Пункция подкожной гематомы. Пункция гематомы - как делают. Рассасывание кровоизлияния, нормализацию крово- и лимфообращения

Кровь, лимфа и тканевая жидкость являются внутренней средой организма , в которой осуществляется жизнедеятельность клеток, тканей и органов. Внутренняя среда человека сохраняет относительное постоянство своего состава (гомеостаз ), которое обеспечивает устойчивость всех функций организма и является результатом рефлекторной и нервно-гуморальной саморегуляции. Кровь, циркулируя в кровеносных сосудах, выполняет ряд жизненно важных функций: транспортную (транспортирует кислород, питательные вещества, гормоны, ферменты, а также доставляет остаточные продукты обмена веществ к органам выделения), регуляторную (гомеостатическую - поддерживает относительное постоянство температуры тела и постоянство внутренней среды), защитную (клетки крови обеспечивают реакции иммунного ответа, а также свертывание при ранении).

Этапы внутриутробного кроветворения

Процесс внутриутробного кроветворения включает 3 этапа:

1. Желточный этап (мезобластический, ангиобластический). Начинается с 3-й продолжается до 9-й недели. Гемопоэз происходит в сосудах желточного мешка (из стволовых клеток образуются примитивные первичные эритробласты (мегалобласты), содержащие HbP.

2. Печеночный (гепатолиенальный) этап. Начинается с 6-й недели и продолжается почти до рождения. Вначале в печени происходит как мегалобластический, так и нормобластический эритропоэз, а с 7-го месяца происходит только нормобластический эритропоэз. Наряду с этим происходит гранулоцито-, мегакариоцито-, моноцито- и лимфоцитопоэз. С 11-й недели по 7-й месяц в селезенке присходит эритроцито-, гранулоцито-, моноцито- и лимфоцитопоэз.

3. Костно-мозговой (медуллярный, миелоидный) этап. Начинается с конца 3-го месяца и продолжается в постнатальном онтогенезе. В костном мозге всех костей (начиная с ключицы) из стволовых клеток происходит эритропоэз по нормобластическому типу, гранулоцито-, моноцито-, мегакариоцитопоз и лимфопоэз. Роль органов лимфопоэза в этот период выполняют селезенка, тимус, лимфоузлы, небные миндалины и пейеровы бляшки.

В постнатальной жизни основным кроветворным органом становится костный мозг. В нем содержится основная масса стволовых кроветворных клеток и осуществляется образование всех клеток крови. Интенсивность гемопоэза в остальных органах после рождения быстро снижается.

Возрастные особенности количества крови, состава плазмы, физико-химических свойств крови

Количество крови . Общее количество крови по отношению к весу тела новорожденного составляет у новорожденных 15%, грудных детей 14% у детей одного года - 11%, а у взрослых - 7–8%. При этом у мальчиков несколько больше крови, чем у девочек. Снижение величины данного показателя до уровня взрослых происходит к 6–9 годам. Отмечается некоторое увеличение количества крови в период полового созревания. При старении происходит снижение относительной массы крови.

В покое приблизительно 40–45 % крови циркулирует в кровеносных сосудах, а остальная ее часть находится в депо (капиллярах печени, селезенки и подкожной клетчатки). Кровь из депо поступает в общее кровяное русло при повышении температуры тела, мышечной работе, подъеме на высоту, при кровопотерях. Быстрая потеря циркулирующей крови опасна для жизни. Например, при артериальном кровотечении и потере 1/3–1/2 всего количества крови наступает смерть вследствие резкого падения кровяного давления. К кровопотере особенно чувствительны грудные дети и новорожденные (еще недостаточно развиты компенсаторные механизмы). Чувствительность к кровопотере повышается при наркозе, гипотермии, болевой и психической травме.

Сравнительно высокий гематокрит - 0,54 (гематокрит - это часть объема крови, приходящаяся на долю форменных элементов) у новорожденных снижается до уровня взрослых к концу 1-го месяца, после чего снижается до 0,35 в грудном возрасте и в детстве (в 5 лет - 0,37, в 11-15 лет - 0,39). После чего его величина повышается и к концу пубертатного периода гематокрит достигает уровня взрослых (у мужчин - 0,42–0,52, у женщин - 0,37–0,47).

Плазма . Плазма - жидкая часть крови (ее объем приблизительно равен 2,8–3,0 л), представляет собой надосадочную жидкость, полученную после центрифугирования цельной крови с добавленными к ней антикоагулянтами (веществами, предотвращающими свертывание). На ее долю у взрослых приходится 55–60 % общего объема крови, у новорожденных – меньше 50 % вследствие большого объема эритроцитов.

Состав плазмы: Н 2 О (90–92 %) и сухой (плотный) остаток (8–10 %), который включает неорганические и органические вещества.

Белки. Количество общего белка плазмы у взрослых составляет 65–85 г/л. Белки плазмы методом электрофореза могут быть разделены на альбумины (35–55 г/л), глобулины (20–35 г/л) и фибриноген (2–4 г/л); фракция глобулинов разделяется на альфа-1, альфа-2, бета и гамма-глобулины.

Роль белков плазмы:

    Создают онкотическое давление (1/200 осмотического давления плазмы

    Поддерживают рН (буферные свойства).

    Поддерживают вязкость крови (важно для артериального давления).

    Участвуют в свертывании крови (фибриноген и др.).

    Являются факторами иммунитета (иммуноглобулины, белки комплемента).

    Выполняют транспортную функцию (перенос гормонов, микроэлементов).

    Выполняют питательную функцию (пластическую).

    Препятствуют (альбумины) или способствуют (глобулины) оседанию эритроцитов.

    Являются ингибиторами по отношению к некоторым протеазам (антитрипсин - ингибитор трипсина).

    Регулируют функции, обмен веществ (белковые гормоны, ферменты).

    Обеспечивают перераспределение воды между тканями и кровью

У новорожденных содержание белков в крови равно 48–56 г/л. Увеличение их количества до уровня взрослых (65–85 г/л) происходит к 3–4 годам. Низкий уровень белков в крови новорожденных обусловливает меньшее онкотическое давление крови по сравнению со взрослыми.

У детей младшего возраста характерны индивидуальные колебания количества белков в крови. Сравнительно низкий уровень белка объясняется недостаточной функцией печени (белокобразующей). В течение онтогенеза изменяется соотношение альбумины/глобулины. В первые дни после рождения в крови больше глобулинов, особенно гамма-глобулинов (высокое содержание гамма-глобулинов в момент рождения объясняется способностью их проходить через плацентарный барьер из плазмы матери). Они затем быстро разрушаются. Гамма-глобулины доходят до нормы взрослых к 3 годам, альфа- и бета-глобулины – к 7 годам. В первые месяцы содержание альбуминов снижено (37 г/л). Оно постепенно увеличивается и к 6 месяцам достигает 40 г/л, а к 3 годам достигает уровня взрослых. К старости происходит некоторое снижение концентрации белков и белкового коэффициента за счет снижения содержания альбуминов и повышения количества глобулинов.

У детей отмечается сравнительно высокое содержание в крови молочной кислоты (2,0–2,4 ммоль/л), что является отражением повышенного гликолиза. У грудного ребенка ее уровень на 30 % выше, чем у взрослых. С возрастом ее количество уменьшается (в возрасте 1 год - 1,3–1,8 ммоль/л).

Содержание липидных фракций новорожденных отличается от спектра этих веществ у более старших детей и взрослых тем, что у них значительно увеличено содержание альфа-липопротеинов и понижено количество бета-липопротеинов . К 14 годам показатели приближаются к нормам взрослого человека. Количество холестерола в крови новорожденных относительно невысоко, и увеличивается с возрастом (рисунок 8.1). При этом отмечается, что при преобладании в пище углеводов уровень холестерола в крови повышается, а при преобладании белков - понижается. В пожилом и старческом возрастах уровень холестерола увеличивается.

Рисунок 8.1 Возрастные особенности количества холистерола в крови

К минеральным веществам крови относятся поваренная соль (NaCl), 0,85–0,9 %, хлористый калий (КС1), хлористый кальций (СаС1 2) и бикарбонаты (NaHCO 3), по 0,02 %, и др. У новорожденных количество натрия меньше , чем у взрослых, и доходит до нормы к 7–8 годам. С 6 до 18 лет содержание натрия колеблется от 170 до 220 мг%. Количество калия , наоборот, наиболее высокое у новорожденных, самое низкое – в 4–6 лет и достигает нормы взрослых к13–19 годам.

У мальчиков 7–16 лет неорганического фосфора больше , чем у взрослых, в 1,3 раза; органического фосфора больше, чем неорганического, в 1,5 раза, но меньше , чем у взрослых.

У новорожденных детей рН и буферные основания крови снижены (декомпенсированный ацидоз в 1-й день, а затем - ацидоз компенсированный). К старости количество буферных оснований снижается (особенно бикарбонатов крови).

Относительная плотность крови у новорожденных выше (1,060–1,080), чем у взрослых (1,050–1,060). Затем установившаяся относительная плотность крови в течение первых месяцев сохраняется на уровне взрослых.

Вязкость крови новорожденных сравнительно высока (10,0–14,8), что в 2–3 раза выше, чем у взрослых (5) (в основном за счет увеличения количества эритроцитов). К концу 1-го месяца вязкость уменьшается и остается на сравнительно постоянном уровне, не изменяясь к старости.

Гемоцитопоэз

Гемоцитопоэз процесс образования форменных элементов крови. Различают два вида кроветворения: миелоидное и лимфоидное.

В свою очередь миелоидное кроветворение подразделяется на эритропоэз, гранулоцитопоэз, моноцитопоэз, тромбоцитопоэз.

В гемопоэзе различают два периода: эмбриональный и постэмбриональный.

Эмбриональный период представляет собой гистогенез и приводит к образованию крови как ткани. Осуществляется в эмбриогенезе поэтапно, в нем различаются три основные этапа:

Желточный (мезобластический);

Печеночный

Медуллярный (костно-мозговой)

Желточный этап.

В мезенхиме желточного мешка образуются «кровяные островки», представляющие собой очаговые скопления мезенхимных клеток. Затем происходит дивергентная дифференцировка этих клеток.

Периферические клетки образуют эндотелиальную выстилку сосуда. Центральные клетки округляются, превращаясь в стволовые кроветворные клетки. Их этих клеток в сосудах, т.е. интраваскулярно начинается процесс образования первичных эритроцитов. Они отличаются большими, чем у нормоцитов размерами, наличием ядра и содержанием особого вида гемоглобина – HbP (эмбрионального). Такой тип кроветворения называется мегалобластическим.

Часть стволовых клеток оказывается вне сосудов и из них начинают развиваться зернистые лейкоциты, которые затем мигрируют в сосуды.

Важнейшим итогом этого этапа является образование стволовых клеток крови I-й генерации.

Второй этап – печеночный - начинается на 5-й неделе эмбриогенеза в печени, экстраваскулярно – по ходу капилляров, врастающих с мезенхимой внутрь печени. В печени активно развиваются стволовые клетки II-й генерации и из них образуются эритроциты и гранулоциты до конца 5-го месяца, затем процесс гемоцитопоэза там постепенно снижается. Тимус начинает заселяться стволовыми клетками с 7-8 недели, дает начало Т-лимфоцитам.

Селезенка заселяется стволовыми клетками на 7-8 неделе и в ней экстраваскулярно начинается универсальное кроветворение, т.е. происходит и миело- и лимфоцитопоэз..

Третий период эмбрионального кроветворениямедулло-тимусо-лиенальный . Закладка красного костного мозга начинается со 2-го месяца эмбриогенеза. Кроветворение в нём начинается с 4-го месяца закладкой стволовых клеток III-й генерации, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, т.е. осуществляется универсальный гемоцитопоэз.

Постнатальный период кроветворения.

Постэмбриональное кроветворение является физиологической регенерацией и восполняет естественную убыль форменных элементов крови.

В настоящее время принята унитарная теория кроветворения, на основе которой И.Л. Чертковым и А.И. Воробьевым разработана принятая в настоящее время схема кроветворения.


Согласно этой схеме существует два вида кроветворения: миелоидное и лимфоидное.

Миелопоэз в свою очередь подразделяется на эритропоэз, гранулоцитопоэз, моноцитопоэз и тромбоцитопоэз.

Лимфоцитопоэз подразделяется на Т- и В-лимфоцитопоэз.

В процессе поэтапной дифференцировки стволовых клеток в форменные элементы крови в каждом ряду кроветворения образуются типы клеток, которые в совокупности образуют классы клеток.

Всего в схеме кроветворения различают 6 классов клеток:

I – стволовые клетки – полипотентные

II – полустволовые – коммитированные, мультипотентные

III- унипотентные -

IV- бластные – клетки предшественники

V - созревающие

VI- зрелые форменные элементы.

I класс – стволовые полипотентные клетки. Концентрация этих клеток очень редка 10–4– 10-5от общего числа клеток костного мозга.

Располагаются в местах, хорошо защищенных от внешних

воздействий и обладающих обильным кровоснабжением.

С возрастом число стволовых клеток не изменяется.

Способны к неограниченному самоподдержанию своей популяции.

По морфологии соответствуют малому лимфоциту,

Стволовые клетки крови устойчивы к действию повреждающих факторов, в том числе и радиации.

Поддержание численности популяции происходит с помощью симметричных (некоммитирующих) митозов.

Стволовые клетки делятся редко.

Способны циркулировать в кровь, мигрируя в другие кроветворные органы.

II класс – полустволовые , ограниченно полипотентные (или частично коммитированные) клетки бывают двух типов:

Предшественники миелопоэза

Предшественники лимфопоэза

Каждая из них также образует колонию, т.е. клон клеток, но либо миелоидных, либо лимфоидных. В последнее время среди полустволовых клеток миелопоэза выделены 3 типа клеток: КОЕ-ГМ (дающие начало моноцитам и гранулоцитам), КОЕ-ГнЭ (гранулоцитам и эритроцитам), КОЕ-МгцЭ (мегакариоцитам и эритроцитам). Все полустволовые клетки также как стволовые по морфологии являются лимфоцитоподобными и способны к ограниченному самоподдержанию.

III класс – унипотентные поэтинчувствительные клетки- предшественники своего ряда. По морфологии соответствуют малым лимфоцитам, способны давать колонии, состоящие только из одного типа форменных элементов.

Методом колониеобразования среди унипотентных клеток определены

КОЕ-М – предшественники моноцитов

КОЕ-Гн – нейтрофильных гранулоцитов

КОЕ-Эо – эозинофильных гранулоцитов

КОЕ-Б – базофильных гранулоцитов

КОЕ-Э – эритроцитов (её предшественник БОЕ-Э – бурст-образующая единица)

КОЕ-Мгц – мегакариоцитов.

Частота деления этих клеток и способность к дифференцировке зависит от содержания в крови особых биологически активных веществ – поэтинов, специфичных для каждого ряда кроветворения (эритропоэтины, тромбопоэтины и т.д.).

Первые три класса объединяются в класс морфологически не идентифицируемых клеток, имеющих морфологию малого лимфоцита.

IV класс – бластные клетки (эритробласты, лимфобласты, мегакариобласты, монобласты, миелобласты). Эти клетки имеют характерную морфологию – имеют крупные размеры, крупное, богатое преимущественно эухроматином ядро с 2-4 ядрышками. По цитохимическим свойствам можно идентифицировать бласты разных рядов кроветворения.

V класс – класс созревающих клеток , характерных для своего ряда кроветворения.

Эритроидный ряд.

Клетки эритропоэтического ряда - эритрон - составляют от 20 до 30% всех клеток костного мозга. За один час образуется 10 10 эритроцитов. Родоначальник – БОЕ-Э – (от англ бурст – взрыв), из неё образуется более дифференцированная КОЕ-Э, чувствительная к эритропоэтину.

Под влиянием эритропоэтина КОЕ-Э дифференцирутся, давая начало морфологически распознаваемым стадиям эритроидного ряда. Ими являются:

Делящиеся клетки проэритробласт

базофильный эритробласт

полихроматофильный эритробласт

Неделящиеся клетки оксифильный эритробласт

ретикулоцит

эритроцит

Процесс дифференцировки сопровождается уменьшением размеров клеток, снижением содержания и, в конечном итоге, утрата всех органоидов, конденсация ядра с последующим его удалением из клетки. Самым ярким признаком эритроидной дифференцировки является появление в цитоплазме гемоглобина. Синтез гемоглобина продолжается до конца стадии ретикулоцита. Длительность всех этапов эритропоэза около 7 суток.

В костном мозге эритробласты созревают в тесном контакте с макрофагами, образуя эритробластические островки. Находящиеся в этих островках макрофаги снабжают эритробласты железом.

Денуклеация (удаление ядра) происходит путем отделения от оксифильного эритробласта отростка, содержащего ядро. Выброшенное ядро окружено тонкой полоской цитоплазмы.

Специфическими факторами регуляции эритропоэза являются эритропоэтины, кейлоны. Эритропоэтин – продуцируется на 90% почкой, на 10% печенью и вырабатывается в ответ на гипоксию. Его действие усиливается неспецифическими факторами. К ним относят, например тестостерон, АКТГ, преднизолон, витамины В6 и В12.

Зрелые эритроциты, обладающие большой эластичностью за счет активного движения проходят сквозь цитоплазму эндотелиальных клеток, проникая через поры, образуемы только во время миграции.

Гранулоцитопоэз.

Гранулоцитопоэз – образование и дифференцировка гранулоцитов происходит в красном костном мозге.

Миелобласты и образующиеся после их коммитирующего митоза промиелоциты трех рядов (нейтрофильного, эозинофильного, базофильного) гранулоцитопоэза являются делящимися клетками и морфологически сходны. Это крупные клетки, содержащие округлое ядро. В цитоплазме накапливаются первичные азурофильные гранулы, относящиеся к лизосомам.

Следующие клетки развития: миелоциты, метамиелоциты, палочкоядерные и сегментоядерные гранулоциты характеризуются дивергентной дифференцировкой цитоплазмы.

В нейтрофильном ряду появляются нейтрофильные гранулы, в базофильном – базофильные, в эозинофильном – специфические оксифильные. Из этих клеток способны делиться только миелоциты. Одновременно происходит уменьшение размеров клеток, изменение формы ядра от округлой до сегментированной, в различной степени в перечисленных рядах, усиление конденсации хроматина. Кроме того, на плазмолемме появляются разнообразные рецепторы, подвижность клеток нарастает.

Развитие нейтрофилов от КОЕ-ГнМ до выхода в кровоток завершается за 13-14 сут. Эозинофилы и базофилы созревают быстрее. Гранулоциты остаются в костном мозге в течение 1-2 сут., образуя костно-мозговой пул (запас) зрелых клеток. Затем они выходят в кровь, где циркулируют несколько часов.

Моноцитопоэз

Унипотентный предшественник моноцита (КОЕ-М) превращается в монобласт. Далее различают промоноцит и моноцит .

Морфологически созревание выражается в изменении формы ядра от округлой до бобовидной, в увеличении относительного количества цитоплазмы и появлении в ней лизосом, уменьшении базофилии цитоплазмы. Моноциты не образуют резервного костно-мозгового пула, покидают костный мозг вскоре после образования. Затем несколько часов циркулирует в крови. После выселения в ткани они превращаются в макрофаги.

Развитие тромбоцитов.

Кровяные пластинки образуются в костном мозге из мегакариоцитов.

Унипотентный предшественник (КОЕ-МГЦ) превращается в мегакариобласт – крупную клетку (диаметр около 16 мкм) с лапчатым ядром, базофильной цитоплазмой. Они превращаются в промегакариоциты и затем мегакариоциты. Количество мегакариоцитов в клоне невелико (от 4 до 50). Это связано с тем, что предшественники не только делятся, но и полиплоидизируются.

Зрелый мегакариоцит образует пропластинчатые отростки (ленты), которые вытягиваются в просвет синусоида. От этих лент отшнуровываются фрагменты цитоплазмы, ограниченные мембранами, превращаясь в кровяные пластинки.

Цикл развития от стволовой клетки до тромбоцитов составляет около 10 сут. Тромбоцитопоэз регулируется КСФ-Мег и тромбопоэтином.

Лимфоцитопоэз.

В отличие от миелопоэза, лимфоцитопоэз осуществляется поэтапно, сменяя разные лимфоидные органы. И в Т- и в В-лимфоцитопоэзе выделяются 3 этапа:

1. Костномозговой этап. На этом этапе из стволовых клеток дифференцируются предшественники Т- и В-лимфоцитопоэза.

2. Этап антигеннезависимой дифференцировки, осуществляемый в центральных органах иммуногенеза. На этом этапе образуются лимфоциты, способные только распознавать антигены.

3. Этап антигензависимой дифференцировки, осуществляемый в периферических лимфоидных органах. Из клеток, способных распознать антиген формируются эффекторные клетки, способные уничтожить антиген.

Т-лимфоцитопоэз

Первый этап осуществляется в красном костном мозге, где находятся принадлежащие к I классу стволовые клетки, II классу –полустволовые клетки лимфоцитопоэза и III классу – унипотентные Т-поэтинчувствительные клетки-предшественницы Т-лимфоцитопоэза – про-Т-лимфоциты (протимоциты). Клетки III класса мигрируют в кровяное русло и оседают в тимусе.

Второй этап – этап антигеннезависимой дифференцировки осуществляется в корковом веществе тимуса. Под влиянием тимозина, унипотентные предшественники превращаются в IV класс – Т-лимфобласты, затем V класс – незрелые Т- лимфоциты (претимоциты) , и VI класс - Т лимфоциты. Здесь образуются все типы Т-лимфоцитов – Т-хелперы, Т-супрессоры, Т-киллеры.

Незрелые и затем зрелые тимоциты приобретают антигенраспознающие рецепторы к самым разнообразным антигенным веществам, однако здесь с антигенами они не встречаются, т.к. тимус защищен особым гемато-тимусным барьером. Одновременно происходит выбраковка Т-лимфоцитов, направленных против собственных антигенных детерминант. Образованные Т-лимфоциты проникают в сосудистое русло и с током крови заносятся в периферические лимфоидные органы.

Третий этап – этап антигензависимой дифференцировки осуществляется в Т-зависимых зонах периферических лимфоидных органов –лимфатических узлов, селезенки, лимфоидной ткани трубчатых органов, где создаются условия для встречи антигена с Т-лимфоцитом , имеющим рецептор к данному антигену.

Контакт с антигенными детерминантами вызывает активизацию Т-лимфоцита, он превращается в Т-иммунобласт . Процесс превращения Т-лимфоцита в Т-иммунобласт называется реакцией бласттрансформации. Т-иммунобласт неоднократно делится митотическим путем и образует клон клеток.

Часть Т-лимфоцитов из полученного клона становятся Т-лимфоцитами памяти.

Т-хелперы секретируют медиаторы – лимфокины, стимулирующие гуморальный иммунитет.

Т-супрессоров синтезируют лимфокины, которые угнетают гуморальный иммунитет.

Т-киллерный иммунобласт дает клон клеток, среди которых различаются

- Т-киллеры – цитотоксические лимфоциты, которые являются эффекторами клеточного иммунитета.

- Т-клетки памяти , обеспечивающие при повторно встрече с антигеном (по механизму новой бласттрансформации) вторичный иммунный ответ, который протекает быстрее и сильнее первого;

- Т-амплификаторы , которые не рециркулируют, являются короткоживущими, стимулируют размножение клеток – источников Т-лимфоцитов;

В-лимфоцитопоэз

Первый этап осуществляется в красном костном мозге и включает: I класс – стволовые клетки, II класс – полустволовые клетки, III класс – унипотентные В-поэтинчувствительные клетки – про-В-лимфоциты, в которых еще не начинается реаранжировка генома.

Второй этап – антигеннезависимой дифференцировки у птиц осуществляется в специальном лимфоидном органе – фабрициевой сумке. У млекопитающих и человека его аналог точно не установлен, но большинство исследователей считают, что второй этап также происходит в красном костном мозге. Здесь образуются IV класс – В-лимфобласты (на уровне которых начинается реаранжировка генома), V класс – В-пролимфоциты (пре-В-лимфоциты, в цитоплазме которых выявляется IgM), VI класс – рецепторные Во- лимфоциты – характеризуются появлением иммуноглобулинов класса М на поверхности плазматической мембраны.

В процессе второго этапа В-лимфоциты приобретают разнообразные рецепторы к антигенам.

Третий этап – антигензависимой пролиферации и дифференцировки осуществляется в В-зонах периферических лимфоидных органов.

Здесь происходит встреча рецепторного Во-лимфоцита, его активизация и трансформация в В-иммунобласт. В результате пролиферации иммунобласта образуется клон клеток, среди которых различают В-клетки памяти и плазмоциты. Последние являются эффекторами гуморального иммунитета, т.е. синтезируют иммуноглобулины (антитела) разных классов. Во время первой стадии антителообразования лимфоциты секретируют IgM. Затем после перестройки гена (реаранжировки) происходит смена класса иммуноглобулина и синтезируются IgG.

Антитело взаимодействует со специфичным ему антигеном с образованием комплекса антиген-антитело. Эти иммунные комплексы затем фагоцитируются макрофагами, эозинофилами, нейтрофилами.

Натуральные киллеры (NK-клетки) образуются в красном костном мозге. Эти клетки выделяют специфический фактор NKCF (natural killer cytotoxic factor), дистантно действующий на клетки-мишени постепенно и длительно. При клонировании NK-клеток клетки-памяти не образуются.

К ПРАКТИЧЕСКОМУ ЗАНЯТИЮ

IV курс специальность «Педиатрия»

Дисциплина: «Пропедевтика детских болезней с курсами здорового ребенка и общим уходом за детьми»

АНАТОМО-ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ

ОРГАНОВ КРОВЕТВОРЕНИЯ У ДЕТЕЙ И ПОДРОСТКОВ.

Продолжительность занятия__ _часа

Вид занятия – практическое занятие.

ЦЕЛЬ ЗАНЯТИЯ: Изучить анатомо-физиологические особенности системы кроветворения у детей.

ОСНОВНЫЕ ВОПРОСЫ ТЕМЫ:

1. Этапы эмбрионального гемопоэза и их роль в понимании возникновения очагов экстрамедуллярного кроветворения при патологии кроветворных органов у детей и подростков.

2. Полипотентная стволовая клетка и этапы ее дифференцировки.

3. Закономерности изменения лейкоцитарной формулы с возрастом детей.

4. Эритроцитарный росток и его изменения в постнатальном периоде.

5. Гранулоцираная система кроветворения.

6. Лимфоидная система кроветворения.

7. Система гемостаза у детей и подростков

Вопросы для самостоятельного изучения студентами.

1. Современная схема кроветворения.

  1. Осмотр больного, оценка данных исследования периферической крови у больного с нормой.

ОСНАЩЕНИЕ ЗАНЯТИЯ: таблицы, схемы, истории болезни.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ.

Кровь – одна из наиболее лабильных жидкостных систем организма, постоянно вступающая в контакт с органами и тканями, обеспечивающая их кислородом и питательными веществами, отводящая к органам выделения отработанные продукты обмена, участвующая в регуляторных процессах поддержания гомеостаза.

В систему крови включаются органы кроветворения и кроверазрушения (красный костный мозг, печень, селезенка, лимфатические узлы, другие лимфоидные образования) и периферическая кровь, нейрогуморальные и физико-химические регуляторные факторы.

Составными частями крови являются форменные элементы (эритроциты, лейкоциты, тромбоциты) и жидкая часть – плазма.

Общее количество крови в организме взрослого человека составляет 7% массы тела и равно 5 л, или 70 мл на 1 кг массы тела. Количество крови у новорожденного составляет 14% массы тела или 93-147 мл на 1 кг массы тела, у детей первых трех лет жизни – 8%, 4-7 лет – 7-8%, 12-14 лет 7-9% массы тела.

Эмбриональное кроветворение.

Кроветворение во внутриутробном периоде развития начинается рано. По мере роста эмбриона и плода последовательно меняется локализация гемопоэза в различных органах.

Табл. 1. Развитие гемопоэтической системы человека (по Н.С. Кисляк, Р.В. Ленской, 1978).

Начинается кроветворение в желточном мешке на 3-й неделе развития человеческого эмбриона. В начале оно сводится в основном к эритропоэзу. Образование первичных эритробластов (мегалобласты) происходит внутри сосудов желточного мешка.

На 4-й неделе кроветворение появляется в органах эмбриона. Из желточного мешка гемопоэз перемещается в печень, которая к 5-й недели гестации становится центром кроветворения. С этого времени наряду с эритроидными клетками начинают образовываться первые гранулоциты и мегакариоциты, при этом мегалобластический тип кроветворения сменяется на нормобластический. К 18-20-й неделе развития человеческого плода кроветворная активность в печени резко снижена, а к концу внутриутробной жизни, как правило, совсем прекращается.

В селезенке кроветворение начинается с 12-й недели, образуются эритроциты, гранулоциты, мегакариоциты. С 20-й недели миелопоэз в селезенке сменяется интенсивным лимфопоэзом.

Первые лимфоидные элементы появляются на 9-10 неделе в строме тимуса, в процессе их дифференцировки образуются иммунокомпетентные клетки – Т-лимфоциты. К 20-й неделе тимус по соотношению малых и средних лимфоцитов сходен с тимусом доношенного ребенка, к этому времени в сыворотке крови плода начинают обнаруживаться иммуноглобулины М и G.

Костный мозг закладывается в конце 3-го месяца эмбрионального развития за счет мезенхимальных периваскулярных элементов, проникающих вместе с кровеносными сосудами из периоста в костномозговую полость. Гемопоэтические очаги в костном мозге появляются с 13-14 недели внутриутробного развития в диафизах бедренных и плечевых костей. К 15-й неделе в этих локусах отмечается обилие юных форм грануло-, эритро- и мегакариоцитов. Костномозговое кроветворение становится основным к концу внутриутробного развития и на протяжении всего постнатального периода. Костный мозг в пренатальном периоде красный. Его объем с возрастом плода увеличивается в 2,5 раза и к рождению составляет порядка 40 мл. и он присутствует во всех костях. К концу гестации начинают появляться в костном мозге конечностей жировые клетки. После рождения в процессе роста ребенка масса костного мозга увеличивается и к 20 годам составляет в среднем 3000 г, но на долю красного костного мозга будет приходиться порядка 1200 г, и он будет локализоваться в основном в плоских костях и телах позвонков, остальная часть будет замещена желтым костным мозгом.

Основным отличие состава форменных элементов крови плода является постоянное нарастание числа эритроцитов, содержания гемоглобина, количества лейкоцитов. Если в первой половине внутриутробного развития (до 6 месяцев) в крови обнаруживаются много незрелых элементов (эритробластов, миелобластов, промиелоцитов и миелоцитов), то в последующие месяцы в периферической крови плода содержатся преимущественно зрелые элементы.

Изменяется и состав гемоглобина. Вначале (9-12 нед) в мегалобластах находится примитивный гемоглобин (HbP), который заменятся фетальным (HbF). Он становится основной формой в пренатальном периоде. Хотя с 10-й недели начинают появляться эритроциты с гемоглобином взрослого типа (HbA), доля его до 30 недели составляет лишь 10%. К рождению ребенка фетальный гемоглобин составляет приблизительно 60%, а взрослый – 40% всего гемоглобина эритроцитов периферической крови. Важным физиологическим свойством примитивного и фетального гемоглобинов является их более высокое сродство к кислороду, что имеет важное значение во внутриутробном периоде для обеспечения организма плода кислородом, когда оксигенация крови плода в плаценте относительно ограничена по сравнению с оксигенацией крови после рождения в связи с установлением легочного дыхания.


Похожая информация.


Актуальность темы. Гемопоэза ребенка свойственны закономерные физиологические возрастные изменения, которые необходимо учитывать при оценке гемограммы. Кровь, соединяя между собой все внутренние органы и системы, является одним из важнейших показателей состояния организма человека. Умением оценить гемограмму должны обладать врачи разных специальностей.

Цель занятия. Изучить особенности гемопоэза у детей разного возраста, уметь оценить состояние кроветворной системы в разные периоды детства и определить симптомы поражения органов кроветворения.

В результате самостоятельной подготовки студент должен знать:

1. Этапы внутриутробного кроветворения.

2. Особенности периферической крови новорожденного ребенка.

3. Возрастные особенности эритроцитарной звена.

4. Возрастные особенности лейкоцитарной звена, д. Возрастные особенности тромбоцитарного звена.

6. Возрастные изменения миелограмы.

7. Основные показатели коагулограммы.

В результате изучения темы студент должен уметь:

1. Оценить гемограмму ребенка любого возраста.

2. Распознать симптомы поражения кроветворной системы.

3. Определить патологические изменения в миелограмме ребенка.

4. Определить патологические изменения в коагулограмма ребенка.

Основная литература

Чеботарева В.Д., Майданников ВТ. Пропедевтическая педиатрия. - М.: Б. и., 1999. - С. 179-189.

Мазурин AB, Воронцов И.М. Пропедевтика детских болезней. - СПб.: "ИздательствоФолиант", 2001. - С. 583-622.

Капитан Т.В. Пропедевтика детских болезней с уходом за детьми. - М. - Винница, 2002. - С. 480-545.

Дополнительная литература

Медицина детства / Под ред. П.С. Мощич: В 4 т. - М.: Здоровье, 1997. - Т. 3. - С. 229-231.

Гематологические болезни у детей / Под ред. М.П. Павловой. - Минск: Вышэйшая шк., 1996. - С. 5-22.

Вспомогательные материалы

1. Этапы кроветворения во внутриутробный период.

2. Особенности кроветворения у детей разного возраста.

3. Особенности основных показателей крови у детей разного возраста.

4. Гемограмма здоровых детей разного возраста.

5. Уровень факторов свертывания крови и показателей антикоагулянтной и фибринолитнчнои систем у новорожденных и сроки их рост до уровня взрослых.

6. Основные лабораторные диагностические критерии обеспеченности железом.

7. миелограмы у детей разного возраста.

8. Семиотика нарушений системы крови.

9. Типы кровоточивости при геморрагическом синдроме.

10. Методика исследования кроветворной системы у детей.

Этапы кроветворения во внутриутробный период

3-6-я неделя - кроветворения в желточном мешке (образование примитивных эритробластов).

6-я неделя - 5-й месяц - печеночная кроветворения (образование эритроидных клеток, нейтрофилов, мегакариоцитов) с постепенным угасанием в конце внутриутробного периода.

12-я неделя - 5-й месяц - печеночно-селезеночное кроветворения (в селезенке образуются лимфоциты и моноциты).

С 4-го месяца начинается костномозговое кроветворения, которое к концу вутришньоутробного периода и в течение всей жизни становится основным.

Особенности кроветворения у детей разного возраста

У новорожденного гемопоэз осуществляется в красном костном мозге всех костей. После 4-летнего возраста красный костный мозг постепенно превращается в желтый. В возрасте 12-15 лет кроветворения сохраняется только в костном мозге плоских костей, ребер, телах позвонков, проксимальных концах плеча, предплечья, бедренной кости. У детей раннего возраста отмечается функциональная лабильность кроветворной системы. Под влиянием неблагоприятных факторов возможно возвращение к эмбрионального типа кроветворения с появлением в костном мозге миелоидной и лимфоидной метаплазии.