскольку мышцы в конечном итоге функционируют благодаря анаэробному и аэробному распаду углеводов.

Углеводы выполняют в организме роль резервного энергетического вещества, легко мобилизуемого в соответствии с потребностями организма. Таким резервным углеводом является гликоген. Его присутствие помогает организму сохранить постоянство углеводного питания тканей даже при условии длительных перерывов в поступлении пищи. Углеводы играют важную пластическую роль, входя в состав цитоплазмы и субклеточных образований: костей, хрящей и соединительной ткани. Являясь обязательной составной частью биологических жидкостей организма, углеводы играют немалую роль в процессе осмоса. Наконец, они входят в сложные соединения, выполняющие в организме специфические функции (нуклеиновые кислоты, мукополисахариды и др.), необходимые для обезжиривания химических веществ в печени и для иммунологической защиты организма.

Основная часть углеводов (около 70%), поступающих с пищей, окисляется до СО 2 и Н 2 О, покрывая тем самым значительную часть энергетических потребностей организма. Около 25-28% вводимой с пищей глюкозы превращается в жир и только 2 из 5% пищевой глюкозы синтезирует гликоген - резервный углевод организма.

При уменьшении уровня сахара в крови (гипогликемия) наблюдается падение температуры тела и мышечная слабость.

Основные этапы обмена углеводов . Углеводный обмен - процесс усвоения (синтеза, распада и выведения) клетками и тканями организма углеводов и углеводсодержащих веществ. Обмен углеводов состоит из следующих фаз: 1) переваривание углеводов в желудочно-кишечном тракте; 2) всасывание моносахаридов в кровь; 3) межуточный обмен углеводов; 4) ультрафильтрация и обратное всасывание глюкозы в почках.



Переваривание углеводов . Расщепление полисахаридов пищи начинается в полости рта, под действием фермента слюны - амилазы. Действие этого фермента слюны продолжается и в желудке до тех пор, пока под влиянием кислого желудочного сока не произойдет инактивация фермента. Дальнейшее расщепление углеводов продолжается в 12-перстной кишке под действием ферментов поджелудочной железы и собственно кишечных ферментов. Углеводы расщепляются до стадии глюкозы - ферментом мальтазой. Этот же фермент расщепляет дисахарид сахарозу до глюкозы и фруктозы. Принятая с пищей лактоза под действием фермента лактазы расщепляется до глюкозы и галактозы. Таким образом, в результате ферментативных процессов углеводы пищи превращаются в моносахариды: глюкозу, фруктозу и галактозу.

Всасывание углеводов . Моносахариды всасываются, главным образом, в тонком кишечнике через ворсинки слизистой оболочки и поступают в кровь воротной вены. Скорость всасывания моносахаридов различна. Если принять скорость всасывания за 100, то соответственная величина для галактозы будет 110, для фруктозы - 43. Всасывание глюкозы и галактозы происходит в результате активного транспорта, то есть с затратой энергии и при участии специальных транспортных систем. Активность всасывания этих моносахаридов усиливается транспортом Nа + через мембраны эпителия.

Всасывание глюкозы активируется гормонами коры надпочечников, тироксином, инсулином, а также серотонином и ацетилхоллином. Адреналин наоборот подавляет всасывание глюкозы из кишечника.

Межуточный обмен углеводов . Всосавшиеся через слизистую оболочку тонкого кишечника моносахариды переносятся током крови в головной мозг, печень, к мышцам и другим тканям, где они претерпевают различные превращения (рис. 23).

Рис. 23. Превращение углеводов в обмене веществ (по: Андреева и др., 1998)



1. В печени из глюкозы синтезируется гликоген, и этот процесс называется гликогенезом. В случае необходимости гликоген вновь распадается до глюкозы, то есть происходит гликогенолиз. Образовавшаяся глюкоза выделяется печенью в общий ток кровообращения.

2. Часть поступившей в печень глюкозы может подвергнуться окислению с выделением энергии, необходимой организму.

3. Глюкоза может стать источником синтеза неуглеводов, в частности белков и жиров.

4. Глюкоза может быть использована для синтеза некоторых веществ, необходимых для особых функций организма. Так, из глюкозы образуется глюкуроновая кислота - продукт, необходимый для осуществления обезвреживающей функции печени.

5. В печени может происходить новообразование углеводов из продуктов распада жиров и белков - глюконеогезе.

Глюкогенез и глюконеогенез взаимосвязаны и направлены на поддержание постоянства уровня сахара в крови. Печень человека выделяет в кровь в среднем 3,5 мг глюкозы на 1 кг массы в минуту или 116 мг на 1 м 2 поверхности тела. Способность печени регулировать процессы углеводного обмена и поддерживать уровень сахара в крови называется гомеостатической функцией, в основе которой лежит способность печеночной клетки изменять свою активность в зависимости от концентрации сахара в притекающей крови.

В углеводном обмене большой удельный вес занимает мышечная ткань. Мышцы, особенно в активном состоянии захватывают из крови большое количество глюкозы. В мышцах так же, как и в печени, синтезируется гликоген. Распад гликогена - один из источников энергетики мышечного сокращения. Мышечный гликоген расщепляется до молочной кислоты и этот процесс называется гликолизом . Затем часть молочной кислоты поступает в кровь и поглощается печенью для синтеза гликогена.

Головной мозг содержит очень большие запасы углеводов, поэтому для полноценной функции нервных клеток необходим постоянный приток в них глюкозы. Мозг поглощает около 69% глюкозы, выделяемой печенью (Држевецкая , 1994). Поступившая в мозг глюкоза преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту. Энергетические расходы мозга почти исключительно покрываются за счет углеводов, и это отличает мозг от всех других органов.

Ультрафильтрация и реабсорбция глюкозы . На первом этапе процесса мочеобразования, то есть во время ультрафильтрации в клубочковом аппарате, глюкоза переходит из крови в первичную мочу. В процессе дальнейшей реабсорбции в канальцевой части нефрона глюкоза вновь возвращается в кровь. Обратное всасывание глюкозы представляет собой активный процесс, происходящий с участием ферментов эпителия почечных канальцев.

Таким образом, почки участвуют в поддержании постоянства сахара во внутренней среде организма.

Возрастные особенности углеводного обмена . У плода на единицу массы тела ткани получают меньше кислорода, чем после рождения, что обусловливает преобладание анаэробного пути распада углеводов над аэробным. Поэтому в крови плода уровень молочной кислоты выше, чем у взрослых людей. Оказанная особенность сохраняется и в период новорожденности, и только к концу первого месяца у ребенка существенно увеличивается активность ферментов аэробного распада углеводов. Для новорожденного характерна гипогликемия (всего 2,2-2,5 моль/л, то есть вдвое меньше, чем у взрослых), поскольку во время родов резко истощаются запасы гликогена в печени - единственного источника глюкозы в крови.

Углеводы в организме ребенка являются не только основным источником энергии, но в виде глюкопротеидов и мукополисахаридов играют важную пластическую роль при создании основного вещества соединительной ткани клеточных мембран (Рачев и др., 1962).

Для детей характерна большая интенсивность углеводного обмена.
В детском организме ослаблено образование углеводов из белков и жиров (гликогенолиз), так как рост требует усиленного расхода белковых и жировых запасов организма. Углеводы в детском организме откладываются в мышцах, печени и других органах в незначительном количестве. В грудном возрасте на 1 кг веса ребенок должен получать 10-12 г углеводов, за счет которых покрывается около 40% всей энергетической потребности. В последующие годы количество углеводов колеблется от 8-9 до 12-15 г на 1 кг веса, причем за их счет покрывается уже до 50-60% всей калорийной потребности.

Суточное количество углеводов, которое дети должны получать с пищей, значительно увеличивается с возрастом: от 1 года до 3 лет - 193 г, от 4 до 7 лет - 287,9 г, от 8 до 13 лет - 370 г, от 14 до 17 лет - 470 г, что почти равно норме взрослого (по данным института питания РАМН).

Высокая потребность в углеводах у растущего ребенка отчасти объясняется тем обстоятельством, что рост тесно связан с процессами гликолиза, ферментативным распадом углеводов, сопровождающихся образованием молочной кислоты. Чем моложе ребенок, тем быстрее происходит его рост и больше интенсивность гликолетических процессов. Так, в среднем у ребенка на 1-м году жизни гликолитические процессы на 35% интенсивнее, чем у взрослых.

Представление об особенностях углеводного обмена у детей дает пищеварительная гипергликемия. Максимальный уровень сахара в крови большей частью отличается уже через 30 минут после приема пищи. Через 1 час кривая сахара начинает снижаться, и приблизительно через 2 часа уровень сахара в крови возвращается к исходному уровню или даже незначительно снижается.

Особенностью организма детей и подростков является менее совершенный углеводный обмен в смысле возможности быстрой мобилизации внутренних углеводных ресурсов организма и особенно поддержания углеводного обмена при выполнении физической нагрузки. При сильном утомлении во время продолжительных спортивных соревнований прием нескольких кусочков сахара улучшает состояние организма.

У детей и подростков при выполнении различных физических упражнений наблюдалось как правило, снижение сахара в крови, в то же время, как у взрослых, выполнение тех же гимнастических упражнений сопровождалось в среднем повышением уровня сахара в крови (Яковлев , 1962).

Обмен жиров и липидов. Общие сидения.
Значение жиров и липидов

Жиры - химические соединения, представляющие собой триглицириды, полные сложные эфиры глицерина и жирных кислот. Большая часть жиров в организме находится в жировой ткани в виде жировых капелек - это запасный жир, он является источником энергии в организме. Меньшая часть жира входит в состав клеточных структур и связана с углеводами и белками клеточных мембран.

Общее количество жира в организме составляет 10-20% массы тела, при ожирении может достигать даже 50%.

Количество запасного жира зависит от характера питания, количества пищи, конституциональных особенностей, а также от величины расхода энергии при мышечной деятельности, пола, возраста; количество же протоплазматического жира является устойчивым и постоянным.

Покрывая тело, жир является биологической терморегулирующей системой, способствующей сохранению тепла в организме, а также, обволакивая сосуды и нервы, жир предохраняет их от травматических воздействий внешней среды. Отложенный в жировых депо жир мобилизуется организмом при охлаждении и при голодании и используется как источник энергии.

С жиром доставляются растворенные в нем витамины А, D, Е, К, являющиеся важным фактором роста и развития ребенка. Жиры облегчают усвоение этих витаминов. Без жира невозможна устойчивость организма к воздействиям факторов внешней среды. Он нужен для выработки специфического и неспецифического иммунитета. Наконец, часть жира из жировых депо может поступать в кровь и ею доставляться в печень, где жировые отложения превращаются в гликоген.

Липиды - жироподобные вещества, разнообразного химического строения, характеризующиеся растворимостью в органических веществах (эфир, спирт, бензол) и, как правило, нерастворимые в воде. Липиды выполняют важные функции: 1) входят в состав биологических мембран, 2) образуют энергетический запас, 3) создают защитные и термоизоляционные покровы у животных и человека, 4) выполняют гормональные функции, 5) влияют на клеточную проницаемость, 6) участвуют в передаче нервного импульса и в мышечном сокращении, 7) участвуют в создании межклеточных контактов и в иммунохимических реакциях. Комплексы липидов с белками (липопротеины) выполняют важную транспортную роль в сыворотке крови человека и животных. К липидам относятся высшие жирные кислоты, триглицериды, холестерин, лецитины, витамин D, кортикостероиды, половые гормоны и др.

Этапы жирового обмена . Обмен жиров - процесс усвоения (синтеза, распада, выведения) клетками и тканями организма нейтральных жиров и липидов (в первую очередь жирных кислот). Основными этапами жирового обмена являются: 1) переваривание липидов пищи в желудочно-кишечном тракте; 2) всасывание липидов в кишечнике; 3) образование липопротеидов в слизистой оболочке кишечника и в печени; 4) транспорт липопротеидов кровью; 5) гидролиз этих соединений на поверхности клеточных мембран ферментом - липопротеидлипазой; 6) всасывание жирных кислот и глицерина в клетки, где они либо непосредственно мобилизуются, либо используются для синтеза липидов.

Пищевой жир, поступающий в организм под действием фермантов (липазы), превращается из сложных липидов в более простые формы - глицерин и жирные кислоты, которые могут всасываться в тонком кишечнике. Под влиянием желчных кислот здесь происходит эмульгирование жира до образования частиц величиной около 500 нм. Около 25-45% эмульгированного жира под воздействием липазы поджелудочного, а затем кишечного соков расщепляется до моноглицеридов и жирных кислот. Эти соединения с помощью желчных кислот проникают в клетки кишечного эпителия при помощи механизма активного транспорта. Там осуществляется ресинтез триглециридов. Кроме того, в эпителиоцитах мельчайшие капельки нейтрального жира и сложных липидов покрываются оболочкой из белка, фосфолипидов и холестерина. В результате образуются хломикроны (рис. 24). В таком виде жир попадает в лимфатическую систему и через грудной проток в кровь верхней полой вены. Меньшая часть триглициридов проникает в кровь воротной вены, а затем в печень. В целом в лимфу всасывается около 80% жира, а в кровь всего около 20%.

Транспорт жира и переход его из крови в ткани . В крови триглицириды циркулируют в хиломикронах. Первый орган, через который должны пройти хиломикроны, - легкие. При большой концентрации их в крови, что бывает после приема жирной пищи, часть их задерживается в легком.

Таким образом, легкие регулируют поступление жира в артериальную кровь (Лейтес , 1967).

Хиломикроны, попавшие в артериальную кровь подвергаются гидролизу под влиянием липазы, которая вырабатывается эндотелием сосудов. Её называют липопротеиновой липазой. В процессе гидролиза триглицериды хиломикронов расщепляются с образованием высших свободных, то есть неэтерифицицированных жирных кислот (НЭЖК).

НЭЖК адсорбируются на белках плазмы (альбумин и ά- липопротеин) и таким образом транспортируются в периферические ткани. Там они очень быстро окисляются: период их полураспада равен всего 2 мин, и они доставляют примерно 50% энергии от общего количества основного обмена. Часть НЭЖК поступает в подкожную жировую ткань, где они ресинтезируются в собственные жиры организма.

Натощак в крови человека содержится около 2,2 ммоль триглицеридов. После приема жирной пищи концентрация жира в крови увеличивается, то есть наступает в крови пищевая гипергликемия. Гипергликемия начинает появляться через 2-4-6 ч, к концу 9-го часа уровень жира в крови возвращается к норме.

Межуточный обмен жира. Процессы межуточного обмена нейтральных жиров происходит в жировой ткани, печени, клетках различных органов, однако большое значение в жировом обмене играет печень (рис. 24).

В жировой ткани нейтральный жир депонируется в виде триглециридов. По мере повышения энергетических потребностей происходит распад триглицеридов с освобождением неэтерифицированных жирных кислот. Этот процесс называется мобилизацией жира. Жирные кислоты поступают в кровь и переносятся в печень. В печени они либо ресинтезируются в триглицериды, либо включаются в состав молекулярных комплексов - липопротеидов, состоящих из белка и липидов. В составе липопротеидов жирные кислоты поступают к органам и тканям.

Желудочно-кишечный тракт Печень Мышца

ЛИПОЛИЗ НЕОСИНТЕЗ

Рис. 24. Метаболизм жира в организме (по: Алимова и др., 1975).

Синтез триглициридов называется липогенезом , распад их - липолизом. Процесс липогенеза в жировых депо можно сравнить с образованием гликогена в печени: и в том, и другом случае откладывается запас энергетического материала. Липолиз и освобождение неэтерифицированных жирных кислот по своей биологической значимости эквивалентны распаду печеночного гликогена и образованию свободной глюкозы крови: в обоих случаях высвобождается биохимический субстрат, легко утилизируемый для покрытия энергетических расходов организма.

В результате межуточного обмена жиров в печени образуются кетоновые (ацетоновые) тела, которые поступают из печени в кровь и окисляются в цикле Кребса в других тканях (мышцах, легких, печени).

Кетоновые тела используются как источник энергии. Они быстро окисляются в клетках различных тканей, поэтому содержание их в крови невелико - всего 0,9-1,7 ммоль/л. Для полного окисления кетоновых тел в цикле Кребса (через стадии ацетоацетилкоэнзима А) необходимо нормальное течение углеводного обмена. При нарушении межуточных процессов жирового обмена отмечается увеличение уровня кетоновых тел в крови и выделение их с мочой. Это состояние называется кетозом. Наиболее частая причина кетоза - недостаток углеводов. Так, кетоз наступает при истощающей мышечной работе, голодании, сахарном диабете.

Конечными продуктами обмена жиров являются углекислый газ и вода.

Для организма человека, равно как и остальных живых существ, необходима энергия. Без нее невозможно протекание никаких процессов. Ведь каждая биохимическая реакция, любой ферментативный процесс или этап метаболизма нуждается в энергетическом источнике.

Поэтому значение веществ, предоставляющих организму силы на жизнь, очень велико и важно. Какие же это вещества? Углеводы, белки, жиры. Строение каждого из них различно, они относятся к совершенно разным классам химических соединений, но одна из их функций схожа - обеспечение организма необходимой энергией для жизнедеятельности. Рассмотрим одну группу из перечисленных веществ - углеводы.

Классификация углеводов

Состав и строение углеводов с момента их открытия определялись их названием. Ведь, по ранним источникам, считалось, что это такая группа соединений, в структуре которых присутствуют атомы углерода, связанные с молекулами воды.

Более тщательный анализ, а также накопленные сведения о разнообразии данных веществ позволили доказать, что не все представители имеют только такой состав. Однако этот признак по-прежнему один из тех, что определяет строение углеводов.

Современная классификация данной группы соединений выглядит следующим образом:

  1. Моносахариды (рибоза, фруктоза, глюкоза и так далее).
  2. Олигосахариды (биозы, триозы).
  3. Полисахариды (крахмал, целлюлоза).

Также все углеводы можно разделить на две следующие большие группы:

  • восстанавливающие;
  • невосстанавливающие.

Строение молекул углеводов каждой группы рассмотрим подробнее.

Моносахариды: характеристика

К данной категории относятся все простые углеводы, которые содержат альдегидную (альдозы) или кетонную (кетозы) группировку и не больше 10 атомов углерода в строении цепи. Если смотреть по количеству атомов в основной цепи, то моносахариды можно разделить на:

  • триозы (глицериновый альдегид);
  • тетрозы (эритрулоза, эритроза);
  • пентозы (рибоза и дезоксирибоза);
  • гексозы (глюкоза, фруктоза).

Все остальные представители имеют не столь важное значение для организма, как перечисленные.

Особенности строения молекул

По своему строению монозы могут быть представлены как в виде цепочки, так и в форме циклического углевода. Как это происходит? Все дело в том, что центральный атом углерода в соединении является ассиметрическим центром, вокруг которого молекула в растворе способна вращаться. Так формируются оптические изомеры моносахаридов L- и D-формы. При этом формулу глюкозы, записанную в виде прямой цепочки, можно мысленно ухватить за альдегидную группировку (или кетонную) и свернуть в клубок. Получится соответствующая циклическая формула.

Углеводов ряда моноз достаточно простое: ряд углеродных атомов, образующих цепь или цикл, от каждого из которых по разные или по одну сторону располагаются гидроксильные группировки и атомы водорода. Если все одноименные структуры по одну сторону, то тогда формируется D-изомер, если по разные с чередованием друг друга - тогда L-изомер. Если записать общую формулу самого распространенного представителя моносахаридов глюкозы в молекулярном виде, то она будет иметь вид: С 6 Н 12 О 6 . Причем эта запись отражает строение и фруктозы тоже. Ведь химически эти две монозы - структурные изомеры. Глюкоза - альдегидоспирт, фруктоза - кетоспирт.

Строение и свойства углеводов ряда моносахаридов тесно взаимосвязаны. Ведь из-за наличия альдегидной и кетонной группировки в составе структуры они относятся к альдегидо- и кетоноспиртам, что и определяет их химическую природу и реакции, в которые они способны вступать.

Так, глюкоза проявляет следующие химические свойства:

1. Реакции, обусловленные наличием карбонильной группы:

  • окисление - реакция "серебряного зеркала";
  • со свежеосажденным (II) - альдоновая кислота;
  • сильные окислители способны сформировать двухосновные кислоты (альдаровые), преобразуя не только альдегидную, но и одну гидроксильную группировку;
  • восстановление - преобразуется в многоатомные спирты.

2. В молекуле присутствуют и гидроксильные группы, что отражает строение. Свойства углеводов, на которые влияют данные группировки:

  • способность к алкилированию - образованию простых эфиров;
  • ацилирование - формирование ;
  • качественная реакция на гидроксид меди (II).

3. Узкоспецифические свойства глюкозы:

  • маслянокислое;
  • спиртовое;
  • молочнокислое брожение.

Выполняемые функции в организме

Строение и функции углеводов ряда моноз тесно связаны. Последние заключаются, прежде всего, в участии в биохимических реакциях живых организмов. Какую же роль играют моносахариды в этом?

  1. Основа для производства олиго- и полисахаридов.
  2. Пентозы (рибоза и дезоксирибоза) - важнейшие молекулы, участвующие в образовании АТФ, РНК, ДНК. А они, в свою очередь, главные поставщики наследственного материала, энергии и белка.
  3. Концентрационное содержание глюкозы в крови человека - верный показатель осмотического давления и его изменений.

Олигосахариды: строение

Строение углеводов данной группы сводится к наличию двух (диозы) или трех (триозы) молекул моносахаридов в составе. Существуют и те, в составе которых 4, 5 и более структур (до 10), однако самыми распространенными являются дисахариды. То есть при гидролизе такие соединения распадаются с образованием глюкозы, фруктозы, пентозы и так далее. Какие соединения относятся к этой категории? Типичный пример - (обычный тростниковый (основной компонент молока), мальтоза, лактулоза, изомальтоза.

Химическое строение углеводов этого ряда обладает следующими особенностями:

  1. Общая формула молекулярного вида: С 12 Н 22 О 11.
  2. Два одинаковых или разных остатка монозы в структуре дисахарида соединяются между собой при помощи гликозидного мостика. От характера этого соединения будет зависеть восстанавливающая способность сахара.
  3. Восстанавливающие дисахариды. Строение углеводов данного типа заключается в образовании гликозидного мостика между гидроксилом альдегидной и гидроксильной группы разных молекул моноз. Сюда относятся: мальтоза, лактоза и так далее.
  4. Невосстанавливающие - типичный пример сахароза - когда мостик формируется между гидроксилами только соответствующих групп, без участия альдегидной структуры.

Таким образом, строение углеводов кратко можно представить в виде молекулярной формулы. Если же необходима подробная развернутая структура, то изобразить ее можно с помощью графических проекций Фишера или формул Хеуорса. А конкретно два циклических мономера (монозы) либо разные, либо одинаковые (зависит от олигосахарида), соединенные между собой гликозидным мостиком. При построении следует учитывать восстанавливающую способность для правильного отображения связи.

Примеры молекул дисахаридов

Если задание стоит в форме: "Отметьте особенности строения углеводов", то для дисахаридов лучше всего сначала указать, из каких остатков моноз он состоит. Самые распространенные типы такие:

  • сахароза - построена из альфа-глюкозы и бетта-фруктозы;
  • мальтоза - из остатков глюкозы;
  • целлобиоза - состоит из двух остатков бетта-глюкозы D-формы;
  • лактоза - галактоза + глюкоза;
  • лактулоза - галактоза + фруктоза и так далее.

Затем по имеющимся остаткам следует составлять структурную формулу с четким прописыванием типа гликозидного мостика.

Значение для живых организмов

Очень велика и роль дисахаридов, важно не только строение. Функции углеводов и жиров в целом схожи. В основе лежит энергетическая составляющая. Тем не менее для некоторых отдельных дисахаридов следует указать их особое значение.

  1. Сахароза - главный источник глюкозы в организме человека.
  2. Лактоза содержится в грудном молоке млекопитающих, в том числе в женском до 8 %.
  3. Лактулоза получается в лаборатории для использования в медицинских целях, а также добавляется в производстве молочных продуктов.

Любой дисахарид, трисахарид и так далее в организме человека и других существ подвергается моментальному гидролизу с образованием моноз. Именно эта особенность и лежит в основе использования этого класса углеводов человеком в сыром, неизменном виде (свекловичный или тростниковый сахар).

Полисахариды: особенности молекул

Функции, состав и строение углеводов данного ряда имеют большое значение для организмов живых существ, а также для хозяйственной деятельности человека. Во-первых, следует разобраться, какие же углеводы относятся к полисахаридам.

Их достаточно много:

  • крахмал;
  • гликоген;
  • муреин;
  • глюкоманнан;
  • целлюлоза;
  • декстрин;
  • галактоманнан;
  • муромин;
  • амилоза;
  • хитин.

Это не полный список, а только самые значимые для животных и растений. Если выполнять задание "Отметьте особенности строения углеводов ряда полисахаридов", то в первую очередь следует обратить внимание на их пространственную структуру. Это очень объемные, гигантские молекулы, состоящие из сотен мономерных звеньев, сшитых между собой гликозидными химическими связями. Зачастую строение молекул углеводов полисахаридов представляет собой слоистые композиции.

Существует определенная классификация таких молекул.

  1. Гомополисахариды - состоят из одинаковых многократно повторяющихся звеньев моносахаридов. В зависимости от монозы могут быть гексозами, пентозами и так далее (глюканы, маннаны, галактаны).
  2. Гетерополисахариды - образованы разными мономерными звеньями.

К соединениям с линейной пространственной структурой следует относить, например, целлюлозу. Разветвленное строение имеет большинство полисахаридов - крахмал, гликоген, хитин и так далее.

Роль в организме живых существ

Строение и функции углеводов этой группы тесно связаны с жизнедеятельностью всех существ. Так, например, растения в виде запасного питательного вещества накапливают в разных частях побега или корня крахмал. Основной источник энергии для животных - опять же полисахариды, при расщеплении которых образуется достаточно много энергии.

Углеводы в играют очень значимую роль. Из хитина состоит покров многих насекомых и ракообразных, муреин - компонент клеточной стенки бактерий, целлюлоза - основа растений.

Запасное питательное вещество животного происхождения - это молекулы гликогена, или, как его чаще называют, животного жира. Он запасается в отдельных частях организма и выполняет не только энергетическую, но и защитную функцию от механических воздействий.

Для большинства организмов имеет большое значение строение углеводов. Биология каждого животного и растения такова, что требует постоянного источника энергии, неиссякаемого. А это могут дать только они, причем больше всего именно в форме полисахаридов. Так, полное расщепление 1 г углевода в результате метаболических процессов приводит к высвобождению 4,1 ккал энергии! Это максимум, больше не дает ни одно соединение. Именно поэтому углеводы обязательно должны присутствовать в рационе любого человека и животного. Растения же заботятся о себе сами: в процессе фотосинтеза они формируют внутри себя крахмал и запасают его.

Общие свойства углеводов

Белков и углеводов в целом похоже. Ведь все они являются макромолекулами. Даже некоторые их функции имеют общую природу. Следует обобщить роль и значение всех углеводов в жизни биомассы планеты.

  1. Состав и строение углеводов подразумевают использование их в качестве строительного материала для оболочки растительных клеток, мембраны животных и бактериальных, а также образования внутриклеточных органелл.
  2. Защитная функция. Характерна для растительных организмов и проявляется в формировании у них шипов, колючек и так далее.
  3. Пластическая роль - образование жизненно важных молекул (ДНК, РНК, АТФ и других).
  4. Рецепторная функция. Полисахариды и олигосахариды - активные участники транспортных переносов через клеточную мембрану, "стражи", улавливающие воздействия.
  5. Энергетическая роль самая значимая. Предоставляет максимум энергии для всех внутриклеточных процессов, а также работы всего организма в целом.
  6. Регуляция осмотического давления - глюкоза осуществляет такой контроль.
  7. Некоторые полисахариды становятся запасным питательным веществом, источником энергии для животных существ.

Таким образом, очевидно, что строение жиров, белков и углеводов, их функции и роль в организмах живых систем имеют решающее и определяющее значение. Данные молекулы - создатели жизни, они же ее сохраняют и поддерживают.

Углеводы с другими высокомолекулярными соединениями

Также известна роль углеводов не в чистом виде, а в сочетании с другими молекулами. К таким можно отнести такие самые распространенные, как:

  • гликозаминогликаны или мукополисахариды;
  • гликопротеины.

Строение и свойства углеводов такого вида достаточно сложное, ведь в комплекс соединяются самые разные функциональные группы. Основная роль молекул этого типа - участие во многих жизненных процессах организмов. Представителями являются: гиалуроновая кислота, хондроитинсульфат, гепаран, кератан-сульфат и другие.

Также существуют комплексы полисахаридов с другими биологически активными молекулами. Например, гликопротеиды или липополисахариды. Их существование имеет важное значение при формировании иммунологических реакций организма, так как они входят в состав клеток лимфатической системы.