Особенности роста и развития растительной клетки. Фазы роста и этапы развития клетки

РОСТ И РАЗВИТИЕ РАСТЕНИЙ

1. Особенности роста клеток.

2. Дифференцировка и рост растений

3. Гормональная система растений

4. Этапы онтогенеза высших растений

Рост – необратимое увеличение размеров и массы клетки, органа или всего организма, обусловленное новообразованием элементов их структур

Развитие – это качественные изменения в структуре и функциональной активности растения и его частей в процессе онтогенеза. Возникновение качественных различий между клетками, тканями и органами получило название дифференцировки .

Модельной системой для изучения роста является культура растительных клеток in vitro , а именно в суспензионная культуре (жидкая среда + сахара, минеральные соли, ростовые факторы).

Эмбриональная фаза или митотический цикл клетки делится на два периода: собственно деление клетки (2-3 ч) и период между делениями – интерфаза (15-20 ч). Митоз – это такой способ деления клеток, при котором число хромосом удваивается, так что каждая дочерняя клетка получает набор хромосом, идентичный набору хромосом материнской клетки.

Фаза растяжения. Прекратившие деление клетки переходят к росту растяжением – самый быстрый и экономичный способ роста, при котором происходит сильная вакуолизация клеток. Под действием ауксина активируется транспорт протонов в клеточную стенку, она разрыхляется, ее упругость повышается и становится возможным дополнительное поступление воды в клетку. Происходит рост клеточной стенки из-за включения в ее состав пектиновых веществ и целлюлозы. Пектиновые вещества образуются из галактуроновой кислоты в везикулах аппарата Гольджи. Везикулы подходят к плазмалемме и их мембраны сливаются с ней, а содержимое включается в клеточную стенку. Микрофибриллы целлюлозы синтезируются на наружной поверхности плазмалеммы. Увеличение размеров растущей клетки происходит за счет образования большой центральной вакуоли и формирования органелл цитоплазмы.

В конце фазы растяжения усиливается лигнификация клеточных стенок, что снижает ее упругость и проницаемость, накапливаются ингибиторы роста, повышается активность оксидазы ИУК, снижающей содержание ауксина в клетке.

Фаза дифференцировки клетки. Каждая клетка растения содержит в своем геноме полную информацию о развитии всего организма и может дать начало формированию целого растения (свойство тотипотентности ). Однако, находясь в составе организма, эта клетка будет реализовать только часть своей генетической информации. Сигналами для экспрессии только определенных генов служат сочетания фитогормонов, метаболитов и физико-химических факторов (например, давление соседних клеток). Анатомической дифференцировке всегда предшествует биохимическая дифференцировка (можно наблюдать по появлению новых мРНК или снижением уровня старых). В отличие от животных, у которых процесс дифференцировки равносилен потере морфогенетического потенциала, большинство клеток растений после анатомической дифференцировки легко переходят к делению – дедифференцирутся (при механическом повреждении образуется каллус). Однако некоторые клетки растений также находятся в состоянии терминальной дифференцировки (необратимый процесс). Например, это мертвые клетки ксилемы или живые клетки ситовидных элементов, потерявшие ядро.

Фаза зрелости. Клетка выполняет те функции, которые заложены в ходе ее дифференцировки.

Старение и смерть клетки. При старении клеток происходит ослабление синтетических и усиление гидролитических процессов. В органеллах и цитоплазме образуются автофагические вакуоли, разрушаются хлорофилл и хлоропласты, эндоплазматический ретикулум, аппарат Гольджи, ядрышко, набухают митохондрии, в них снижается число крист, вакуолизируется ядро. Гибель клетки становится необратимой после разрушения клеточных мембран, в том числе и тонопласта, выхода содержимого вакуоли и лизосом в цитоплазму.

Старение и смерть клетки происходит в результате накопления повреждений в генетическом аппарате, клеточных мембранах и включения генетической програмированной клеточной смерти – PCD (programmed cell death), аналогичной апоптозу у клеток животных.

Основой роста тканей, органов и всего растения являются образование и рост клеток меристематической ткани. Различают апикальную, латеральную и интеркалярную (вставочную) меристемы. Апикальная меристема - верхушечная образовательная ткань стеблей и корней. Латеральная меристема (камбий, феллоген) расположена параллельно боковой поверхности органа. Интеркалярная меристема расположена в междоузлиях стебля и в основании листьев растений злаков.

1. Лаг-фаза роста, эмбриональная фаза развития - период между делениями (интерфаза) и собственно деление клетки (митоз). В этот период клетка имеет густую цитоплазму, очень мелкие (зачаточные) вакуоли, много рибосом, мелких митохондрий, пропластид, которые делятся. Первичная клеточная стенка тонкая. В клетках активно идет синтез нуклеиновых кислот, белков, ферментов. В эмбриональных клетках содержание цитокининов (ЦК) больше, чем ауксинов (ИУК).

2. Лог-фаза (рост растяжением, фаза кислого роста ). После завершения деления (индолилуксусная кислота). В этой фазе объем клеток быстро увеличивается – в 50-100 и более раз. Мелкие вакуоли и пузырьки аппарата Гольджи сливаются, образуя центральную вакуоль. В вакуоли идет активное, с затратами АТФ, накопление осмотически активных веществ - аминокислот, сахаров, ионов, что приводит к резкому повышению осмотического давления клеточного сока, т.е., к снижению водного потенциала клеток. В вакуоль осмотическим путем поступает вода, объем вакуоли при этом значительно увеличивается, возрастает тургорное давление протопласта на клеточную стенку (КС). Растущие клетки начинают активно синтезировать ИУК, которая индуцирует активный транспорт (выход) ионов Н + из цитоплазмы в апопласт. Закисление зоны апопласта приводит к разрыхлению клеточной стенки, увеличивает ее пластичность. Одновременно с этим процессом из протопласта путем экзоцитоза поступают фрагменты микрофибрилл целлюлозы, гемицеллюлоз, пектиновых в-в, структурных белков экстенсинов, из которых формируется вторичная многослойная клеточная стенка. В конце фазы растяжения происходит лигнификация клеточных стенок, повышается содержание фенольных ингибиторов и абсцизовой кислоты, снижается содержание ауксина За счет роста клеток растяжением идет увеличение площади листьев, длины стебля и корневой системы растений.

Таким образом, рост клетки растяжением включает:

  1. разрыхление клеточной стенки;
  2. осмотическое поступление воды в центральную вакуоль, и увеличение ее объема;
  3. закрепление увеличения объема путем формирования многослойной вторичной клеточной стенки.

3. Фаза замедленного роста (дифференцировки, этап зрелости ). На этом этапе развития клетки приобретают определенные специфические признаки в связи с выполняемыми в дальнейшем функциями (паренхимные, хлорофиллоносные, проводящие, механические, покровные, генеративные клетки). В конце этой фазы окончательно формируется вторичная клеточная стенка у специализированных клеток. В клетке снижается содержание ИУК, возрастает содержание АБК и фенольных соединений.

4. Фаза прекращения роста (этап старения) - завершает онтогенез клетки. В клетках снижается содержание РНК, белков, снижается скорость биосинтетических процессов, возрастает активность ферментов гидролаз, пероксидаз, что ведет к деградации клеточных структур. Возможные причины, вызывающие старение клеток:

  1. накапливаются повреждения в геноме, в мембранах; в клетках увеличивается концентрация ядовитых веществ.
  2. Включается генетическая программа старения (PCD - programmed cell death), как последнего этапа онтогенеза.

«Рост» и «развитие» растений -- это разные понятия.

Само слово «рост» говорит нам о каком-то увеличении. если мы будем время от времени измерять одно и то же растение, то обнаружим, что оно в течение своей жизни увеличивается в высоту, молодые листья его и побеги становятся все больше и больше. Время от времени взвешивая растение, начиная от его всходов и до плодоношения, можно обнаружить увеличение его и в весе.

Увеличение растения в высоту, в объеме, в весе и называют ростом растения. В это же время у растения появляются новые побеги и новые листья.

Под термином рост у растений подразумевают несколько процессов:

1. Рост клеток.

2. Рост тканей.

3. Рост растительного организма в целом.

Рост клеток

Эмбриональная фаза. Клетка возникает в результате деления из другой эмбриональной клетки. Затем она несколько увеличивается главным образом за счет увеличения веществ протоплазмы, достигает размеров материнской клетки и снова делится. Таким образом, эмбриональная фаза делится на два периода. Период между делениями и собственно деление клетки. Структура клетки в период между делениями (интерфаза) имеет ряд особенностей: густая цитоплазма с хорошо развитой эндоплазматической сетью, каналы которой узкие, с малым количеством расширений (цистерн), мелкие вакуоли; большое количество рибосом, многие из которых свободно располагаются в цитоплазме и не прикреплены к мембранам эндоплазматической сети; митохондрий много, но они еще не достигли окончательного размера, с мало развитыми кристами и густым матриксом. Имеются и промитохондрии и пропластиды деление которых можно наблюдать. Ядро относительно небольшого размера, с крупными ядрышком. Первичная клеточная оболочка пронизами плазмодесмами. В период между делениями в клетке идут интенсивные процессы обмена веществ - активный синтез белка, высокая интенсивность дыхания, сопровождаемая образованием АТФ. Именно в этот период в ядре клетки происходит самовоспроизведение ДНК. Если процесс самовоспроизведения ДНК почему-то приостановлен, деление клетки не происходит. Таким образом основные синтетические и энергетические процессы в клетке происходят именно в период между делениями.

Существует несколько гипотез, объясняющих переход клетки к делению. Наиболее распространена гипотеза, согласно которой в меристематической клетке должно быть определенное соотношение между размерами ядра и цитоплазмы. Когда это отношение ниже определенного уровня, ядро как бы уже может управлять возросшей массой цитоплазмы и клетка переходит к делению.

Перед делением происходят заметные изменения в энергетическом состоянии клетки. Во время интерфазы клетка характеризуется очень высоким энергетическим потенциалом. При переходе к митозе благодаря глубокой структурной перестройке наступает как бы энергетическая разрядка и, частично, энергия выделяется в виде коротковолного излучения. В период деления интенсивность процессов обмена, в том числе и дыхания, падает.

Делению клетки предшествует деление ядра. Каждое ядро дочерней клетки получает ровно такое же число хромосом и такое же количество ДНК, как и материнская. Во время митоза движение цитоплазмы прекращается, митохондрии и пластиды распределяются примерно поровну между дочерними клетками.

На конечной фазе митоза, когда образовались два ядра, в экваториальной области клетки формируется клеточная стенка. Начало образования клеточной стенки происходит в телофазе, когда хромосомы отошли к полюсам клетки, и началась их деспирализация. На границе раздела двух клеток скапливаются пузырьки, отделяющиеся от аппарата

Гольджи и эндоплазматической сети. Эти пузырьки сливаются и образуют капельки, впоследствии преобразующиеся в плазмодесмы. В результате образуется сплошной слой - межклеточная пластинка. Она удлиняется и смыкается с продольными оболочками клетки. Затем начинается нарастание межклеточной пластинки в толщину путем присоединения с обеих сторон новых пузырьков, отщепляющиеся от аппарата Гольджи. Возникает трехслойное образование, состоящее в основном из пектиновых веществ и гемицеллюлозы. Затем в него включаются фибриллы. В результате в каждой из дочерних клеток возникает первичная оболочка, состоящая из рикса. В связи с большой гидротированностью клеточная оболочка в каждой из клеток первичной оболочки межклеточная пластинка сохраняется в виде межклеточного вещества. Из мембран аппарата Гольджи формируется плазмолемма.

Таким образом, в первой фазе роста увеличение объема клетки происходит за счет деления и возрастания массы протоплазмы. Одновременно идет формирование структурных компонентов клетки. Следовательно, рост уже в этой фазе сопровождается формообразовательными процессами. Образовавшаяся в результате деления клетка вновь увеличивается в объеме и снова делится. После того как клетка разделится 3-5 раз, она переходит в вторую фазу роста. Исключение составляют лишь инициальные клетки, которые продолжают делиться в течении всего периода роста растительного организма.

Фаза растяжения. Переход к фазе растяжения сопровождается значительными структурными и физиологическими изменениями. Цитоплазма становится менее вязкой, более оводненной. Каналы эндоплазматической сети расширяются, в ряде мест они переходят в цистерны. Мембраны этой сети становятся шероховатыми, поскольку к ним прикрепляются рибосомы. Система внутренних мембран митохондрий (крист) хорошо развита. От аппарата Гольджи отшнуровываются многочисленные пузырьки. Ядро принимает неправильную форму, что увеличивает поверхность его соприкосновения с цитоплазмой. Размер ядрышка уменьшается. Мелкие вакуоли сливаются, и образуется одна центральная вакуоль. Относительное содержание цитоплазмы на единицу массы клетки падает, однако абсолютное её содержание на клетку растет. При переходе к растяжению продолжается синтез ДНК, что приводит в образованию тетраплоидных клеток. В фазу растяжения скорость синтеза белка возрастает, усиливаются все процессы метаболизма в клетки. При переходе к растяжению клетки не теряют способности делиться. Наиболее характерным процессом для фазы растяжения является значительное увеличение объема клетки. Скорость роста в эту фазу роста чрезвычайно велика. В течение всей фазы объем клетки возрастает в 20-50 раз. Это необратимое увеличение объема, идущее главным образом за счет усиленного поступления воды. Сосущая сила клеток возрастает во много раз. Усиленное поступление воды вызывает, естественно, уменьшение концентрации клеточного сока и, как следствие, падение осмотического давления. Некоторое увеличение сосущей силы может происходить за счет не осмотического (активного) поступления воды. Однако главным образом увеличение сосущей силы связано с уменьшением сопротивления клеточной оболочки. Клеточная оболочка растет, и, естественно, её сопротивление уменьшается. В эту фазу роста в клетках появляется гормон роста - ауксин, который увеличивает растяжимость клеточной оболочки. В процессе роста растяжением толщина клеточной оболочки не меняется. Согласно теории «сетчатого роста», новые микрофибриллы целлюлозы синтезируются из веществ цитоплазмы и откладываются с внутренней стороны оболочки в виде сетки. В результате поверхность оболочки растет, а толщина её остается прежней. В фазе растяжения усиливаются процессы физиологической дифференциации клеток.

Фаза дифференциации. На этой фазе процесс дифференцировки уже проявляется в определенных внешних признаках, т.е. меняются форма и внешняя структура клетки. Протоплазма почти целиком расходуется на утолщение клеточной оболочки. Вновь образовавшиеся слои фибрилл целлюлозы накладываются на старые (аппозиция). При этом ориентация фибрилл целлюлозы в каждом новом слое другая. В результате образуется вторичная клеточная оболочка. Клетки теряют способность к делению и растяжению.

Процесс функциональной дифференциации клеток, или накопление физиологических различий между ними, происходит на всех фазах роста. Уже между появившимися в период деления дочерними клетками, из которых в дальнейшем будут образовываться различные ткани, имеются определенные различия, проявляющиеся в их химическом составе, морфологических особенностях ядер и органелл.

Рост тканей

В зависимости от специфичности ткани может проходить по какому-либо из типов:

v Апикальный или верхушечный тип.

Расположены в окончаниях (верхушках) стебля, растущих побегов и корня и обеспечивает верхушечный тип роста, а также рост стебля в толщину, обеспечивают меристемы, которые располагаются между флоэмой и ксилемой.

v Базальный тип.

Базальные меристемы расположены у основания органа и характерны для листьев, которые растут основанием.

v Интеркалярный или вставочный тип.

Меристемы расположены между двумя закончившими рост тканями, характерны для стебля (рост междоузлий) и для некоторых листьев. Этим меристемам соответствует интеркалярный рост.

Рост растительного организма в целом

Рост как отдельных клеток, так и тканей, органов и целого организма характеризуется определённой динамикой, которую можно отобразить S-образной (сигмовидной) или так называемой большой кривой роста. Она включает следующие фазы:

Lag фаза(1). Отражает деление и эмбриональный рост клеток и свидетельствует о незначительной интенсивности данного процесса. По скорости прохождения её можно судить о степени готовности клетки к видимому росту.

Log фаза(2). Характеризует процесс растяжения клеток и говорит о наличии потенциальных возможностях роста организма. К примеру, растянутость её во времени свидетельствует о слабой способности клеток к росту из-за ограничений со стороны внутренних или внешних факторов.

§ Фаза замедленного роста(3). Отражает постепенное прекращение роста и начало дифференцировки. Её быстрый переход к стационарной фазе свидетельствует о том, что высокой скоростью, которая обычно вызывается недостатком влаги, высокой температурой или другими факторами.

§ Фаза старения и умирания (стационарная фаза)(4). Характеризует полное прекращение роста и свидетельствует о качественных изменениях, не отражающихся на нем.