В метафазе митоза происходит. Деление клетки: митоз. Профаза, метафаза, анафаза, телофаза. Изменения, которые происходят в профазе

Лекция № 10

Количество часов: 2

МИТОЗ

1. Жизненный цикл клетки

2. Митоз. Стадии митоза, их продолжительность и характеристика

3. Амитоз. Эндорепродукция

1. Жизненный цикл клетки

Клетки многоклеточного организма чрезвычайно разнообразны по выполняемым функциям. В соответствии со специализацией клетки имеют разную продолжительность жизни. Так нервные клетки после завершения эмбриогенеза перестают делиться и функционируют на протяжении всей жизни организма. Клетки же других тканей (костного мозга, эпидермиса, эпителия тонкого кишечника) в процессе выполнения своей функции быстро погибают и замещаются новыми в результате клеточного деления. Деление клеток лежит в основе развития, роста и размножения организмов. Деление клеток также обеспечивает самообновление тканей на протяжении жизни организма и восстановление их целостности после повреждения. Существует два способа деления соматических клеток: амитоз и митоз . Преимущественно распространено непрямое деление клеток (митоз). Размножение с помощью митоза называют бесполым размножением, вегетативным размножением или клонированием.

Жизненный цикл клетки (клеточный цикл) – это существование клетки от деления до следующего деления или смерти. Продолжительность клеточного цикла в размножающихся клетках составляет 10-50 ч и зависит от типа клеток, их возраста, гормонального баланса организма, температуры и других факторов. Детали клеточного цикла варьируют среди разных организмов. У одноклеточных организмов жизненный цикл совпадает с жизнью особи. В непрерывно размножающихся тканевых клетках клеточный цикл совпадает с митотическим циклом.

Митотический цикл - совокупность последовательных и взаимосвязанных процессов в период подготовки клетки к делению и период деления (рис 1). В соответствие с приведенным выше определением митотический цикл подразделяют на интерфазу и митоз (греч. “митос” - нить).

Интерфаза - период между двумя делениями клетки - подразделяется на фазы G 1 , S и G 2 (ниже указана их продолжительность, типичная для растительных и животных клеток.). По продолжительности интерфаза составляет большую часть митотического цикла клетки. Наиболее вариабельны по времени G 1 и G 2 -периоды.

G 1 (от англ. grow – расти, увеличиваться). Продолжительность фазы составляет 4–8 ч. Это фаза начинается сразу после образования клетки. В этой фазе в клетке усиленно синтезируются РНК и белки, повышается активность ферментов, участвующих в синтезе ДНК. Если клетка в дальнейшем не делится, то переходит в фазу G 0 – период покоя. С учетом периода покоя клеточный цикл может длиться недели или даже месяцы (клетки печени).

S (от англ. synthesis - синтез). Длительность фазы составляет 6–9 ч. Масса клетки продолжает увеличиваться, и происходит удвоение хромосомной ДНК. Две спирали старой молекулы ДНК расходятся, и каждая становится матрицей для синтеза новых цепей ДНК. В результате каждая из двух дочерних молекул обязательно включает одну старую спираль и одну новую. Тем не менее хромосомы остаются одинарными по структуре, хотя и удвоенными по массе, так как две копии каждой хромосомы (хроматиды) все еще соединены друг с другом по всей длине. После завершения фазы S митотического цикла клетка не сразу начинает делиться.

G 2 . В этой фазе в клетке завершается процесс подготовки к митозу: накапливается АТФ, синтезируются белки ахроматинового веретена, удваиваются центриоли. Масса клетки продолжает увеличиваться до тех пор, пока она приблизительно вдвое не превысит начальную, а затем наступает митоз.

Рис. Митотический цикл: М - митоз, П - профаза, Мф - метафаза, А - анафаза, Т- телофаза, G 1 - пресинтетический период, S - синтетический период, G 2 - постсинтетический

2. Митоз. Стадии митоза, их продолжительность и характеристика. Митоз условно разделяют на четыре фазы: профазу, метафазу, анафазу и телофазу.

Профаза. Две центриоли начинают расходиться к противоположным полюсам ядра. Ядерная мембрана разрушается; одновременно специальные белки объединяются, формируя микротрубочки в виде нитей. Центриоли, расположенные теперь на противоположных полюсах клетки, оказывают организующее воздействие на микротрубочки, которые в результате выстраиваются радиально, образуя структуру, напоминающую по внешнему виду цветок астры («звезда»). Другие нити из микротрубочек протягиваются от одной центриоли к другой, образуя веретено деления. В это время хромосомы спирализуются и вследствие этого утолщаются. Они хорошо видны в световом микроскопе, особенно после окрашивания. Считывание генетической информации с молекул ДНК становится невозможным: синтез РНК прекращается, ядрышко исчезает. В профазе хромосомы расщепляются, но хроматиды все еще остаются скрепленными попарно в зоне центромеры. Центромеры тоже оказывают организующее воздействие на нити веретена, которые теперь тянутся от центриоли к центромере и от нее к другой центриоли.

Метафаза. В метафазе спирализация хромосом достигает максимума, и укороченные хромосомы устремляются к экватору клетки, располагаясь на равном расстоянии от полюсов. Образуется экваториальная, или метафазная, пластинка. На этой стадии митоза отчетливо видна структура хромосом, их легко сосчитать и изучить их индивидуальные особенности. В каждой хромосоме имеется область первичной перетяжки - центромера, к которой во время митоза присоединяются нить веретена деления и плечи. На стадии метафазы хромосома состоит из двух хроматид, соединенных между собой только в области центромеры.

Рис. 1. Митоз растительной клетки. А - интерфаза;
Б, В, Г, Д- профаза; Е, Ж-метафаза; 3, И - анафаза; К, Л, М-телофаза

В анафазе вязкость цитоплазмы уменьшается, центромеры разъединяются, и с этого момента хроматиды становятся самостоятельными хромосомами. Нити веретена деления, прикрепленные к центромерам, тянут хромосомы к полюсам клетки, а плечи хромосом при этом пассивно следуют за центромерой. Таким образом, в анафазе хроматиды удвоенных еще в интерфазе хромосом точно расходятся к полюсам клетки. В этот момент в клетке находятся два диплоидных набора хромосом (4n4с).

Таблица 1. Митотический цикл и митоз

Фазы

Процесс, происходящий в клетке

Интерфаза

Пресинтетический период (G1)

Синтез белка. На деспирализованных молекулах ДНК синтезируется РНК

Синтетический

период (S)

Синтез ДНК - самоудвоение молекулы ДНК. Построение второй хроматиды, в которую переходит вновь образовавшаяся молекула ДНК: получаются двухроматидные хромосомы

Постсинтетический период (G2)

Синтез белка, накопление энергии, подготовка к делению

Фазы

митоза

Профаза

Двухроматидные хромосомы спирализуются, ядрышки растворяются, центриоли расходятся, ядерная оболочка растворяется, образуются нити веретена деления

Метафаза

Нити веретена деления присоединяются к центромерам хромосом, двухроматидные хромосомы сосредоточиваются на экваторе клетки

Анафаза

Центромеры делятся, однохроматидные хромосомы растягиваются нитями веретена деления к полюсам клетки

Телофаза

Однохроматидные хромосомы деспирализуются, сформировывается ядрышко, восстанавливается ядерная оболочка, на экваторе начинает закладываться перегородка между клетками, растворяются нити веретена деления

В телофазе хромосомы раскручиваются, деспирализуются. Из мембранных структур цитоплазмы образуется ядерная оболочка. В это время восстанавливается ядрышко. На этом завершается деление ядра (кариокинез), затем происходит деление тела клетки (или цитокинез). При делении животных клеток на их поверхности в плоскости экватора появляется борозда, постепенно углубляющаяся и разделяющая клетку на две половины - дочерние клетки, в каждой их которых имеется по ядру. У растений деление происходит путем образования так называемой клеточной пластинки, разделяющей цитоплазму: она возникает в экваториальной области веретена, а затем растет во все стороны, достигая клеточной стенки (т.е. растет изнутри кнаружи). Клеточная пластинка формируется из материала, поставляемого эндоплазматической сетью. Затем каждая из дочерних клеток образует на своей стороне клеточную мембрану и, наконец, на обеих сторонах пластинки образуются целлюлозные клеточные стенки. Особенности протекания митоза у животных и растений приведены в таблице 2.

Таблица 2. Особенности митоза у растений и у животных

Растительная клетка

Животная клетка

Центриолей нет

Звезды не образуются

Образуется клеточная пластинка

При цитокенезе борозда не образуется

Митозы преимущественно

происходят в меристемах

Центриоли имеются

Звезды образуются

Клеточная пластинка не образуется

При цитокинезе образуется борозда

Митозы происходят

в различных тканях организма

Так из одной клетки формируются две дочерние, в которых наследственная информация точно копирует информацию, содержавшуюся в материнской клетке. Начиная с первого митотического деления оплодотворенной яйцеклетки (зиготы) все дочерние клетки, образовавшиеся в результате митоза, содержат одинаковый набор хромосом и одни и те же гены. Следовательно, митоз - это способ деления клеток, заключающийся в точном распределении генетического материала между дочерними клетками. В результате митоза обе дочерние клетки получают диплоидный набор хромосом.

Весь процесс митоза занимает в большинстве случаев от 1 до 2 часов. Частота митоза в разных тканях и у разных видов различна. Например, в красном костном мозге человека, где каждую секунду образуется 10 млн эритроцитов, в каждую секунду должно происходить 10 млн. митозов. А в нервной ткани митозы крайне редки: так, в центральной нервной системе клетки в основном перестают делиться уже в первые месяцы после рождения; а в красном костном мозге, в эпителиальной выстилке пищеварительного тракта и в эпителии почечных канальцев они делятся до конца жизни.

Регуляция митоза, вопрос о пусковом механизме митоза.

Факторы, побуждающие клетку к митозу точно не известны. Но полагают, что большую роль играет фактор соотношения объемов ядра и цитоплазмы (ядерно-плазменное соотношение). По некоторым данным, отмирающие клетки продуцируют вещества, способные стимулировать деление клетки. Белковые факторы, отвечающие за переход в фазу М, первоначально были идентифицированы на основе экспериментов по слиянию клеток. Слияние клетки, находящейся в любой стадии клеточного цикла, с клеткой находящейся в М фазе, приводит к вхождению ядра первой клетки в М фазу. Это означает, что в клетке находящейся в М фазе существует цитоплазматический фактор способный активировать М фазу. Позднее этот фактор был вторично обнаружен в экспериментах по переносу цитоплазмы между ооцитами лягушки, находящимися на различных стадиях развития, и был назван "фактором созревания" MPF (maturation promoting factor). Дальнейшее изучение MPF показало, что этот белковый комплекс детерминирует все события М-фазы. На рисунке показано, что распад ядерной мембраны, конденсация хромосом, сборка веретена, цитокинез регулируются MPF.

Митоз тормозится высокой температурой, высокими дозами ионизирующей радиации, действием растительных ядов. Один из таких ядов называется колхицин. С его помощью можно остановить митоз на стадии метафазной пластинки, что позволяет подсчитать число хромосом и дать каждой из них индивидуальную характеристику, т. е. провести кариотипирование.

4. Амитоз. Эндорепродукция

Амитоз (от греч. а – отриц. частица и митоз) -прямоеделение интерфазного ядра путем перешнуровывания без преобразования хромосом. При амитозе не происходит равномерное расхождение хроматид к полюсам. И это деление не обеспечивает образование генетически равноценных ядер и клеток. По сравнению с митозом амитоз более кратковременный и экономичный процесс. Амитотическое деление может осуществляться несколькими способами. Наиболее распространенный тип амитоза – это перешнуровывание ядра на две части. Этот процесс начинается с разделения ядрышка. Перетяжка углубляется, и ядро разделяется надвое. После этого начинается разделение цитоплазмы, однако это происходит не всегда. Если амитоз ограничивается только делением ядра, то это приводит к образованию дву- и многоядерных клеток. При амитозе может также происходить почкование и фрагментация ядер.

Клетка, претерпевшая амитоз, в последующем не способна вступить в нормальный митотический цикл.

Амитоз встречается в клетках различных тканей растений и животных. У растений амитотическое деление довольно часто встречается в эндосперме, в специализирующихся клетках корешков и в клетках запасающих тканей. Амитоз также наблюдается в высокоспециализированных клетках с ослабленной жизнеспособностью или дегенерирующих, при различных патологических процессах, таких как злокачественный рост, воспаление и т. п.

Основным процессом в подготовке клетки к митозу является реп­ликация ДНК и удвоение хромосом. Но синтез ДНК и митоз непос­редственно не связаны, т.к. окончательный синтез ДНК не является непосредственной причиной вступления клетки в митоз. Поэтому в ряде случаев клетки после удвоения хромосом не делятся, ядро и все клетки увеличиваются в объеме, становятся полиплоидными. Такое явление - редупликация хромосом, без деления, выработалась в про­цессе эволюции как способ, обеспечивающий рост органов без уве­личения числа клеток. Все случаи, когда происходит редупликация хромосом или репликация ДНК, но не наступает митоз, называются эндорепродукциями. Клетки становятся полиплоидными. Как постоянный процесс эндорепродукция наблюдается в клетках пече­ни, эпителия мочевыводящих путей млекопитающих. В случае эндомитоза хромосомы после редупликации становятся видны, но ядерная оболочка не разрушается.

Если делящиеся клетки на некоторое время охладить или об­ работать их каким-либо веществом, разрушающим микротрубочки веретена (например, колхицином), то деление клеток прекратит­ ся. При этом исчезнет веретено, а хромосомы без расхождения к полюсам будут продолжать цикл своих превращений: они начнут набухать, одеваться ядерной оболочкой. Так возникают за счет объединения всех неразошедшихся наборов хромосом крупные новые ядра. Они, естественно, будут содержать вначале 4п число хроматид и соответственно 4с количество ДНК. По определению, это уже не диплоидная, а тетраплоидная клетка. Такие полипло идные клетки могут из стадии gi переходить в S -период и, если убрать колхицин, снова делиться митотическим путем, давая уже потомков с 4 п числом хромосом. В результате можно получить полиплоидные клеточные линии разной величины плоидности. Этот прием часто используется для получения полиплоидных растений.

Как оказалось, во многих органах и тканях нормальных ди­ плоидных организмов животных и растений встречаются клетки с крупными ядрами, количество ДНК в которых кратно больше 2 п. При делении таких клеток видно, что количество хромосом у них также кратно увеличено по сравнению с обычными дипло­ идными клетками. Эти клетки являются результатом соматиче­ ской полиплоидии. Часто это явление называют эндорепродук цией - - появление клеток с увеличенным содержанием ДНК. Появление подобных клеток происходит в результате отсутствия в целом или незавершенности отдельных этапов митоза. Суще­ ствует несколько точек в процессе митоза, блокада которых приведет к его остановке и к появлению полиплоидных клеток. Блок может наступить при переходе от С 2 -периода к собствен­ но митозу, остановка может произойти в профазе и метафазе, в последнем случае часто происходит нарушение целостности ве­ ретена деления. Наконец, нарушения цитотомии также могут пре­ кратить деление, что приведет к появлению двуядерных и поли­ плоидных клеток.

При естественной блокаде митоза в самом его начале, при переходе G 2 - профазы, клетки приступают к следующему циклу репликации, который приведет к прогрессивному увеличению ко­ личества ДНК в ядре. При этом не наблюдается никаких морфо­ логических особенностей таких ядер, кроме их больших размеров. При увеличении ядер в них не выявляются хромосомы митоти ческого типа. Часто такой тип эндорепродукции без митотической конден сации хромосом встречается у беспозвоночных животных, обна­руживается он также и у позвоночных животных, и у растений. У беспозвоночных в результате блока митоза степень поли плоидии может достигать огромных значений. Так, в гигантских нейронах моллюска тритонии, ядра которых достигают величины до 1 мм (!), содержится более 2-10 5 гаплоидных наборов ДНК. Другим примером гигантской полиплоидной клетки, образо­ вавшейся в результате редупликации ДНК без вступления кле­ ток в митоз, может служить клетка шелкоотделительной железы тутового шелкопряда. Ее ядро имеет причудливую ветвистую форму и может содержать огромные количества ДНК. Гигантские клетки железы пищевода аскариды могут содержать до 100000с ДНК.

Особый случай эндорепродукции представляет собой увеличе­ ние плоидности путем политении. При политении в S -периоде при репликации ДИК новые до­ черние хромосомы продолжают оставаться в деспирализованном состоянии, но располагаются друг около друга, не расходятся и не претерпевают митотическую конденсацию. В таком истинно интерфазном виде хромосомы снова вступают в следую­щий цикл репликации, снова удваиваются и не расходятся. По­ степенно в результате репликации и нерасхождения хромосомных нитей образуется многонитчатая, политенная структура хромосо­ мы интерфазного ядра. Последнее обстоятельство необходимо под­ черкнуть, так как такие гигантские политенные хромосомы ни­ когда не участвуют в митозе, более того - это истинно интерфаз­ ные хромосомы, участвующие в синтезе ДНК и РНК. От митотических хромосом они резко отличаются и по разме­ рам: в несколько раз толще митотических хромосом из-за того, что состоят из пучка множественных неразошедшихся хро матид - по объему политенные хромосомы дрозофилы в 1000 раз «больше митотических. Они в 70-250 раз длиннее митотических из-за того, что в интерфазном состоянии хромосомы менее кон­денсированы (спирализованы), чем митотические хромосомы. Кроме того, у двукрылых их общее число в клетках равно гаплоидному из-за того, что при политенизации происходит объе­динение, конъюгация гомологичных хромосом. Так, у дрозофилы в диплоидной соматической клетке 8 хромосом, а в гигантской клетке слюнной железы - 4. Встречаются гигантские полиплоидные ядра с политенными хромосомами у некоторых личинок двукрылых насекомых в клет­ ках слюнных желез, кишечника, мальпигиевых сосудов, жирового тела и т. д. Описаны политенные хромосомы в макронуклеусе инфузо­ рии стилонихии. Лучше всего этот тип эндорепродукции изучен у насекомых. Было подсчитано, что у дрозофилы в клетках слюнных желез может произойти до 6-8 циклов редупликации, что приведет к общей плоидности клетки, равной 1024. У некоторых хирономид (их личинку называют мотылем) плоидность в этих клетках до­ стигает 8000-32000. В клетках политенные хромосомы начинают быть видны после достижения политении в 64-128 п, до этого такие ядра ничем, кроме размера, не отличаются от окружающих диплоидных ядер.

Отличаются политенные хромосомы и своим строением: они структурно неоднородны по длине, состоят из дисков, междис­ ковых участков и пуфов. Рисунок расположения дисков строго характерен для каждой хромосомы и отличается даже у близких видов животных. Диски представляют собой участки конденсированного хро­ матина. Диски могут отличаться друг от друга по толщине. Общее их число у политенных хромосом хирономид достигает 1,5-2,5 тыс. У дрозофилы имеется около 5 тыс. дисков. Диски разделены междисковыми пространствами, состоящими, так же как и диски, из фибрилл хроматина, только более рыхла упакованных. На политенных хромосомах двукрылых часто видны вздутия, пуфы. Оказалось, что пуфы возникают на местах некоторых дис ков за счет их деконденсации и разрыхления. В пуфах выявля­ ется РНК, которая там же и синтезируется. Рисунок расположения и чередования дисков на политенных хромосомах постоянен и не зависит ни от органа, ни от возраста животного. Это является хорошей иллюстрацией одинаковости качества генетической информации в каждой клетке организма. Пуфы являются временными образованиями на хро­мосомах, и в процессе развития организма существует определен­ная последовательность в их появлении и исчезновении на гене­ тически различных участках хромосомы. Эта последо вательность различна для разных тканей. Сейчас доказано, что образование пуфов на политенных хромосомах - - это выражение генной активности: в пуфах синтезируются РНК, необходимые для проведения белковых синтезов на разных этапах развития насекомого. В естественных условиях у двукрылых особенно активны в отношении синтеза РНК два самых крупных пуфа, так называе­ мые кольца Бальбиани, который описал их 100 лет тому назад.

В других случаях эндорепродукции полиплоидные клетки воз­ никают в результате нарушений аппарата деления - веретена: при этом происходит митотическая конденсация хромосом. Такое явление носит название эндомитоз, потому что конденсация хро­ мосом и их изменения происходят внутри ядра, без исчезновения ядерной оболочки. Впервые явление эндомитоза было хорошо изучено в клетках: различных тканей водяного клопа - - геррии. В начале эндоми­ тоза хромосомы конденсируются, благодаря чему становятся хо­ рошо различимы внутри ядра, затем хроматиды обособляются, вытягиваются. Эти стадии по состоянию хромосом могут соответ­ствовать профазе и метафазе обычного митоза. Затем хромосомы в таких ядрах исчезают, и ядро принимает вид обычного интер­ фазного ядра, но размер его увеличивается в соответствии с уве­ личением плоидности. После очередной редупликации ДНК такой цикл эндомитоза повторяется. В результате могут возникнуть полиплоидные (32 п) и даже гигантские ядра. Сходный тип эндомитоза описан при развитии макронуклеу­ сов у некоторых инфузорий, у целого ряда растений.

Результат эндорепродукции: полиплоидия и увеличение размеров клетки.

Значение эндорепродукции: не прерывается деятельность клетки. Так, например, деле­ ние нервных клеток привело бы к временному выключению их функций; эндорепродукция позволяет без перерыва в функциони­ ровании нарастить клеточную массу и тем самым увеличить объ­ ем работы, выполняемый одной клеткой.

увеличение продуктивности клеток.

Клетка размножается путем деления. Существуют два способа деления: митоз и мейоз.

Митоз (от греч. митос - нитка), или непрямое деление клетки, представляет собой непрерывный процесс, в результате которого происходит сначала удвоение, а затем равномерное распределение наследственного материала, содержащегося в хромосомах, между двумя образующимися клетками. В этом его биологическое значение. Деление ядра влечет за собой деление всей клетки. Этот процесс называется цитокинезом (от греч. цитос - клетка).

Состояние клетки между двумя митозами называют интерфазой, или интеркинезом, а все происходящие в ней во время подготовки к митозу и в период деления изменения - митотическим, или клеточным, циклом.

У разных клеток митотические циклы имеют разную продолжительность. Большую часть времени клетка находится в состоянии интеркинеза, митоз длится сравнительно недолго. В общем митотическом цикле собственно митоз занимает 1/25-1/20 времени, и у большинства клеток он продолжается от 0,5 до 2 ч.

Толщина хромосом столь мала, что при рассмотрении интерфазного ядра в световой микроскоп они не видны, удается лишь различить гранулы хроматина в узлах их скручивания. Электронный микроскоп позволил обнаруживать хромосомы и в неделящемся ядре, хотя они в это время очень длинны и состоят из двух нитей хроматид, диаметр каждой из которых составляет всего 0,01 мкм. Следовательно, хромосомы в ядре не исчезают, а принимают форму длинных и тонких нитей, которые почти не видны.

Во время митоза ядро проходит четыре последовательные фазы: профазу, метафазу, анафазу и телофазу.

Профаза (от греч. про - раньше, фазис - проявление). Это первая фаза деления ядра, во время которой внутри ядра появляются структурные элементы, имеющие вид тонких двойных нитей, что и обусловило название этого типа деления - митоз. В результате спирализации хромонем хромосомы в профазе уплотняются, укорачиваются и становятся отчетливо видимыми. К концу профазы можно хорошо наблюдать, что каждая хромосома состоит из двух тесно соприкасающихся одна с другой хроматид. В дальнейшем обе хроматиды соединяются общим участком - центромерой и начинают постепенно передвигаться к клеточному экватору.

В середине или в конце профазы ядерная оболочка и ядрышки исчезают, центриоли удваиваются и отходят к полюсам. Из материала цитоплазмы и ядра начинает формироваться веретено деления. Оно состоит из двух видов нитей: опорных и тянущих (хромосомных). Опорные нити составляют основу веретена, они тянутся от одного полюса клетки к другому. Тянущие нити соединяют центромеры хроматид с полюсами клетки и обеспечивают в последующем движение к ним хромосом. Митотический аппарат клетки очень чувствителен к различным внешним воздействиям. При действии радиации, химических веществ и высокой температуры клеточное веретено может разрушаться, возникают всевозможные неправильности в делении клетки.

Метафаза (от греч. мета - после, фазис - проявление). В метафазе хромосомы сильно уплотняются и приобретают определенную, характерную для данного вида форму. Дочерние хроматиды в каждой паре разъединены хорошо видимой продольной щелью. Большинство хромосом становится двуплечими. Местом перегиба - центромерой - они прикрепляются к нити веретена. Все хромосомы располагаются в экваториальной плоскости клетки, свободные концы их направлены к центру клетки. В это время хромосомы лучше всего наблюдать и подсчитывать. Очень отчетливо видно и клеточное веретено.

Анафаза (от греч. ана - вверх, фазис - проявление). В анафазе вслед за делением центромер начинается расхождение хроматид, ставших теперь отдельными хромосомами, к противоположным полюсам. При этом хромосомы имеют вид разнообразных крючков, обращенных своими концами к центру клетки. Так как из каждой хромосомы возникли две совершенно одинаковые хроматиды, то в обеих образовавшихся дочерних клетках число хромосом будет равно диплоидному числу исходной материнской клетки.

Процесс деления центромер и движения к разным полюсам всех вновь образовавшихся парных хромосом отличается исключительной синхронностью.

В конце анафазы начинается раскручивание хромонемных нитей, и хромосомы, отошедшие к полюсам, видны уже не так четко.

Телофаза (от греч. телос - конец, фазис - проявление). В телофазе продолжается деспирализация хромосомных нитей, и хромосомы постепенно становятся более тонкими и длинными, приближаясь к тому состоянию, в котором они были в профазе. Вокруг каждой группы хромосом образуется ядерная оболочка, формируется ядрышко. В это же время завершается деление цитоплазмы и возникает клеточная перегородка. Обе новые дочерние клетки вступают в период интерфазы.

Весь процесс митоза, как уже отмечалось, занимает не более 2 ч. Продолжительность его зависит от вида и возраста клеток, а также от внешних условий, в которых они находятся (температура, освещенность, влажность воздуха и т. д.). Отрицательно сказываются на нормальном ходе деления клеток высокие температуры, радиация, различные наркотики и растительные яды (колхицин, аценафтен и др.).

Митотическое деление клеток отличается высокой степенью точности и совершенства. Механизм митоза создавался и совершенствовался на протяжении многих миллионов лет эволюционного развития организмов. В митозе находит свое проявление одно из важнейших свойств клетки как самоуправляемой и, самовоспроизводящейся живой биологической системы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

1. Дайте определения понятий.
Интерфаза – фаза подготовки к митотическому делению, когда происходит удвоение ДНК.
Митоз – это деление, в результате которого происходит строго одинаковое распределение точно скопированных хромосом между дочерними клетками, что обеспечивает образование генетически идентичных клеток.
Жизненный цикл – период жизни клетки от момента ее возникновения в процессе деления до гибели или конца последующего деления.

2. Чем рост одноклеточных организмов отличается от роста многоклеточных?
Рост одноклеточного организма – это увеличение размеров и усложнение строения отдельной клетки, а рост многоклеточных – это также и активное деление клеток – увеличение их количества.

3. Почему в жизненном цикле клетки обязательно существует интерфаза?
В интерфазе происходит подготовка к делению и удвоение ДНК. Если бы его не происходило, то при каждом делении клетки количество хромосом уменьшалось бы вдвое, и довольно скоро в клетке вообще бы не осталось хромосом.

4. Заполните кластер «Фазы митоза».

5. Используя рисунок 52 в § 3.4, заполните таблицу.


6. Составьте синквейн к термину «митоз».
Митоз
Четырехфазный, равномерный
Делит, распределяет, дробит
Поставляет генетический материал дочерним клеткам
Клеточное деление.

7. Установите соответствие между фазами митотического цикла и событиями, происходящими в них.
Фазы
1. Анафаза
2. Метафаза
3. Интерфаза
4. Телофаза
5. Профаза
События
A. Клетка растет, образуются органоиды, удваивается ДНК.
Б. Хроматиды расходятся и становятся самостоятельными хромосомами.
B. Начинается спирализация хромосом, разрушается ядерная оболочка.
Г. Хромосомы располагаются в экваториальной плоскости клетки. Нити веретена деления присоединяются к центромерам.
Д. Исчезает веретено деления, формируются ядерные оболочки, хромосомы раскручиваются.

8. Почему завершение митоза – деление цитоплазмы происходит по-разному в животных и растительных клетках?
В животных клетках нет клеточной стенки, у них клеточная мембрана впячивается внутрь, и клетка делится путем перетяжки.
В клетках растений мембрана формируется в экваториальной плоскости внутри клетки и, распространяясь к периферии, делит клетку пополам.

9. Почему в митотическом цикле интерфаза занимает гораздо более продолжительное время, чем само деление?
Во время интерфазы клетка усиленно готовится к митозу, в ней идут процессы синтеза, удвоение ДНК, клетка растет, проходит ее жизненный цикл, не включая само деление.

10. Выберите правильный ответ.
Тест 1.
В результате митоза из одной диплоидной клетки образуются:
4) 2 диплоидные клетки.

Тест 2.
Деление центромер и расхождение хроматид к полюсам клетки происходит в:
3) анафазе;

Тест 3.
Жизненный цикл - это:
2) жизнь клетки от деления до конца следующего деления или смерти;

Тест 4.
Какой термин написан с орфографической ошибкой?
4) телафаза.

11. Объясните происхождение и общее значение слова (термина), опираясь на значение корней, его составляющих.


12. Выберите термин и объясните, насколько его современное значение соответствует первоначальному значению его корней.
Выбранный термин – интерфаза.
Соответствие. Термин соответствует, и означает период между фазами митоза, когда происходит подготовка к делению.

13. Сформулируйте и запишите основные идеи § 3.4.
Жизненный цикл – это жизнь клетки от деления до конца следующего деления или смерти. Между делениями клетка подготавливается к нему в период интерфазы. В это время происходит синтез веществ, удвоение ДНК.
Клетка делится митозом. Он состоит из 4 стадий:
Профаза.
Метафаза.
Анафаза.
Телофаза.
Цель митоза: в результате его из 1 материнской клетки образуются 2 дочерние с идентичным набором генов. Количество генетического материала и хромосом при этом остается одинаковым, обеспечивается генетическая стабильность клеток.

Деление клетки является центральным моментом размножения.

В процессе деления из одной клетки возникают две. Клетка на основе ассимиляции органических и неорганических веществ создает себе подобную с характерным строением и функциями.

В делении клетки можно наблюдать два основных момента: деление ядра - митоз и деление цитоплазмы - цитокинез, или цитотомия. Основное внимание генетиков до сих пор приковывает митоз, поскольку, с точки зрения хромосомной теории, ядро считается «органом» наследственности.

В процессе митоза происходит:

  1. удвоение вещества хромосом;
  2. изменение физического состояния и химической организации хромосом;
  3. расхождение дочерних, точнее сестринских, хромосом к полюсам клетки;
  4. последующее деление цитоплазмы и полное восстановление двух новых ядер в сестринских клетках.

Таким образом, в митозе заложен весь жизненный цикл ядерных генов: удвоение, распределение и функционирование; в результате завершения митотического цикла сестринские клетки оказываются с равным «наследством».

При делении ядро клетки проходит пять последовательных стадий: интерфазу, профазу, метафазу, анафазу и телофазу; некоторые цитологи выделяют еще шестую стадию - прометафазу.

Между двумя последовательными делениями клетки ядро находится в стадии интерфазы. В этот период ядро при фиксации и Окраске имеет сетчатую структуру, образуемую красящимися тонкими нитями, которые в следующей фазе формируются в хромосомы. Хотя интерфазу называют иначе фазой покоящегося ядра , на самом теле метаболические процессы в ядре в этот период совершаются с наибольшей активностью.

Профаза - первая стадия подготовки ядра к делению. В профазе сетчатая структура ядра постепенно превращается в хромосомные нити. С самой ранней профазы даже в световом микроскопе можно наблюдать двойную природу хромосом. Это говорит о том, что в ядре именно в ранней или поздней интерфазе осуществляется наиболее важный процесс митоза - удвоение, или редупликация, хромосом, при котором каждая из материнских хромосом строит себе подобную - дочернюю. Вследствие этого каждая хромосома выглядит продольно удвоенной. Однако эти половинки хромосом, которые называются сестринскими хроматидами , в профазе не расходятся, так как удерживаются вместе одним общим участком - центромерой; центромерный участок делится позже. В профазе хромосомы претерпевают процесс скручивания по своей оси, что приводит к их укорочению и утолщению. Нужно подчеркнуть, что в профазе каждая хромосома в кариолимфе располагается случайно.

В клетках животных еще в поздней телофазе или очень ранней интерфазе происходит удвоение центриоли, после чего в профазе начинается схождение дочерних центриолей к полюсам и образований астросферы и веретена, называемого новым аппаратом. В это же время растворяются ядрышки. Существенным признаком окончания профазы является растворение оболочки ядра, в результате чего хромосомы оказываются в общей, массе цитоплазмы и кариоплазмы, которые теперь образуют миксоплазму. Этим заканчивается профаза; клетка вступает в метафазу.

В последнее время между профазой и метафазой исследователи стали выделять промежуточную стадию, называемую прометафазой . Прометафаза характеризуется растворением и исчезновением ядерной оболочки и движением хромосом к экваториальной плоскости клетки. Но к этому моменту еще не завершается образование ахроматинового веретена.

Метафазой называют стадию окончания расположения хромосом на экваторе веретена. Характерное расположение хромосом в экваториальной плоскости называют экваториальной, или метафазной, пластинкой. Расположение хромосом по отношению друг к другу является случайным. В метафазе хорошо выявляются число и форма хромосом, в особенности при рассмотрении экваториальной пластинки с полюсов деления клетки. Ахроматиновое веретено полностью сформировано: нити веретена приобретают плотную консистенцию чем остальная масса цитоплазмы, и прикрепляются к центромерному участку хромосомы. Цитоплазма клетки в этот период имеет наименьшую вязкость.

Анафазой называют следующую фазу митоза, в которой делятся хроматиды, которые теперь можно назвать уже сестринскими или дочерними хромосомами, расходятся к полюсам. При этом отталкиваются друг от друга в первую очередь центромерные участки, а затем расходятся к полюсам сами хромосомы. Нужно сказать, что расхождение хромосом в анафазе начинается одновременно - «как по команде» - и завершается очень быстро.

В телофазе дочерние хромосомы деспирализуются и утрачивают видимую индивидуальность. Образуются оболочка ядра и само ядро. Ядро реконструируется в обратном порядке по сравнению с теми изменениями, которые оно претерпевало в профазе. В конце концов восстанавливаются и ядрышки (или ядрышко), причем в том количестве, в каком они присутствовали в родительских ядрах. Число ядрышек является характерным для каждого типа клеток.

В это же время начинается симметричное разделение тела клетки. Ядра же дочерних клеток переходят в состояние интерфазы.

Нa рисунке выше приведена схема цитокинеза животной и растительной клеток. В животной клетке деление происходит путем перешнуровывания цитоплазмы материнской клетки. В растительной клетке формирование клеточной перегородки идет при участки бляшек веретена, образующих в плоскости экватора перегородку, называемую фрагмопластом. Этим заканчивается митотический цикл. Продолжительность его зависит, по-видимому, от типа ткани, физиологического состояния организма, внешних факторов (температуры, светового режима) и длится от 30 мин до 3 ч. По данным разных авторов, скорость прохождения отдельных фаз изменчива.

Как внутренние, так и внешние факторы среды, действующие на рост организма и его функциональное состояние, влияют на продолжительность клеточного деления и его отдельных фаз. Поскольку ядро играет огромную роль в метаболических процессах клетки, естественно полагать, что длительность фаз митоза может изменяться в соответствии с функциональным состоянием ткани органа. Например, установлено, что во время покоя и сна животных митотическая активность различных тканей значительно выше, чем в период бодрствования. У ряда животных частота клеточных делений на свету снижается, а в темноте увеличивается. Предполагают также, что на митотическую активность клетки влияют гормоны.

Причины, определяющие готовность клетки к делению, до сих пор остаются невыясненными. Есть основания предполагать несколько таких причин:

  1. удвоение массы клеточной протоплазмы, хромосом и других органелл, в силу чего нарушаются ядерно-плазменные отношения; для деления клетка должна достигнуть определенных веса и объема, характерных для клеток данной ткани;
  2. удвоение хромосом;
  3. выделение хромосомами и другими органеллами клетки специальных веществ, стимулирующих клеточное деление.

Механизм расхождения хромосом к полюсам в анафазе митоза также остается невыясненным. Активную роль в этом процессе, видимо, играют нити веретена, представляющие организованные и ориентированные центриолями и центромерами белковые нити.

Характер митоза, как мы уже говорили, меняется в зависимости от типа и функционального состояния ткани. Для клеток разных тканей характерны различные типы митозов, В описанном типе митоза деление клетки происходит равным и симметричным образом. В результате симметричного митоза сестринские клетки являются наследственно равноценными в отношении как ядерных генов, так и цитоплазмы. Однако, кроме симметричного, встречаются и другие типы митоза, а именно: асимметричный митоз, митоз с задержкой цитокинеза, деление многоядерных клеток (деление синцитиев), амитоз, эндомитоз, эндорепродукция и политения.

В случае асимметричного митоза сестринские клетки оказываются неравноценными по размеру, количеству цитоплазмы, а также в отношении их дальнейшей судьбы. Примером этого могут служить неодинакового размера сестринские (дочерние) клетки нейробласта кузнечика, яйцеклетки животных при созревании и при спиральном дроблении; при делении ядер в пыльцевых зернах одна из дочерних клеток может в дальнейшем делиться, другая - нет, и т. д.

Митоз с задержкой цитокинеза характеризуется тем, что ядро клетки делится многократно, и лишь затем происходит деление тела клетки. В результате такого деления образуются многоядерные клетки вроде синцития. Примером этого служит образование клеток эндосперма и образование спор.

Амитозом называют прямое деление ядра без образования фигур деления. При этом деление ядра происходит путем «перешнуровывания» его на две части; иногда из одного ядра образуется сразу несколько ядер (фрагментация). Амитоз постоянно встречается в клетках ряда специализированных и патологических тканей, например в раковых опухолях. Его можно наблюдать при воздействиях различных повреждающих агентов (ионизирующие излучения и высокая температура).

Эндомитозом называют такой процесс, когда происходит удвоение деления ядер. При этом хромосомы, как и обычно, репродуцируются в интерфазе, но последующее расхождение их происходит внутри ядра с сохранением ядерной оболочки и без образования ахроматинового веретена. В некоторых случаях хотя и растворяется оболочка ядра, однако расхождение хромосом к полюсам не осуществляется, вследствие чего в клетке происходит умножение числа хромосом даже в несколько десятков раз. Эндомитоз встречается в клетках различных тканей как растений, так и животных. Так, например, А. А. Прокофьева-Бельговская показала, что путем эндомитоза в клетках специализированных тканей: в гиподерме циклопа, жировом теле, перитонеальном эпителии и других тканях кобылки (Stenobothrus) - набор хромосом может увеличиваться в 10 раз. Такое умножение числа хромосом связано с функциональными особенностями дифференцированной ткани.

При политении происходит умножение числа хромосомных нитей: после редупликации по всей длине они не расходятся и остаются прилегающими друг к другу. В этом случае умножается число хромосомных нитей в пределах одной хромосомы, в результате диаметр хромосом заметно увеличивается. Число таких тонких нитей в политенной хромосоме может достигать 1000-2000. В этом случае образуются так называемые гигантские хромосомы. При политении выпадают все фазы митотического цикла, кроме основной - репродукции первичных нитей хромосомы. Явление политении наблюдается в клетках ряда дифференцированных тканей, например в ткани слюнных желез двукрылых, в клетках некоторых растений и простейших.

Иногда имеет место удвоение одной или нескольких хромосом без каких-либо преобразований ядра - такое явление называется эндорепродукцией .

Итак, все фазы митоза клетки, составляющие , являются обязательными лишь для типичного процесса.

некоторых случаях, главным образом в дифференцированных тканях, митотический цикл претерпевает изменения. Клетки таких тканей утратили способность к воспроизведению целого организма, и метаболическая деятельность их ядра приспособлена к функции поциализированной ткани.

Эмбриональные и меристемные клетки, не утратившие функцию воспроизведения целого организма и относящиеся к недифференцированным тканям, сохраняют полный цикл митоза, на чем и основывается бесполое и вегетативное размножение.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Митоз, его фазы, биологическое значение

Важнейшим компонентом клеточного цикла является митотический (пролиферативный) цикл. Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него. Митотический цикл - это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.

Основные стадии митоза.

1.Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками. Это сопровождается изменениями структуры и морфологии хромосом, в которых сосредоточено более 90% информации эукариотической клетки.

2.Митотический цикл состоит из четырех последовательных периодов: пресинтетического (или постмитотического) G1, синтетического S, постсинтетического (или премитотического) G2 и собственно митоза. Они составляют автокаталитическую интерфазу (подготовительный период).

Фазы клеточного цикла:

1) пресинтетическая (G1). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;

2) синтетическая (S). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка.

В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохонд-риальной ДНК (основная же ее часть реплицируется в G2 период);

3) постсинтетическая (G2). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных).

S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период - препрофазу.

После этого наступает собственно митоз, который состоит из четырех фаз. Процесс деления включает в себя несколько последовательных фаз и представляет собой цикл. Его продолжительность различна и составляет у большинства клеток от 10 до 50 ч. При этом у клеток тела человека продолжительность самого митоза составляет 1-1,5 ч, G2-периода интерфазы - 2-3 ч, S-периода интерфазы - 6-10 ч.

Стадии митоза.

Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу (рис. 1–3). Так как он непрерывен, смена фаз осуществляется плавно - одна незаметно переходит в другую.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть - прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n2хр).

Характеристика фаз митоза

К основным событиям профазы относят конденсацию хромосом внутри ядра и образование веретена деления в цитоплазме клетки. Распад ядрышка в профазе является характерной, но не обязательной для всех клеток особенностью.

Условно за начало профазы принимается момент возникновения микроскопически видимых хромосом вследствие конденсации внутриядерного хроматина. Уплотнение хромосом происходит за счёт многоуровневой спирализации ДНК. Данные изменения сопровождаются повышением активности фосфорилаз, модифицирующих гистоны, непосредственно участвующие в компоновке ДНК. Как следствие, резко снижается транскрипционная активность хроматина, инактивируются ядрышковые гены, большая часть ядрышковых белков диссоциирует. Конденсирующиеся сестринские хроматиды в ранней профазе остаются спаренными по всей своей длине с помощью белков-когезинов, однако к началу прометафазы связь между хроматидами сохраняется лишь в области центромер. К поздней профазе на каждой центромере сестринских хроматид формируются зрелые кинетохоры необходимые хромосомам для присоединения к микротрубочкам веретена деления в прометафазе.

Наряду с процессами внутриядерной конденсации хромосом в цитоплазме начинает формироваться митотическое веретено - одна из главных структур аппарата клеточного деления, ответственная за распределение хромосом между дочерними клетками. В образовании веретена деления у всех эукариотических клеток принимают участие полярные тельца, микротрубочки и кинетохоры хромосом.

С началом формирования митотического веретена в профазе сопряжены разительные изменения динамических свойств микротрубочек. Время полужизни средней микротрубочки уменьшается примерно в 20 раз от 5 минут до 15 секунд. Однако скорость их роста увеличивается примерно в 2 раза по сравнению с теми же интерфазными микротрубочками. Полимеризующиеся плюс-концы являются «динамически нестабильными» и резко переходят от равномерного роста к быстрому укорочению, при котором часто деполимеризуется вся микротрубочка. Примечательно, что для правильного функционирования митотического веретена необходим определенный баланс между процессами сборки и деполимеризации микротрубочек, так как ни стабилизированные, ни деполимеризованные микротрубочки веретена не в состоянии перемещать хромосомы.

Наряду с наблюдаемыми изменениями динамических свойств микротрубочек, слагающих нити веретена, в профазе закладываются полюса деления. Реплицированные в S-фазе центросомы расходятся в противоположных направлениях за счёт взаимодействия полюсных микротрубочек, растущих навстречу друг другу. Своими минус-концами микротрубочки погружены в аморфное вещество центросом, а процессы полимеризации протекают со стороны плюс-концов, обращенных к экваториальной плоскости клетки. При этом вероятный механизм расхождения полюсов объясняется следующим образом: динеино-подобные белки ориентируют в параллельном направлении полимеризующиеся плюс-концы полюсных микротрубочек, а кинезино-подобные белки в свою очередь расталкивают их в направлении к полюсам деления.

Параллельно конденсации хромосом и формированию митотического веретена, во время профазы происходит фрагментация эндоплазматического ретикулума, который распадается на мелкие вакуоли, расходящиеся затем к периферии клетки. Одновременно рибосомы теряют связи с мембранами ЭПР. Цистерны аппарата Гольджи также меняют свою околоядерную локализацию, распадаясь на отдельные диктиосомы, без особого порядка распределенные в цитоплазме.

Прометафаза

Прометафаза

Окончание профазы и наступление прометафазы, как правило, знаменуется распадом ядерной мембраны. Целый ряд белков ламины фосфорилируется, вследствие чего ядерная оболочка фрагментируется на мелкие вакуоли, а поровые комплексы исчезают. После разрушения ядерной мембраны хромосомы без особого порядка располагаются в области ядра. Однако вскоре все они приходят в движение.

В прометафазе наблюдается интенсивное, но беспорядочное перемещение хромосом. Поначалу отдельные хромосомы стремительно дрейфуют к ближайшему полюсу митотического веретена со скоростью, достигающей 25 мкм/мин. Вблизи полюсов деления повышается вероятность взаимодействия новосинтезированных плюс-концов микротрубочек веретена с кинетохорами хромосом. В результате такого взаимодействия кинетохорные микротрубочки стабилизируются от спонтанной деполимеризации, а их рост отчасти обеспечивает отдаление соединенной с ними хромосомы в направлении от полюса к экваториальной плоскости веретена. С другой стороны хромосому настигают тяжи микротрубочек, идущие от противоположного полюса митотического веретена. Взаимодействуя с кинетохором, они также участвуют в движении хромосомы. В результате сестринские хроматиды оказываются связанными с противоположными полюсами веретена. Усилие, развиваемое микротрубочками от разных полюсов, не только стабилизирует взаимодействие этих микротрубочек с кинетохорами, но также, в конечном счёте, приводит каждую хромосому в плоскость метафазной пластинки.

В клетках млекопитающих прометафаза протекает, как правило, в течение 10-20 минут. В нейробластах кузнечика данная стадия занимает всего 4 минуты, а в эндосперме Haemanthus и в фибробластах тритона - около 30 минут.

Метафаза

Метафаза

В завершении прометафазы хромосомы располагаются в экваториальной плоскости веретена примерно на равном расстоянии от обоих полюсов деления, образуя метафазную пластинку. Морфология метафазной пластинки в клетках животных, как правило, отличается упорядоченным расположением хромосом: центромерные участки обращены к центру веретена, а плечи - к периферии клетки. В растительных клетках хромосомы зачастую лежат в экваториальной плоскости веретена без строгого порядка.

Метафаза занимает значительную часть периода митоза, и отличается относительно стабильным состоянием. Все это время хромосомы удерживаются в экваториальной плоскости веретена за счёт сбалансированных сил натяжения кинетохорных микротрубочек, совершая колебательные движения с незначительной амплитудой в плоскости метафазной пластинки.

В метафазе, также как и в течение других фаз митоза, продолжается активное обновление микротрубочек веретена путём интенсивной сборки и деполимеризации молекул тубулина. Несмотря на некоторую стабилизацию пучков кинетохорных микротрубочек, происходит постоянная переборка межполюсных микротрубочек, численность которых в метафазе достигает максимума.

К окончанию метафазы наблюдается чёткое обособление сестринских хроматид, соединение между которыми сохраняется лишь в центромерных участках. Плечи хроматид располагаются параллельно друг другу, и становится отчетливо заметной разделяющая их щель.

Анафаза - самая короткая стадия митоза, которая начинается внезапным разделением и последующим расхождением сестринских хроматид в направлении противоположных полюсов клетки. Хроматиды расходятся с равномерной скоростью достигающей 0,5-2 мкм/мин., при этом они часто принимают V-образную форму. Их движение обусловлено воздействием значительных сил, оценочно 10 дин на хромосому, что в 10 000 раз превышает усилие, необходимое для простого продвижения хромосомы через цитоплазму с наблюдаемой скоростью.

Как правило, расхождение хромосом в анафазе состоит из двух относительно независимых процессов называемых анафазой А и анафазой В.

Анафаза А характеризуется расхождением сестринских хроматид к противоположным полюсам деления клетки. За их движение при этом отвечают те же силы, что ранее удерживали хромосомы в плоскости метафазной пластинки. Процесс расхождения хроматид сопровождается сокращением длины деполимеризующихся кинетохорных микротрубочек. Причем их распад наблюдается преимущественно в области кинетохоров, со стороны плюс-концов. Вероятно, деполимеризация микротрубочек у кинетохоров либо в области полюсов деления является необходимым условием для перемещения сестринских хроматид, так как их движение прекращается при добавлении таксола или тяжёлой воды, оказывающих стабилизирующее воздействие на микротрубочки. Механизм, лежащий в основе расхождения хромосом в анафазе А, пока остается неизвестным.

Во время анафазы В расходятся сами полюса деления клетки, и, в отличии от анафазы А, данный процесс происходит за счёт сборки полюсных микротрубочек со стороны плюс-концов. Полимеризующиеся антипараллельные нити веретена при взаимодействии отчасти и создают расталкивающее полюса усилие. Величина относительного перемещения полюсов при этом, также как и степень перекрывания полюсных микротрубочек в экваториальной зоне клетки сильно варьирует у особей разных видов. Помимо расталкивающих сил, на полюса деления воздействуют тянущие силы со стороны астральных микротрубочек, которые создаются в результате взаимодействия с динеино-подобными белками на плазматической мембране клетки.

Последовательность, продолжительность и относительный вклад каждого из двух процессов, слагающих анафазу, могут быть крайне различны. Так в клетках млекопитающих анафаза В начинается сразу вслед за началом расхождения хроматид к противоположным полюсам и продолжается вплоть до удлинения митотического веретена в 1,5-2 раза по сравнению с метафазным. В некоторых других клетках анафаза В начинается только после того как хроматиды достигают полюсов деления. У некоторых простейших в процессе анафазы В веретено удлиняется в 15 раз по сравнению с метафазным. В растительных клетках анафаза В отсутствует.

Телофаза

Телофаза

Телофаза рассматривается как заключительная стадия митоза; за её начало принимается момент остановки разделённых сестринских хроматид у противоположных полюсов деления клетки. В ранней телофазе наблюдается деконденсация хромосом и, следовательно, увеличение их в объёме. Вблизи сгруппированных индивидуальных хромосом начинается слияние мембранных пузырьков, что дает начало реконструкции ядерной оболочки. Материалом для построения мембран новообразованных дочерних ядер служат фрагменты изначально распавшейся ядерной мембраны материнской клетки, а также элементы эндоплазматического ретикулума. При этом отдельные пузырьки связываются с поверхностью хромосом и сливаются воедино. Постепенно восстанавливается наружная и внутренняя ядерные мембраны, восстанавливаются ядерная ламина и ядерные поры. В процессе восстановления ядерной оболочки дискретные мембранные пузырьки, вероятно, соединяются с поверхностью хромосом без распознавания специфических последовательностей нуклеотидов, так как в результате проведенных экспериментов было выявлено, что восстановление ядерной мембраны происходит вокруг молекул ДНК, заимствованных у любого организма, даже у бактериального вируса. Внутри заново сформировавшихся клеточных ядер хроматин переходит в дисперсное состояние, возобновляется синтез РНК, и становятся различимыми ядрышки.

Параллельно с процессами образования ядер дочерних клеток в телофазе начинается и заканчивается разборка микротрубочек веретена деления. Деполимеризация протекает в направлении от полюсов деления к экваториальной плоскости клетки, от минус-концов к плюс-концам. При этом дольше всего сохраняются микротрубочки в средней части веретена деления, которые образуют остаточное тельце Флеминга.

Окончание телофазы преимущественно совпадает с разделением тела материнской клетки - цитокинезом. При этом образуются две или более дочерние клетки. Процессы, ведущие к разделению цитоплазмы, берут свое начало еще в середине анафазы и могут продолжаться после завершения телофазы. Митоз не всегда сопровождается разделением цитоплазмы, поэтому цитокинез не классифицируется в качестве отдельной фазы митотического деления и обычно рассматривается в составе телофазы.

Различают два основных типа цитокинеза: деление поперечной перетяжкой клетки и деление путём образования клеточной пластинки. Плоскость деления клетки детерминируется положением митотического веретена и проходит под прямым углом к длинной оси веретена.

При делении поперечной перетяжкой клетки место разделения цитоплазмы закладывается предварительно ещё в период анафазы, когда в плоскости метафазной пластинки под мембраной клетки возникает сократимое кольцо из актиновых и миозиновых филаментов. В дальнейшем, вследствие активности сократимого кольца, образуется борозда деления, которая постепенно углубляется вплоть до полного разделения клетки. По окончании цитокинеза сократимое кольцо полностью распадается, а плазматическая мембрана стягивается вокруг остаточного тельца Флеминга, состоящего из скопления остатков двух групп полюсных микротрубочек, тесно упакованных вместе с материалом плотного матрикса.

Деление путём образования клеточной пластинки начинается с перемещения мелких ограниченных мембраной пузырьков по направлению к экваториальной плоскости клетки. Здесь они сливаются, образуя дисковидную, окружённую мембраной структуру - раннюю клеточную пластинку. Мелкие пузырьки происходят в основном из аппарата Гольджи и перемещаются к экваториальной плоскости вдоль остаточных полюсных микротрубочек веретена деления, образующих цилиндрическую структуру, называемую фрагмопластом. По мере расширения клеточной пластинки микротрубочки раннего фрагмопласта попутно перемещаются к периферии клетки, где за счёт новых мембранных пузырьков продолжается рост клеточной пластинки вплоть до её окончательного слияния с мембраной материнской клетки. После окончательного разделения дочерних клеток в клеточной пластинке откладываются микрофибриллы целлюлозы, завершая образование жёсткой клеточной стенки.