Реферат: Генетически модифицированные продукты. Общая характеристика

Стремительно увеличивающееся население нашей планеты побудило ученых и производителей не только интенсифицировать выращивание сельскохозяйственных культур и скота, но и начать поиск принципиально новых подходов к развитию сырьевой базы начавшегося столетия.

Наилучшей находкой в решении данной задачи явилось широкое применение генной инженерии, обеспечившей создание генетически модифицированных источников пищи (ГМИ). На сегодняшний день известно множество сортов растений, подвергшихся генетической модификации для увеличения стойкости к гербицидам и насекомым, повышение маслянистости, сахаристости, содержания железа и кальция, увеличения летучести и снижения темпов созревания.
ГМО - это трансгенные организмы, наследственный материал которых изменен методом генной инженерии с целью придания им желаемых свойств.

Конфликт сторонников и противников ГМО

Несмотря на огромный потенциал генной инженерии и ее уже реальные достижения, использование генно-модифицированных продуктов питания воспринимается в мире не однозначно. В СМИ регулярно появляются статьи и репортажи о продуктах мутантах при этом у потребителя не складывается полного представления о проблеме, скорее начинает преобладать чувство страха незнания и непонимания.

Существуют две противоборствующие стороны. Одну из них представляют ряд ученых и транснациональные корпорации (ТНК) – производители ГМП, имеющие свои представительства во многих странах и спонсирующие дорогостоящие лаборатории, получающие коммерческие сверхприбыли, действую в наиболее важных областях человеческой жизни: продукты питания , фармакология и сельское хозяйство. ГМП – большой и перспективный бизнес. В мире более 60 млн. га занято под трансгенные культуры: из них 66% в США, 22% в Аргентине. Сегодня 63% сои, 24% кукурузы, 64% хлопка – трансгенные. Лабораторные тесты показали, что около 60-75% всех импортируемые РФ продуктов питания содержат ГМО компоненты. По прогнозам к 2005г. мировой рынок трансгенной продукции достигнет 8 млрд.$, а к 2010 – 25 млрд.$.

Но сторонники биоинженерии предпочитают ссылаться на благородные стимулы их деятельности. На сегодняшний день ГМО – наиболее дешевый и экономически безопасный (как они считают) способ для производства пищевых продуктов . Новые технологии позволят решить проблему нехватки продовольствия, иначе населению Земли не выжить. Сегодня нас уже 6 млрд., а в 2020г. по оценкам ВОЗ – будет 7 млрд. В мире 800 млн. голодающих и каждый день от голода умирает 20000 человек. За последние 20 лет мы потеряли более 15% почвенного слоя, и большая часть пригодных к возделыванию почв уже вовлечены в сельскохозяйственное производство. При этом человечеству не хватает белка, его мировой дефицит составляет 35-40 млн. тонн/год и увеличивается ежегодно на 2-3%.

Одно из решений создавшейся глобальной проблемы – генная инженерия, чьи успехи открывают принципиально новые возможности для повышения продуктивности производства и снижения экономических потерь.

С другой стороны против ГМО выступают многочисленные экологические организации , объединение «Врачи и ученые против ГМП», ряд религиозных организаций, производители сельскохозяйственных удобрений и средств борьбы с вредителями.

Развитие биотехнологии и генной инженерии

Биотехнология – относительно молодая область прикладной биологии , изучающая возможности применения и разрабатывающая конкретные рекомендации использования биологических объектов, средств и процессов в практической деятельности, т.е. разрабатывающая способы и схемы получения практически ценных веществ на основе культивирования целых одноклеточных организмов и свободноживущих клеток, многоклеточных организмов (растений и животных).

Исторически биотехнология возникла на основе традиционных медико–биологических производств (хлебопечение, виноделие, пивоварение, получение кисломолочных продуктов, пищевого уксуса). Особо бурное развитие биотехнологии связывают с эрой антибиотиков, которая наступила в 40-50гг. Следующая веха в развитии относится к 60гг. – производство кормовых дрожжей и аминокислот. Новый импульс биотехнология получила в начале 70-х гг. благодаря появлению такой ее отрасли как генная инженерия. Достижения в этой области не только расширили спектр микробиологической промышленности, но коренным образом изменили саму методологию поиска и селекции микроорганизмов – продуцентов. Первым генно-инженерным продуктом стал человеческий инсулин, продуцируемый бактериями Е.соli, а также изготовление лекарств, витаминов , ферментов , вакцин. В тоже время энергично развивается клеточная инженерия. Микробный продуцент пополняется новым источником получения полезных веществ – культурой изолированных клеток и тканей растений и животных. На этой основе разрабатываются принципиально новые методы селекции эукариот. Особенно больших успехов удалось достичь в области микроклонального размножения растений и получить растения с новыми свойствами.

В действительности использованием мутаций, т.е. селекцией, люди начали заниматься задолго до Дарвина и Менделя. Во второй половине XX века материал для селекции стали готовить искусственно, генерируя мутации специально, воздействуя радиацией или колхицином и отбирая случайно появившиеся положительные признаки.

В 60-70гг.. XX века были разработаны основные методы генной инженерии – отрасли молекулярной биологии, основной задачей которой является конструирование in vitro (вне живого организма) новых функционально активных генетических структур (рекомбинантных ДНК) и создание организмов с новыми свойствами.

Генная инженерия помимо теоретических задач – изучение структурно-функциональной организации генома различных организмов – решает множество практичных задач. Так получены штаммы бактериальных дрожжей, культуры клеток животных, продуцирующих биологически активные белки человека. И трансгенные животные и растения, содержащие и производящие чужеродную генетическую информацию.

В 1983г. ученые, изучая почвенную бактерию, которая образует на стволах деревьев и кустарников наросты, обнаружили, что она переносит фрагмент собственной ДНК в ядро растительной клетки, где он встраивается в хромосому и распознаваемая как свой. С момента этого открытия и началась история генной инженерии растений. Первыми в результате искусственных манипуляций с генами получился табак, неуязвимый для вредителей, потом генно-модифицированный помидор (в 1994г. фирмы Monsanto), затем кукуруза, соя, рапс, огурец, картофель, свекла, яблоки и многое другое.

Сейчас выделять и собирать гены в одну конструкцию, переносить их в нужный организм – рутинная работа. Это та же селекция, только более прогрессивная и более ювелирная. Ученые научились делать так, чтобы ген работал в нужных органах и тканях (корнях, клубнях, листьях, зернах) и в нужное время (при дневном освещении); а новый трансгенный сорт может быть получен за 4-5 лет, в то время как на выведение нового сорта растений классическим методом (изменение широкой группы генов с помощью скрещивания, радиации или химических веществ, надеясь на случайные сочетания признаков в потомстве и отбор растений с нужными свойствами) требуется более 10 лет.

В целом, проблема трансгенных продуктов во всем мире остается очень острой и дискуссии вокруг ГМО не утихнут еще долго , т.к. преимущество их использования очевидны, а отдаленные последствия их действия, как на экологию, так и на здоровье человека менее ясны.

Перед применением необходимо проконсультироваться со специалистом.

О "генетически модифицированной" пище нынче говорят много и охотно - говорят политики и госчиновники, специалисты в области биотехнологии, медицины и экологии, представители духовенства, деятели культуры и искусства... "Съедобные" плоды генной инженерии регулярно, подолгу и "с аппетитом" муссируются практически всеми средствами массовой информации. Обрушивающийся на современного потребителя информационный поток, "искрящийся" специальными терминами вроде "генетически модифицированных источников" и "трансгенных продуктов" (а также несколько пафосными определениями вроде "пищи 3-го тысячелетия" и "пищи Франкенштейна"), довольно внушителен, но наделе... не особенно полезен.

Слишком уж много эмоций содержит нынешнее информирование обывателя о достоинствах и недостатках генетически модифицированных продуктов питания - и слишком мало бесстрастных фактов. Фактов, знание которых позволит посетителю супермаркета, узревшему на упаковке подходящего для своей "продовольственной корзины" продукта надпись "содержит модифицированный крахмал" сделать покупку или отказаться от таковой без мучительного гамлетовского "быть или не быть", залихватского родного "была - не была!" и бескомпромиссного "не верю!" а ля Станиславский. И потому есть смысл эти факты поискать.

"Коль скоро все назвать своими именами..."

Для того чтобы лучше ориентироваться в потоке противоречивой информации о "генетически модифицированных" продуктах питания, потенциальному их покупателю не помешает обзавестись "шапочным" знакомством с некоторыми биотехнологическими терминами - иначе вышеозначенный поток легко и непринужденно превратится в самый настоящий потоп. В коем безвозвратно сгинет истинная картина вещей.

Сегодня для характеристики "проблемы Франкенфуд" СМИ широко используют термины "генетически модифицированные источники" (сокращенно - ГМИ), "генетически модифицированные организмы" (ГМО) и "трансгенные растения/животные". Причем нередко между этими терминами прослеживается этакий знак равенства - что, вообще-то, неверно. Трансгенные организмы всегда являются генетически модифицированными - это факт. А вот то, что генетически модифицированные организмы всегда являются трансгенными - совсем не факт.

Дело в том, что генетически модифицировать исходный геном (набор генетического материала, содержащегося в клетках живого организма) любого организма можно по-разному - можно, например, искусственно внедрить в него чужеродную генетическую информацию. А можно - просто искусственно "выключить" или "усилить" некоторые гены 1 исходного генома (как это происходит в ходе обычного, предусмотренного природой, мутационного процесса, с результатами которого давно и вполне законно работают селекционеры). В последнем случае биотехнологи не используют содержащих "чужую" ДНК специфических генно-инженерных конструкций, способных активно встраиваться в геном исходного организма, - а ведь именно этими самыми конструкциями противники "Франкенфуд" чаще всего и "пугают" потребителя.

Таким образом, трансгенными являются организмы, в геном которых встроен дополнительный участок ДНК, а генетически модифицированными - трансгенные организмы, а также организмы, некоторые собственные гены которых "выключены" или "усилены".

Кроме трансгенных организмов и искусственно создаваемых генетиками мутантов к категории генетически модифицированных организмов иной раз не совсем корректно могут быть причислены и продукты, полученные путем не молекулярных, а клеточных биотехнологий (переноса тех или иных частей - органелл - клетки: митохондрий, хлоропластов) - хлибридизации (переноса хлоропластов), мибридизации (переноса митохондрий), слияния протопластов или сомаклональной вариации. Думается, здесь нет смысла подробно разбираться в деталях этих технологий - достаточно сказать, что генетической "неприкосновенности" потребителя плодов сих биотехнологических изысков практически ничего реально не угрожает. Хотя выглядеть такие культуры-"мичуринцы" (на взгляд противников всего неестественного) могут весьма устрашающе - представьте себе, например, морковь с ботвой... петрушки. Именно такое растение некогда было получено биотехнологами путем слияния протопластов двух вышеозначенных растений.

Тернистый путь "запретного плода"

Уже 30 лет тому назад, обсуждая меры безопасности при использовании только что появившейся технологии рекомбинантной ДНК, ученые постановили предельно жестко ограничить "свободу" будущих трансгенных организмов - вплоть до создания генетической невозможности выживания последних во внешнем мире. За пределами лабораторий, то бишь. Но уже спустя десять лет, когда выяснилось, что не так уж и страшны трансгенные организмы, как их может "малевать" пресса, узники-рекомбинанты получили первые "послабления" - и вышли в свет. Новый Свет, преимущественно.

Немало времени ушло на прохождение через мощные "фильтры" федеральных агентств, контролирующих использование лекарств и пищевых продуктов, охрану окружающей среды и национальное здравоохранение - но еще больше времени потребовало формирование общественной толерантности к "генетическим монстрам". Североамериканский континент образца середины 80-х помнит и массовые акции протеста, и скандальные медиакампании и даже физическое уничтожение экспериментальных полей консервативно настроенными гражданами... Все это было.

Однако прошло - и нынче США является безусловным мировым лидером в производстве генетически модифицированных продуктов питания (на долю этого государства приходится до 70% всего объема их производства). Уверенно развивают вышеозначенное производство Канада и ряд стран Латинской Америки. А также Европы - Франция, например. Занимается этим и Китай конечно же. Количество "съедобных" видов, подвергшихся генетической модификации, к настоящему времени исчисляется многими десятками - соя, картофель, свекла, рапс, кукуруза, томаты, бананы, батат, папайя... Количество же пищевых продуктов, в состав которых входят ГМО и ГМИ, исчисляется уже совсем другими порядками. ГМ-продукты продаются во многих странах мира (в России - с 1999 года; по крайней мере - официально), их употребляют в пищу сотни миллионов жителей планеты - такова сегодняшняя реальность.

Свойства, приобретенные сельскохозяйственными культурами в результате генно-инженерной модификации, без преувеличения, - чрезвычайно ценны. Устойчивость к действию гербицидов и пестицидов, необычайно широкий диапазон температур окружающей среды, при котором обеспечивается сохранность плодов, а урожайность не снижается; сами показатели урожайности... Все это впечатляет. Также как выраженные полезные свойства некоторых продуктов - как, например, оптимизированный для профилактики атеросклероза и избыточного веса профиль жирных кислот в некоторых сортах генетически модифицированных кукурузы и сои, высокое содержание знаменитого лекопена в ГМ-томатах, особые свойства крахмала в картофеле (не позволяющие, в частности, последнему впитывать много жира во время жарки). Однако недоверие существенной части планетарного народонаселения к генетически измененным пищевым продуктам от этого меньше не становится - несмотря на то что, пожалуй, ни один из видов сырья для пищевых продуктов не подвергается такой жесткой проверке на безопасность, как ГМО. И в основе этого недоверия лежит, несомненно, страх.

Чего боимся...

Боимся мы преимущественно того потенциального вреда, который могут оказать генетически модифицированные организмы на организмы наши собственные. И еще - того потенциально опасного влияния, что могут оказать ГМО на окружающую среду.

Угрозы, "исходящие" от ГМО, можно условно разделить на две категории - потенциальные (гипотетические, или постулируемые) и... приписываемые. Что касается последних, то сюда можно отнести упоминаемые непримиримыми противниками ГМ-продуктов питания аллергические реакции (в том числе - извращенные реакции на введение некоторых антибиотиков) и определенные гормональные изменения (феминизацию мальчиков и преждевременное половое созревание у девочек). К этой же категории относится и якобы обнаруженная у генетически модифицированной сои способность вызывать снижение потенции у мужчин. Ни один из вышеперечисленных эффектов ГМО в настоящее время не подтвержден объективизированными методами доказательной медицины - и это значит, что все данные утверждения могут считаться фактически голословными.

Сложнее обстоит дело с угрозами потенциальными - т.е. теми, что могут исходить от трансгенных продуктов питания, например. Как следует из самого определения "потенциальные", никаких убедительных свидетельств в пользу реального вредоносного эффекта трансгенных продуктов в настоящее время нет. Но таковой может (теоретически) проявиться спустя годы. По мнению врагов "пищи Франкенштейна", коль скоро содержащие чужеродную (даже - "чужевидную") ДНК генно-инженерные конструкции "умеют" внедряться, скажем, в геном помидора, то почему бы не предположить, что, освободившись из переваренного человеком помидора, они смогут внедриться и в геном, например, эпителиоцитов (клеток, изнутри покрывающих кишечник) человеческого кишечника? Заменив тем самым естественный для человека "вертикальный" порядок передачи генов от предков к потомкам на совершенно не типичный "горизонтальный" порядок - с опасными, возможно, последствиями? В виде токсических, иммунопатологических реакций или канцерогенеза (провоцирование онкологических заболеваний), например?

Справедливости ради здесь стоит отметить, что "горизонтальный" (т.е. не от предков к потомкам, а как бы "со стороны") перенос генетической информации не является изобретением генных инженеров - он существует в природе на протяжении многих миллионов лет. С незапамятных времен и по настоящее время геном человека "горизонтально" модифицируется, например, вирусами - "усыновленных" фрагментов их генетической информации в ДНК любого из нас более чем достаточно. Как достаточно, в общем-то, и внутренних средств защиты от "горизонтального" потока чужеродных генов --в частности, значительную часть нуклеиново-кислотных "пришельцев" безжалостно "режут" на функционально бесполезные куски имеющиеся у нас многочисленные специальные ферменты под названием рестриктазы. И если таким "пришельцем" окажется искусственная генно-инженерная конструкция, использованная для модификации помидора, то на снисхождение со стороны вышеупомянутых энзимов-церберов ей рассчитывать не приходится.

Конечно, о стопроцентно гарантированной безопасности трансгенных организмов для человеческого здоровья говорить пока что также не приходится - хотя бы потому, что нынешняя генная инженерия отнюдь не совершенна. Однако вероятность наличия такого негативного эффекта однозначно оценивается как низкая.

...И как спасаемся?

С этой постулируемой "трансгенной" угрозой каждый из нас имеет право бороться в добровольном порядке - игнорируя генетически модифицированные (причем именно трансгенные) пищевые продукты. Правда, для этого необходимо уметь безошибочно отличать таковые от продуктов, избежавших вышеупомянутой "презумпции виновности". То есть от продуктов "натурального" происхождения. И в идеале различать их нужно уметь не только на магазинных прилавках и стеллажах, но и, скажем, в тарелке с деликатесом, только что поданной официантом.

Для обеспечения эффективной анти-ГМО "навигации" в магазинах тех стран, чье экономическое состояние в полном порядке, а народонаселение не особенно благоволит к "пище Франкенштейна", местным законодательством предусмотрена обязательная маркировка пищевых продуктов, содержащих определенные количества ГМ-компонентов, - для Европы, например, это самое количество составляет 0,9%. За отсутствие такой маркировки или занижение содержания ГМИ на производителя будут непременно наложены серьезные штрафные санкции. Что касается проблемы "экспертизы в тарелке", то и последняя в вышеозначенных странах худо-бедно решается - на основе разрабатываемых миниатюрных ДНК-тестеров, позволяющих производить экспресс-анализ пищи прямо на месте, быстро и надежно.

Что касается нас, то здесь, как водится, все не так просто... Во-первых, специальная маркировка продуктов питания, содержание ГМ-компонентов в которых выше 0,9%, в России не является обязательной - пока что это дело сугубо добровольное. И несмотря на то, что вышеозначенный, обязательный для маркировки, порог содержания упоминается в ряде отечественных нормативных актов с июня 2004 года, Госдума до сих пор не "узаконила" этого положения - хотя "подступалась" к вопросу в ноябре сего года. Впрочем, законодатели обещают повторить попытку уже в самом начале года 2005-го.

Во-вторых, поймать производителя на обмане в России гораздо труднее, чем в Европе, - в силу того что лабораторная база контролирующих проблему ГМ-продуктов ведомств слабовата: явно недостает оборудования для количественного анализа ГМ-компонентов, да и качественное определение таковых в продуктах оставляет желать лучшего.

И, наконец, в-третьих: предусмотренная в настоящее время сумма штрафа для нарушителей существующих законов (20 тыс. рублей) при всем желании не может характеризовать штрафную санкцию как сколько-нибудь серьезную. А значит - и эффективную.

Заключение

Генетически модифицированные продукты питания уже стали сегодняшними реалиями - и вряд ли они исчезнут со сцены глобального рынка завтра. Залогом тому служат как постоянно совершенствующиеся уникальные качества самих продуктов, так и солидный экономический интерес их производителей. Противоречивость информации о безопасности ГМО, по-видимому, также продлится еще не один год - у "пищи Франкенштейна" немало серьезных противников; достаточно вспомнить, что продолжающаяся по сей день трансатлантическая "ГМ-война" между США и Европой началась еще в прошлом веке. А на войне, понятное дело, как на войне - вся информация выверена в первую очередь идеологически. Истина же в данном случае, как обычно, находится где-то рядом. Рядом с золотой серединой между полярными мнениями сторон. И посему для будущей мамы, стоящей перед вопросом, "быть или не быть" в ее рационе генетически модифицированным пищевым продуктам, наверное, имеет смысл руководствоваться словами великого философа из Поднебесной, мудро заметившего, что "осторожный человек редко ошибается".

В последнее время появился принципиально новый способ изменения пищевого сырья - генетическое модифицирование.

В результате вмешательства человека в генетический аппарат микроорганизмов, сельскохозяйственных культур и пород животных стало возможным повысить устойчивость сельскохозяйственных культур и животных к болезням, вредителям и неблагоприятным факторам окружающей среды, увеличить выход продукции, получить качественно новое пищевое сырье с заданными свойствами (органолептические показатели, пищевая ценность, устойчивость в процессе хранения и др.).

Генетически модифицированные источники пищи (ГМИ) – это используемые человеком в пищу в натуральном или переработанном виде пищевые продукты (компоненты), полученные из генетически модифицированных организмов.

Генетически модифицированный организм - организм или несколько организмов, любые неклеточные, одноклеточные или многоклеточные образования, способные к воспроизводству или передаче наследственного генетического материала, отличные от природных организмов, полученные с применением методов генной инженерии и содержащие генно-инженерный материал, в том числе гены,их фрагменты или комбинацию генов.

Трансгенные организмы - организмы, подвергшиеся генетической трансформации.

Для создания трансгенных организмов разработаны методики, позволяющие вырезать из молекул ДНК необходимые фрагменты, модифицироватьих соответствующим образом, реконструировать в одно целое и клонировать - размножать в большом количестве копий.

Первый шаг к созданию генетически модифицированных продуктов был сделан американскими инженерами, которые в 1994 г., после 10 лет испытаний, выпустили на рынок США партию томатов, необычайно устойчивых при хранении. В 1996 г. производители генетически модифицированных продуктов впервые продали семена в Европу. В 1999 г. в России была зарегистрирована первая генетически модифицированная соя линии 40-3-2 (“Monsanto Co” США).

В настоящее время генетически модифицированные растения рассматриваются в качестве биореакторов , предназначенных для получения белков с заданным аминокислотным составом, масел – с жирно-кислотным составом, а также углеводов, ферментов, пищевых добавок и др. (Рогов И. А., 2000). Так, в Техасе создали темно-бордовую морковь с высоким содержанием b-каротина, антоцианов, антиоксидантов, а также морковь, богатую ликопином; в Швейцарии вывелисорт риса с высоким содержанием железа и витамина А и др. В настоящее время клонированы гены запасных белков сои, гороха, фасоли, кукурузы, картофеля.

Важное значение приобретают новые технологии получения трансгенных сельскохозяйственных животных и птиц . Возможность использования специфичности и направленности интегрированных генов позволяет повысить продуктивность, оптимизировать отдельные части и ткани туш (тушек), улучшить консистенцию, вкусовые и ароматические свойства мяса,. изменить структуру и цвет мышечной ткани, степень и характер жирности, рН, жесткость, влагоудерживающую способность, а также повысить его технологичность и промышленную пригодность, что особенно важно в условиях дефицита мясного сырья.


Производство сельскохозяйственных культур и продуктов питания с применением методов генной инженерии - один из наиболее быстро развивающихся сегментов мирового сельскохозяйственного рынка.

В международном научном сообществе существует четкое понимание того, что в связи с ростом народонаселения Земли, которое по прогнозам должно достичь к 2050 г. 9-11 млрд. человек, возникает необходимость удвоения или даже утроения мирового производства сельскохозяйственной продукции, что невозможно без применения трансгенных организмов.

Только в 2000 г. оборот мирового рынка пищевой продукции с использованием генных технологий составил около 20 млрд. долл., а за последние несколько лет более чем в 20 раз возросли посевные площади под трансгенными растениями (соя; кукуруза, картофель, томаты, сахарная свекла) и составили свыше 25 млн. гектаров. Эта, тенденция прогрессивно возрастает во многих странах: США, Аргентине, Китае, Канаде, ЮАР, Мексике, Франции, Испании, Португалии и др.

В настоящее время в США производится более 150 наименований генетически модифицированных источников. Согласно данным американским биотехнологов в ближайшие 5-10 лет все продукты питания в США будут содержать генетически измененный материал.

Однако во всем мире не утихают споры о безопасности генетически модифицированных источников пищи. Академик РАСХН И.А. Рогов (2000) указывает на непредсказуемость поведения генетически модифицированных белков в модельных системах и готовых продуктах. Но до настоящего времени не проведены детальные исследования в отношении безопасности этой продукции для организма человека. Накопление экспериментального материала потребует десятилетий, именно поэтому в литературе нет достаточных сведений о том, сколько можно человеку употреблять такого рода пищи ежедневно; какой удельный вес она должна занимать в рационе; как она влияет на генетический код человека и главное - нет объективной информации о ее безвредности.

Имеются отдельные данные (Braun K.S., 2000), что генетически модифицированные продукты могут содержать токсины, вредные гормональные вещества (rBGH) и представлять угрозу для здоровья человека. Аналитические и экспериментальные исследования указывают также на возможные аллергенные, токсические и антиалиментарные проявления, причиной которых служит рекомбинантная ДНК и возможность на ее основе экспрессии новых, не присущих данному виду продукции белков. Именно новые белки могут самостоятельно проявлять или индуцировать аллергенные свойства и токсичность ГМИ. Еще одним нежелательным эффектом ГМИ является возможность трансформации переносимого генетического материала.

Регулирование производства генетически модифицированных источников в США находится под жестким контролем государства.

В странах - членах ЕС с сентября 1998 г принята обязательная маркировка ГМИ на этикетках продуктов, а в апреле 1999 г. принят мораторий на распространение новых генетически модифицированных культур ввиду того, что их безвредность для здоровья человека окончательно не доказана.

В России, учитывая возрастающие объемы производства и поставки продукции, полученной из генетически модифицированных источников, на основании федерального Закона «О санитарно-эпидемиологическом благополучии здоровья населения» Главным государственным санитарным врачом РФ было принято письмо от2 2.05.2000 г. «Требования к маркировке пищевой продукции, полученной с использованием генетически модифицированных источников», постановления: № 14 от 08.11.2000 г. «О порядке санитарно-эпидемиологической экспертизы пищевых продуктов, полученных из генетически модифицированных источников», № 149 от 16.09.2003 г. «О проведении микробиологической и молекулярно-генетической экспертизы генетически модифицированных микроорганизмов, используемых в производстве пищевых продуктов».

В список продуктов, полученных из генетически модифицированных источников, содержащих белок или ДНК , и подлежащих обязательной маркировке входят: соя, кукуруза, картофель, томаты, сахарная свекла и продукты их переработки, а также отдельные пищевые добавки и БАД.

В примерный перечень продукции, полученной с использованием генетически модифицированных микроорганизмов, подлежащей санитарно-эпидемиологической экспертизе, входят: пищевые продукты, полученные с использованием кисломолочных бактерий – продуцентов ферментов; молочная продукция и копченые колбасы, полученные с использованием «стартерных» культур; пиво и сыры, полученные с использованием модифицированных дрожжей; пробиотики, содержащие генетически модифицированные штаммы.

Государственное образовательное учреждение

высшего профессионального образования

“Оренбургский государственный университет”

Кафедра валеологии

Реферат на тему:

ГЕНЕТИЧЕСКИ МОДИФИЦИРОВАННЫЕ ПРОДУКТЫ

Работу выполнил:

Толоконников К.И.

06-ТД-1, ФЭФ.

Работу проверил:

Федичева Е.Ю.


Введение..................................................................................................... 3

1. Безопасное питание.................................................................................. 4

2. Понятие генной инженерии...................................................................... 7

3. Генетически модифицированные продукты......................................... 12

Заключение............................................................................................. 18

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ............................................ 19

Термин “генетически модифицированные продукты” появился совсем недавно. Его даже нет в некоторых новых словарях. Своим происхождением эти продукты обязаны науке генной инженерии. Надо сказать, что это продукты не самые полезные, если не сказать больше. Но об этой науке, о генетически модифицированных продуктах и об их вреде и пользе поговорим позже. А сейчас рассмотрим, как же все-таки правильно питаться, потребляя самую простую пищу.

Пищевое взаимодействие живых организмов является одним из важнейших. Значительная часть людей, в отличие от других животных, уже давно осуществляет его не непосредственно в дикой природе, собирая плоды и охотясь, а делает это опосредованно, т.е. через сеть магазинов.

Чтобы понять, как питаться безопасно для здоровья, обратимся к истории пищевого рациона человека.

Как и другие приматы, люди в самом начале своего существования питались лишь растительной пищей. О генетической приспособленности человека к растительной пище свидетельствует строение жевательного аппарата, наличие червеобразного отростка, участвующего в усвоении растительной пищи, более низкая температура тела, чем у хищников. После того как в местах первоначального распространения человека влажные тропические леса заменились на саванны с переменным увлажнением, переход к питанию мясной пищей помог человеку разрешить важную экологическую проблему – проблему питания в засушливое время года. Позже развитие скотоводства, молочного хозяйства привело к появлению стабильного источника живой пищи. Но питание мясом никогда не носило преимущественного характера по той причине, что растительные продукты более “родные”, свойственные для человека, а также из-за относительной дороговизны мяса. Таким образом, исторически сложившийся смешанный рацион питания, в котором преобладают растительные компоненты.

Мясо – важный продукт питания человека, поскольку содержит незаменимые аминокислоты, имеет высокую энергетическую ценность. Оно особенно необходимо в период активного роста. А достоинство растительной пищи заключается в том, что с ней мы получаем значительное количество биологически активных веществ, витаминов, осуществляющих регуляторные процессы в организме. Один из основных витаминов, необходимый нам в большом количестве по сравнению с другими (до 1 г в сутки), - это витамин С. В настоящее время множество заболеваний обмена веществ связано с 70% -ной нехваткой витамина С у населения, особенно в зимнее время.

Испокон веков одним из основных продуктов питания был хлеб. При отсутствии достаточных средств механизации мельницы обеспечивали лишь грубый помол зерна, при котором в муке, а значит и в хлебе сохранялись волокна, необходимые для нормальной работы кишечника. Кроме того, раньше не умели отделять зерна от плевел, т.е. мололи зерно вместе с плодовыми оболочками, в которых содержатся важнейшие витамины группы В. С развитием мукомольного производства хлеб стал иным, чем тот, к которым привыкли наши предки, - “достижения” пищевой индустрии почти полностью исключили из хлеба такие нужные человека человеку пищевые волокна и витамины, и сегодня их добавляют искусственно.

Современный благополучный рацион городского жителя строится на излишнем употреблении колбас, ветчины, мясных консервов, сливочного масла, концентрированных соков. Такой рацион – это не соответствующее природе человека высококалорийное избыточное питание, содержащее вдвое больше животных жиров, значительно больше сахара и соли, но в три раза меньше, чем в прошлом, пищевых волокон и микроэлементов. Несвойственное человеку питание сопровождается заболеваниями сердца, сосудов, сахарным диабетом; из-за избыточного веса большинства землян нашу цивилизацию нередко называют “цивилизацией двойных подбородков”. В последнее время отмечен рост тяжелых заболеваний пищеварительного тракта, в том числе и раковых.

Многие болезни пищеварительного тракта поначалу были болезнями богачей, поскольку только им были доступны самые лакомые продукты питания. Для улучшения вкусовых качеств эти продукты подвергались сложной и длительной обработке, в процессе которой они теряли свои полезные свойства и даже становились вредными. Так несварением желудка из-за использования в пищу дорогого хлеба из муки мелкого помола страдала лишь богатая знать. Сегодня от несварения желудка страдают многие, если не большинство. Рак прямой кишки сначала тоже был болезнью богатых, а теперь получает все более широкое распространение. При избыточном потреблении колбас, других мясных продуктов и нехватки в рационе клетчатки, которой богаты черный хлеб, свежие овощи и фрукты, рис и другие крупы, возникают хронические запоры. Хронические запоры препятствуют, в частности, своевременному выведению из организма консервантов и вредных пищевых добавок, что может привести к воспалению слизистой оболочки прямой кишки. На этой почве возможны различные ее заболевания, в том числе и рак. Запоры усугубляются недостатком движения.

Из-за избыточного потребления животных жиров одним из самых распространенных заболеваний стал атеросклероз. Это болезнь артерий, приводящая постепенно к сужению их просвета за счет скоплений на стенках жироподобного вещества – холестерина. Атеросклероз приводит к нарушению кровотока, что вызывает кислородное голодание и нехватку питательных веществ в соответствующем органе. Особенно опасно, когда он поражает сосуды сердца или мозга. Факторами риска атеросклероза, кроме жирной пищи, являются недостаточная двигательная активность, курени и стрессы.

В настоящее время существуют различные системы питания, каждая из которых имеет свои особенности и сторонников. Калорийно-белковый метод, или сбалансированное калорийное питание – самая простая и наглядная. Суть ее в том, что в основе суточного рациона пищи лежит баланс энергозатрат жизнедеятельности человека и энергопотребления продуктов питания.

При тяжелом труде человеку необходимо около 5000 ккал в сутки, при напряженных тренировках спортсмены тратят до 7000 ккал в сутки. Людям умственного труда требуется в сутки около 2500 ккал.

Таким образом, можно быстро, но достаточно приблизительно рассчитать и регулировать покрытие расхода организмом энергии соответствующим количеством определенных продуктов питания.

Что же надо сделать, чтобы обеспечить собственную экологическую безопасность при питании?

Прежде всего, сократить употребление мяса и животных жиров до 30-50 г в день. Не стоит заменять мясо колбасой и сосисками: в них много вредных добавок и красителей, а пищевая ценность невелика.

На столе как можно чаще должна появляться морковь, капуста, яблоки, любые другие овощи и фрукты. Они содержат и витамины, и микроэлементы, и клетчатку.

Полезны различные растительные масла, сливочное же масло следует употреблять в минимальном количестве.

Одним из главных блюд в рационе должна стать каша, лучше всего овсяная. Ее можно чередовать с гречневой, рисовой, пшенной.

Надо помнить об умеренности в еде. Калорийность пищи должна соответствовать энергетическим затратам: “Как потопаешь, так и полопаешь”.

Не стоит забывать о хорошей физической нагрузке, которая помогает сохранять тонус кишечника, повышает иммунитет организма.

Вначале дадим определение генной, или генетической, инженерии согласно медицинской энциклопедии. Генная инженерия – совокупность экспериментальных приемов, позволяющих в лабораторных условиях создавать организмы с новыми наследственными признаками.

Проблема целенаправленного изменения наследственности издавна занимала умы ученых. Однако долгое время единственным путем получения организмов с полезными для человека свойствами были скрещивание и селекция, применявшиеся для выведения пород домашних животных, сортов растений.

В 20-х гг. нашего столетия была установлена способность ряда физических факторов и химических соединений вызывать изменения наследственных свойств организмов – мутации, что значительно расширило возможности исследователей. Однако нужные мутации возникали случайно и крайне редко, что требует большой и скрупулезной работы по выявлению организмов с полезными изменениями. Достижения современной молекулярной биологии и молекулярной генетики, давшие возможность вводить новые гены в природный набор генов организма или, наоборот, удалять ненужные гены, создали реальные предпосылки конструирования в лабораторных условиях носителей наследственной информации – молекул дезоксирибонуклеиновой кислоты (ДНК) с желаемым составом генов, т.е. создавать организмы с запрограммированными свойствами, вплоть до таких, которых не существует в природе.

Генная инженерия как самостоятельное направление исследований и практических разработок еще очень молода. Ее развитие началось в 60-х гг. 20 в., когда был сделан ряд открытий, предоставивших в распоряжение новые чрезвычайно точные “инструменты”, позволившие вносить различные изменения в молекулу ДНК. К этому времени ученые уже знали, как устроен, работает и воспроизводится ген, освоили приемы синтеза ДНК вне клетки. Это был основа генной инженерии. Но еще предстояло разработать способы выделения новых генов, соединения их в единую функционально активную и стабильно наследуемую структуру.

В 1969 г. И. Беквит, Дж. Шапиро, Л. Ирвин выделили из живой клетки ген, контролирующий синтез ферментов, необходимых кишечной палочке для усвоения молочного сахара – лактозы. В 1970 г. Д. Балтимор и одновременно Г. Темин и С. Мидзутани обнаружили и выделили в чистом виде фермент, который обеспечивает процесс построения молекулы ДНК на матрице РНК. Открытие этого фермента существенно упростило работу по получению копий отдельных генов. Поэтому довольно быстро сразу в нескольких лабораториях были синтезированы гены, контролирующие синтез молекулы глобина (белка, входящего в состав гемоглобина), интерферона и других белков.

Для введения генов в клетку используют генетические элементы бактерий – плазмиды, находящиеся не в хромосомах (т.е. ядре клетки), а в ее цитоплазме и представляющие собой небольшие молекулы ДНК. Некоторые из них способны внедряться в хромосому чужой бактериальной клетки, а затем самопроизвольно или под каким-либо воздействием покидать ее, захватывая с собой прилегающие хромосомные гены клетки-хозяина. Эти гены самовоспроизводятся в составе плазмид и образуют множество копий.

Успехи в объединении фрагментов ДНК различного происхождения в единую функционально активную структуру связаны с выделением ферментов рестриктаз, которые разрезают нитевую молекулу ДНК в строго определенных местах с образованием на концах фрагментов однонитевых участков – “липких концов”. За счет “липких концов” фрагменты ДНК легко объединяются в одну структуру. Используя такой подход, П. Бергу с сотрудниками удалось объединить в одной молекуле весь набор генов онкогенного вируса SV 40, часть генов бактериофага и один из генов кишечной палочки, т.е. получить молекулу ДНК, которая не существует в природе.

Методами генетической инженерии воздействуют не только на молекулу ДНК. Существуют, например, способы переноса целых хромосом в клетки животных другого вида. Т.о. в эксперименте получен гибрид клеток человека и мыши, человека и комара и др.

Для переноса генетического материала из одной клетки в другую генетическая инженерия широко использует тончайшие манипуляции на клеточном уровне – т. н. микрургию. Разработаны, например, методы введения отдельных генов в оплодотворенную яйцеклетку. Множество копий гена с помощью микропипетки вводят в ядро сперматозоида, только что проникшего в яйцеклетку. Затем эту яйцеклетку культивируют некоторое время в искусственной среде и затем имплантируют ее в матку животного, где завершается развитие зародыша. Такой опыт был проведен на крысах. Им был введен гормон роста, так что их потомство стало значительно крупнее их. Это привело к развитию гигантизма у подопытных мышей.

Работа в области генной инженерии регламентируется правилами, обеспечивающими жесткий контроль, обеспечивающими жесткий контроль, особые условия проведения эксперимента и гарантирующими безопасность экспериментаторов и окружающих. Эти правила были разработаны и утверждены многими странами, в т. ч. и Россией, после того, как было высказано опасение, что при манипулировании с генами микроорганизмов, в ходе перетасовок генов может возникнуть молекула ДНК с опасными для человека свойствами.

Значение достижений генной инженерии выходит далеко за рамки непосредственного изучения генетических механизмов. Методы генной инженерии могут быть применены для решения ряда проблем в области медицины, народного хозяйства, охраны окружающей среды.

Так, например, существует ряд заболеваний, обусловленных наследственной неспособностью организма усваивать некоторые вещества из-за отсутствия необходимых ферментов. В лабораторных условиях показана возможность методами генной инженерии вносить в клетки человека заимствованные от бактерий гены, компенсирующие наследственный дефект.

Генная инженерия обеспечила возможность сравнительно дешево производить в больших количествах практически любые белки. Десятки миллионов людей на Земном шаре страдают сахарным диабетом – болезнью, в основе которой лежит недостаток в организме инсулина. Для лечения диабета используют инсулин крупного рогатого скота или свиней. Но поскольку эти препараты несколько отличаются по своей структуре от инсулина человека, эффективность лечения диабета не всегда высокая. Инсулин человека можно получить также путем химического синтеза, но это очень дорого. Генная инженерия предоставила для лечения человека инсулин, продуцируемый микроорганизмами. Из клеток человека выделили ген, контролирующий синтез инсулина, встроили его в геном кишечной палочки и сейчас этот уникальный гормон вырабатывают в ферментерах на предприятиях микробиологической промышленности. С помощью методов генной инженерии решен вопрос получения интерферона – универсального противовирусного препарата. Единственным источником получения интерферона в силу его высокой видовой специфичности (для человека эффективен только человеческий интерферон) до последнего времени оставалась кровь доноров, переболевших вирусным заболеванием. Но для лечения вирусных заболеваний требуется такое количество интерферона, которое невозможно получить, даже если бы донорами стали все люди земного шара. Из клеток крови человека, перенесшего вирусное заболевание, выделили рибонуклеиновую кислоту, обеспечивающую синтез интерферона, на ее основе синтезировали ген интерферона и встроили его в геном бактериальных клеток, которые стали вырабатывать этот необходимый человеку белок. Располагая большим количеством интерферона, ученые смогли расшифровать всю последовательность его аминокислот и разработать более простые способы получения этого белка. Полученный таким образом интерферон оказался весьма эффективным при вирусных заболеваниях. Сходным путем решена проблема получения в достаточных количествах гормона роста. Гормон роста необходим для лечения карликовости, которая развивается у детей с генетически обусловленным недостаточным уровнем этого гормона в организме.

Генная инженерия позволяет получать вакцины принципиально нового типа. Бактерий научили вырабатывать белки оболочки вируса, которые и используют при вакцинации. Такие вакцины хотя и менее эффективны по сравнению со старыми, изготовленными из убитых вирусных частиц, но не содержат генетического материала вируса и поэтому безвредны. Ведутся работы по получению вакцин против гриппа, вирусного гепатита и др.

Генная инженерия имеет перспективы не только в медицине. Достижения генной инженерии открывают новую эру в развитии промышленного производства – эру биотехнологии, т.е. применения в промышленности биологических агентов и процессов. Биотехнология позволяет по-новому подойти к решению проблемы продовольствия в масштабах земного шара за счет резкого повышения эффективности сельскохозяйственного производства. Прогресс биотехнологии дает новые, значительно более эффективные методы защиты окружающей среды от промышленных загрязнений.

Теперь можно перейти к непосредственному рассмотрению понятия генетически модифицированных продуктов. Для начала немного истории.

К 60-м гг. 20 в. медицинская наука достигла больших успехов в борьбе с болезнями и смертностью. Были побеждены чума, холера и другие опасные вирусные заболевания, которые в предыдущие столетия истребляли до трети населения Европы. Эти успехи повлекли за собой скачкообразный рост населения на земном шаре. В то же время это привело к катастрофической нехватке воды и пищи в развивающихся странах. Но могло затронуть и развитые в экономическом отношении страны. Возникла новая угроза человечеству – голод. Однако к тому времени генная инженерия получила достаточное развитие, чтобы направить свой научный потенциал на решение возникшей проблемы. Учеными многих стран было решено заняться развитием вышеупомянутой биотехнологии, чтобы с ее помощью создавать и производить в больших количествах продукты с измененной генной структурой, которые бы обладали важными для человека свойствами. Например, для сельскохозяйственной продукции это – повышение урожайности по сравнению с аналогичным не модифицированным на генном уровне злаком, овощем или фруктом. В сфере торговли – это увеличение срока хранения и реализации продукта за счет частичного изменения его генотипа.

Эти идеи в свое время были приняты научной общественностью с воодушевлением и ликованием. На них возлагались большие надежды на избавление человечества от угрозы голода. Ученые считали достижения биотехнологии едва ли не панацеей от надвигающейся проблемы. Но тогда никто не знал последствий применения генно-модифицированнных продуктов. И действительно, все ли так хорошо при использовании данных продуктов питания человеком в процессе его жизнедеятельности.

По этому поводу свое убеждение высказал известный российский ученый, президент Центра экологической политики России Андрей Яблоков, давший в одном из номеров газеты “Аргументы и факты” свое интервью.

Несколько лет назад российская общественность забила тревогу – из нас делают мутантов и подопытных кроликов. Паника была вызвана появлением на рынках и в магазинах генетически модифицированных продуктов. А сегодня только в Москве около 40% продуктов содержат вещества, которые могут вызвать в лучшем случае аллергию, а в худшем рак желудка. Что нужно покупать и кушать, а что не нужно, где протестировать на безопасность колбасу и картофельные чипсы? На все эти вопросы свои комментарии дал Андрей Яблоков.

Тема трансгенных продуктов, поднятая “Гринпис”, стала действительно актуальной. “С одной стороны, точные анализы показывают, что до 40% наших продуктов питания, которые продаются в магазинах, содержат генетически модифицированные вещества. Эти вещества нелегально поставляются из Америки – в основном соя, кукуруза, и так далее. Проблема в том, что в России нет ни одной сертифицированной лаборатории, которая могла бы проверить соответствие официальным требованиям, которые предъявляются у нас к импортным продуктам питания. Уже больше года, что ни в одном продукте питания в России не должно быть больше 5% генетически модифицированных веществ. Когда неофициально делали такие проверки, оказывалось, что в Санкт-Петербурге, например, примерно в 40% продуктов содержание генетически модифицированных организмов превышает норму. Такое ощущение, что Россию используют крупные западные компании как нелегальный полигон для проверки вот таких опасных продуктов питания”.

Процесс создания генетически модифицированных организмов идет непрерывно, постоянно появляются какие-то новые сорта, которые нужно проверять. Какую-то проверку делают в Америке. Европа держится очень твердо – в любом пищевом продукте не должно содержаться больше, чем 0,9% генетически модифицированных веществ. Более того, принято решение Европейской комиссией, что в продуктах детского питания не должно содержаться никаких генетически модифицированных продуктов – ноль. Для того чтобы товар получил одобрение и в Америке, и других странах, которые разрешают генетически модифицированные продукты, нужно провести очень широкие эксперименты. Такие эксперименты выгоднее провести в какой-то бедной стране. Это дешевле и так далее. В прошлом западные компании у нас нелегально сбывали пестициды. То же самое сейчас происходит с генетически модифицированными продуктами. Первые проверки особо опасных веществ, видимо, делаются у нас в России, на Кавказе, в Армении, в Азербайджане, в Грузии и так далее.

“Генетически измененные продукты вызывают не только различного рода раковые заболевания. Нарушается иммунитет. Нарушенный иммунитет это значит, можно заболеть чем угодно, хоть гриппом, а если б Вы не ели эти продукты, вы бы гриппом не заболели. Трансгенные продукты способствуют появлению аллергии, и это в экспериментах доказано. Сейчас происходит увеличение числа заболевших аллергией в России. Если раньше 10-12 лет назад, в спектре заболеваний аллергии там было около 10-12% всего населения, 15% максимум, то теперь до 25-30%. То же самое произошло и происходит в Америке, и в еще больших масштабах, чем у нас. Там как раз генетически модифицированные продукты очень широко распространены. Но и в Америке, в отличие от нас, очень много денег тратится на медицину. Мы-то заболеваем, а они травят себя и очень здорово лечат, а мы травим себя, но не лечим”. Недавно был проведен эксперимент, когда несколько месяцев кормили крыс генетически модифицированным картофелем. У них произошло изменение в кишечнике, у них произошли необратимые изменения в желудке, у них стал меньше мозг, и много чего другого.

“Генетически измененные компоненты используются сейчас практически во всех колбасах, колбасных изделиях в широком смысле слова, где очень много сои, - говорит А. Яблоков. - Кукурузные каши, кукуруза и так далее. Потому что генетически изменённые продукты сейчас это чаще всего соя и кукуруза. Одно время у нас все рынки были завалены картошкой, которую не ел колорадский жук. Колорадский жук её совершенно правильно не ел, и нам этот генетически изменённый картофель тоже не надо было есть”.

По закону на упаковке должно быть написано, что в данном продукте используется генетически измененный компонент. На самом деле этого не пишут. Чтобы уберечься от покупки генетически модифицированных продуктов, надо избегать покупать соевые продукты, продукты с кукурузой, картофельные хлопья, чипсы – это практический совет.

На вопрос может ли человек сам купив подозрительный продукт отнести его в лабораторию на проверку, Яблоков отвечает следующее: “Пока это невозможно. Пока это можно сделать только, если вы пойдете в какой-нибудь крупный научный институт. То, что я вам говорил про Санкт-Петербург, это Институт цитологии, который был инициатором проверки продуктов, проведенной неофициально. Я думаю, что это ничего не будет стоить, но главное – найти такой институт. Наверное, крупные биохимические лаборатории в университетах могли бы этим заняться, может быть, даже на коммерческой основе”.

Вот еще один пример глобального проникновения небезопасных трансгенных продуктов на мировой рынок питания.

Новый посол США в Ватикане предложил Папе Римскому накормить голодающих генетически модифицированными продуктами.

На церемонии вручения верительных грамот, новый посол США в Ватикане Френсис Руни призвал Бенедикта XVI заступиться за генетически модифицированные продукты, заявив, что они могут быть использованы для того, чтобы бороться с голодом во всем мире.

"Для сложной проблемы мирового голода нет единого решения, но нельзя позволить иррациональным страхам помешать нам исследовать технологии, могущие стать частью этого решения", - заявил Руни.

Он пояснил, что новейшие научные достижения могут помочь людям даже в самых сложных природных условиях производить достаточно пищи для того, чтобы прокормиться. "Мы надеемся, что Святейший престол поможет миру осознать моральную необходимость изучения этих технологий", - заявил Руни.

Журналисты отмечают, что США уже в течение нескольких лет пытаются предложить свои генетически модифицированные продукты для борьбы с нехваткой пищи в беднейших регионах мира, однако до сих пор они встречали настороженный прием.

Противники новой технологии отмечают, что для борьбы с мировым голодом вполне хватит имеющихся запасов пищи, необходимо лишь достаточная политическая воля. Что же касается генетически модифицированных продуктов, то возможная опасность их употребления перевешивает возможную пользу от них.

Между тем в Ватикане достаточно благосклонно относятся к инициативе США. Так, в сентябре 2005 года кардинал Ренато Мартино, глава Папского совета справедливости и мира, заявил, что Ватикан благосклонно относится к экспериментам в области биотехнологии, при условии, что они проводятся в чрезвычайной осторожностью.

Таким образом, можно заметить, что поставщики таких продуктов питания, главным образом, США ради извлечения экономической выгоды лоббируют свои интересы, насильно поставляя данные продукты странам третьего мира, совершенно не заботясь о здоровье их потребителей.

На протяжении всей человеческой истории люди постоянно сталкиваются с проблемами питания и заболеваниями пищеварительной системы. Эти проблемы присутствовали в жизни человека и до изобретения трансгенных продуктов, и присутствуют сейчас. А генетически модифицированные компоненты лишь усугубляют положение со здоровьем и питанием. Т.о. генная инженерия и биотехнология не справились с угрозой голода и не оправдали возложенных на них надежд.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Учебник “Основы безопасности жизнедеятельности” 9 класс; М.П. Фролов, Е.Н. Литвинов, А.Т. Смирнов и др.М.: ООО ”Издательство АСТ”, 2002.

2. Большой энциклопедический словарь школьника; составитель А.П. Горкин; М.: научное издательство “Большая российская энциклопедия”, 1999.

3. Популярная медицинская энциклопедия; гл. ред. Б.В. Петровский; М.: “Советская энциклопедия”, 1987.

4. Статьи газеты “Аргументы и факты”, Н. Зятьков, Д. Ананьев и др.; журналистский коллектив; М.: издатель ЗАО ”Аргументы и факты”, 2006.

5. Всемирная сеть “Internet”.