Применение мэмс гироскопов и акселерометров для отслеживания движений тела человека. Мэмс акселерометры

Отслеживание движений тела человека - это задача, которая с переменным успехом решается уже не одну тысячу лет. Когда-то я читал историю об одном древнегреческом ораторе Демосфене, у которого была нехорошая привычка поднимать плечо до уха, если он нервничал. Чтобы избавиться от этого, во время ежедневных тренировок он вешал над плечом свой меч, который очень неприятно колол, если плечо поднималось. В итоге оратор стал настолько знаменитым, что про него даже есть статья в Википедии.

Другой хороший пример многие видели в фильмах про китайские боевые искусства. Например, кунг-фу панда сильно растопыривал локти во время выполнения приемов. Чтобы отследить этот момент он подкладывал лопухи в зону подмышек. Лопух падает - ученик получает нагоняй от мастера. Наверняка некоторым из нас родители обещали прикрутить палку к спине, если мы сутулились. Правда, эти угрозы никогда не выполнялись и поэтому действовали не очень убедительно.

Очень часто отслеживание движений требуется во время спортивных тренировок. Например, можно найти патент US3820783 , в котором описывается тренажерное устройство, которое одновременно направляет спортсмена и не дает ему двигаться неправильно.

Схема установки из патента US 3820783

Регистрация движения с помощью видеосъемки

В середине 70-х годов появились системы, которые обрабатывали видеозапись движений, сделанную с нескольких точек. В результате появлялась математическая модель того или иного движения. Если посмотреть видео о том, как снимался фильм «Властелин колец», можно увидеть интересные эпизоды съемок движений Горлума. Двигался на самом деле человек в специальном костюме, а потом с помощью умного математического аппарата и программного обеспечения получился симпатичный лысенький персонаж.

Видеофиксация движений имеет очевидные достоинства, но так как я хочу в этой статье описать альтернативное решение, то позволю себе немного покритиковать и приведу недостатки:

  • видеосъемку нужно вести с нескольких ракурсов;
  • зачастую требуется размещение маркеров на теле;
  • необходимо дорогостоящее аппаратное обеспечение (видеокамеры);
  • нужны хорошие вычислительные мощности и соответствующий программный продукт для преобразования видео в модель движения человека;
  • человек не может двигаться свободно на большие расстояния, иначе он неминуемо выйдет за пределы зоны видеосъемки;
  • кроме объекта измерения нужен коллектив специалистов, то есть записать движение тела на утренней пробежке рядовому пользователю наврядли удастся.
Измерение движений очень полезная штука не только в спорте. Применяется она также в промышленном проектировании - при разработке автомобилей, конвейеров, швейных машинок и многого другого. Такие системы уже существуют, например у фирмы Siemens - Jack (Human Simulation and Ergonomics). Как узнать, будет ли удобно водителю наживать кнопку включения кондиционера в проектируемом автомобиле? Можно, конечно, изготовить автомобиль, посадить человека и проверить. Но гораздо проще посадить виртуального человека в виртуальный автомобиль. Виртуальный автомобиль уже есть, так как все современные чертежные системы предусматривают разработку 3D моделей. Осталось только привязать движения модели человека к движениям его реального прототипа. Это можно сделать с помощью все той же видеофиксации движений или с помощью способа, о котором речь пойдет ниже.

Умная одежда

В этой статье хочу рассказать от том, как было бы замечательно, если бы можно было измерять движения, не ограничивая себя рамками съемочной площадки. Например, если бы измерительные функции были встроены в одежду. Вы ходите, бегаете, прыгаете, а одежда все записывает и потом воспроизводит ваши движения на экране смартфона, дает рекомендации и подсказывает, как бегать и не травмировать колени, сидеть и не сутулится, как правильно и без травм крутить педали на велосипеде.

Оказывается, наука и техника уже предоставляют такие возможности. Конечно, речь пока не идет об умной повседневной одежде, но уже есть специальные костюмы, состоящие из носимых датчиков, которые на весьма неплохом уровне записывают движения тела. Такие костюмы делает фирма XSENS . Стоят они недешево, но по мере того как в каждой семье появляются десятки единиц вычислительной техники, дешевеют микросхемы и все больше становится интеллектуальных портативных систем. Мы семимильными шагами идем к светлому будущему. Не вдаваясь глубоко в технические подробности попробую рассказать, как же происходит запись движений, опишу работу и принцип действия основных узлов системы измерения движений на основе электронно-механических датчиков.

МЭМС

По мере развития микроэлектроники появляются различные миниатюрные датчики. Отдельная группа таких датчиков называется МЭМС – микро электромеханические сенсоры. Для измерения движений применяются датчики ускорения – акселерометры и датчики угловой скорости – гироскопы. Акселерометр представляет собой миниатюрный чувствительный элемент изменяющий свои свойства под действием ускорения. Это может быть пьезоэлектрический сенсор или элемент переменной емкости – конденсатор с подвижной обкладкой. Пьезоэлектрический сенсор вырабатывает небольшое напряжение на своих электродах, которое может быть измерено и пересчитано в ускорение. Похожим образом обстоят дела с емкостью переменного конденсатора.

МЭМС гироскоп чаще всего использует в конструкции действие силы Кориолиса, которая отклоняет вибрирующую пластинку, величина отклонения регистрируется и преобразуется в угловую скорость.

Как мы знаем из курса физики и математики, любой вектор может быть разложен на составляющие вектора. Так, например, ускорение и скорость раскладываются на взаимно-перпендикулярные составляющие: X, Y, Z. Чувствительные элементы МЭМС измеряют ускорение и скорость отдельно вдоль каждого из этих векторов.

Важно отметить, что сейчас встречаются микросхемы, которые содержат в себе сразу несколько МЭМС датчиков.

Например, микросхема МЭМС акселерометра производит измерение ускорения сразу по трем осям x, y, z. Это же касается и микросхем гироскопов, которые могут измерять угловую скорость сразу по всем трем осям. Встречаются даже микросхемы, которые одновременно измеряют и ускорение и скорость. Такие датчики называют шестикоординатными.

МЭМС - контроллер
МЭМС датчики, как правило, оснащаются встроенным контроллером, который производит расчет ускорения или угловой скорости, обеспечивает цифровую фильтрацию и конфигурирование микросхемы.

Данные внутри контроллера хранятся в специальных ячейках памяти, называемых регистрами. Они представлены в формате integer со знаком. Единица измерения, как правило, g [ускорение свободного падения – 9,8 м/c2] для акселерометров и рад/с [радиан в секунду] для гироскопов. Описание формата данных, адреса регистров, единицы измерения, диапазоны измерения и другие параметры всегда приведены в документации на соответствующую микросхему.

Также контроллер обеспечивает связь МЭМС датчика с внешним миром по одному из распространенных интерфейсов. Как правило, это SPI или I2C. SPI - это интерфейс с двумя линиями данных и одной линией тактирования. I2C - это интерфейс с одной линией данных и одной линией тактирования. Нам в принципе нужно знать только, что передавать данные от МЭМС датчика легко и приятно, для этого есть стандартизованные распространённые интерфейсы и готовые библиотеки.

Компьютер, планшет или смартфон не имеют доступных для пользователя интерфейсов SPI или I2C, поэтому, чтобы подключить датчик к ним, необходимо еще какое-нибудь согласующее устройство. Это может быть, например, микроконтроллер, соединенный с радиопередатчиком стандарта Bluetooth. На буферный микроконтроллер, как правило, возлагаются обязанности по предварительной обработке данных, для того чтобы снизить нагрузку на канал связи.

Вообще говоря, выбор канала связи - это отдельная большая задача. Конечно, этот канал желательно должен быть беспроводным, но какую из беспроводных технологий выбрать? Стандарты связи диапазона 2,4ГГц, такие как Bluetooth или WiFi, хороши тем, что поддерживаются большинством пользовательских устройств. Но с другой стороны они ограничивают дальность связи из-за малой длины волны. Конечно, есть радиомодули Bluetooth с заявленной дальностью около километра, но не будем обольщаться, ведь законы физики никто не отменял, и такую дальность можно получить только при условиях прямой видимости и достаточной высоты датчики над поверхностью земли. Важно определиться с моделью измерения и обработки данных. Одно дело, когда все вычисления производятся на смартфоне, который лежит в кармане у человека, и совсем другое дело, когда вычислительная машина стоит на расстоянии десятков метров на столе у тренера/оператора. Это больше вопрос маркетинга и выбора целевой аудитории комплекса измерения движений. Отмечу только, что в любом случае задача передать данные по назначению может быть решена и для этого есть специализированные аппаратно - программные решения.

Модель тела человека
Пусть данные все-таки дошли по назначению и начинается их обработка. Для проведения расчетов и визуализации движений нам просто необходима математическая модель тела человека. Такая модель должна безусловно учитывать различные длины рук, ног, обхваты талии, груди, то есть различные антропометрические особенности людей. Возможно, такая модель должна также учитывать внутреннее строение организма. Чем сложнее модель, тем труднее, дороже и дольше ее создание. Я лично считаю что модель должна содержать только те элементы, на которые можно надеть чувствительный элемент. То есть если речь идет о руке, то целесообразно составлять ее модель из следующих частей:
  • плечо;
  • предплечье;
  • кисть;
  • пальцы;
Строить модель с учетом всего множества косточек, мышц и сухожилий нецелесообразно. В качестве простейшей модели одной части тела может выступить конус. Это простая геометрическая фигура, которую без проблем можно реализовать в любой графической среде и которая не потребует много ресурсов, что особенно актуально для мобильных платформ. Собственно, объемная форма конуса используется для визуализации модели, а вектор, совпадающий с продольной осью симметрии, используется для различных расчетов. Различные длины нижней и верхней окружностей конуса легко моделируют отличия в диаметрах, например, бедра сверху и в районе колена.


Конус, как элемент модели тела человека


Полная модель тела человека составленная из конусов

Согласитесь, что модель выглядит довольно узнаваемо. Эта модель была построена в среде Microsoft XNA, для отрисовки конуса использованы библиотеки Primitives3D , найденные на просторах интернета. Для расстановки элементов модели используется математический аппарат матричных вычислений среды XNA.

Немного о вычислениях
Пространство, в котором расположена модель, называется мировым пространством. Чтобы перемещать элементы модели в мировом пространстве необходимо составлять матрицы перемещения, чтобы поворачивать необходимы матрицы поворота. Вообще говоря, это одни и те же матрицы, только для различных целей в них используются различные ячейки.


Структура матрицы в среде XNA

Элементы, выделенные красным цветом, отвечают за поворот, элементы выделенные синим за перемещение, а черные элементы нужны для соблюдения размерности 4х4. Чтобы создать матрицу перемещения, используется метод:

Matrix.CreateTranslation(vector3)
Который в качестве параметра принимает радиус-вектор требуемого положения точки. Чтобы разместить все элементы тела, нужно для каждого из них составить матрицу перемещения, назовем такую матрицу fBaseWorldi.

Все, что касается движения 3D моделей, прекрасно известно разработчикам компьютерных игр и другим специалистам, работающим в области компьютерной 3D графики.

Мы же перейдем к самому интересному, а именно как же связать измерения угловой скорости и ускорения с положением модели на экране. Положение тела в пространстве может быть задано с помощью углов Эйлера, матриц перемещения и поворота, или с помощью кватернионов. Немало копий сломано в спорах о том, какой же из способов выбрать. Я пользуюсь представлением положения в виде . От одного способа к другому легко можно перейти с помощью известных математических преобразований.

Кватернион - это набор из четырех чисел, задающих в пространстве ось, вокруг которой нужно повернуть тело и угол поворота. Кватернион записывается в виде:

Q = ,
где W – это косинус половинного угла поворота; X,Y,Z – координаты оси поворота.

Кватернион предпочтительнее матриц поворота, так как матрица содержит 16 чисел, а кватернион только 4, что очевидно экономит время передачи данных и не так сильно загружает канал связи.

Внимательный читатель справедливо может возразить, что кватернион позволяет описать только вращательное движение, а как же быть с поступательным? Дело в том, что предлагаемый метод предназначен для регистрации движений без привязки к окружающей местности. А все движения человека можно построить за счет одних только вращений.

Действительно, наше тело практически не подвержено чистым (без вращения) растяжениям и сжатиям. Например, чтобы линейно переместить кисть вперед или назад, вверх или вниз, придется совершить вращательное движения предплечья в локтевом суставе или плеча в плечевом.

Осталось дело за малым, преобразовать ускорение и угловую скорость в кватернионы. Математический аппарат, который производит такие преобразования составляет святую святых фирм производящих системы измерения движений. Этот аппарат в целом известен, в интернете можно найти даже исходные коды (), но как обычно все сложности кроются в деталях. Поэтому не удивляйтесь, если измерения движения будут содержать ошибки положения. Это связано с ошибками в показаниях датчиков, которые интегрируются и значительно влияют на результат. Также свою долю неточностей вносят ошибки расположения датчиков на теле человека. Неплохое решение предоставляет фирма производитель МЭМС-чипов Invensense, они производят микросхемы, в которые можно загрузить ими же поставляемую библиотеку производящую вычисления. В ранних версиях библиотека представляла собой коды, написанные на С, которые выполнялись на стороннем микроконтроллере. Теперь библиотека – это массив шестнадцатеричных чисел, которые нужно загрузить в микросхему МЭМС после подачи на нее питания. Подобное решение предоставляют и другие фирмы, например Microchip .

После того, как мы рассчитали положение части тела и выразили его в виде кватерниона, необходимо из показаний, относящихся к отдельным частям тела, составить общую модель. Тут-то и пригодится среда XNA и код Primitives3D. Используемая библиотека Primitives3D для перемещения или поворота использует данные в матричном представлении. Поэтому чтобы преобразовать полученные от датчиков кватернионы необходимо воспользоваться встроенной в XNA функцией:

Matrix.CreateFromQuaternion(qi)
где qi – это кватернион от датчика.

Затем нужно обязательно перенести повернутую часть тела из начала координат в соответствующую точку, где она должна находится, предплечье например «крепится» к локтю. Хотя вы уже видели на картинке полностью «собранное» тело, чтобы оно всегда было в правильном положении после прихода каждого нового кватерниона положение тела нужно рассчитывать заново. Это связано с тем, что библиотека расчета кватернионов выдает кватернион, который связывает положение тела в нулевой момент времени с текущим моментом. Чтобы произвести перенос части тела нужно всего лишь перемножить две матрицы:

Matrix.CreateFromQuaternion(qi)* fBaseWorldi

Матрица fBaseWorldi постоянно корректируется, потому что если переместилось плечо, то соответственно переместится и локоть. Поэтому в программе после прихода кватерниона для какой-либо части тела следует произвести расчет матриц fBaseWorldi для всех других связанных с нею частей тела. <

На видео записано движение человека, полученное с использованием семи датчиков, по три датчика на каждой руке и один на туловище в районе поясницы.

Теперь, когда мы получили запись движений тела, можно на основании этих данных произвести расчеты различных интересных величин. Например, помочь Демосфену и прикрепить к его плечу датчик, который будет контролировать правильное положение и выдавать какой-либо сигнал при отклонении от этого положения, точно также если запустить приложение на смартфоне, а несколько датчиков разместить на спине у ребенка, то это поможет ему контролировать свою осанку. А сколько еще разных полезных применений для МЭМС датчиков.
гироскоп

  • акселерометр
  • Добавить метки

    Исследование группы ученых из Мичиганского университета и Университета Южной Каролины ставит под сомнение давнее убеждение о том, что программное обеспечение может автоматически доверять аппаратным датчикам, которые поставляют автономным системам информацию, необходимую для принятия решений.

    Согласно результатам научной работы, звуковые волны можно использовать для взлома важных датчиков в широком спектре технологических устройств, включая смартфоны, автомобили, медицинскую технику и Интернет вещей.

    В этом исследовании изучались инерциальные датчики – емкостные МЭМС-акселерометры, измеряющие изменение скорости объекта в трех измерениях. Команда исследователей использовала точно настроенные акустические сигналы, чтобы обмануть 20 различных моделей акселерометров, регистрирующих движения. Такой подход позволил обнаружить бэкдор, с помощью которого можно было управлять другими элементами системы.


    Основы физики аппаратных средств позволили ученым обмануть датчики и заставить их передавать ложную информацию в микропроцессор. Емкостные МЭМС-акселерометры для измерения ускорения регистрируют отклонение инерционной массы. При воздействии силы инерционная масса изменяется, вызывая изменение емкости, которое преобразуется в аналоговый сигнал.

    Воздействие звукового давления на чувствительную пружинно-массовую систему может сместить ее, тем самым создавая ложные сигналы ускорения. Эти поддельные сигналы ускорения коррелируют с сигналом акустических помех.

    Важно отметить, что резонансная частота пружинно-массовой системы – характеристика того, как она спроектированна на физическом уровне, и для успешного обмана частота акустических помех должна ей соответствовать.

    Исследователи провели несколько показательных демонстраций: аудиосигнал из простого динамика за $5 заставил браслет Fitbit показывать тысячи фальшивых шагов. В другом случае включали на смартфоне вредоносный музыкальный файл, и динамик управлял акселерометром другого смартфона, на котором приложение Android «крутило баранку» игрушечного автомобиля. Еще одна музыкальная дорожка вывела из строя акселерометр Samsung Galaxy S5, который вместо графика показаний выводил слово WALNUT (грецкий орех).

    Команда исследователей также отмечает, что нарушить поведение акселерометра можно даже в сочетании с видео и музыкой, которые автоматически воспроизводятся с сайтов, вложений электронной почты, получением уведомлений и прочим.


    МЭМС-акселерометры уже установлены в тысячи устройств и бытовых приборов. Автономные системы, такие как беспилотные летательные аппараты и автопилоты автомобилей, принимают решения на основе того, что подсказывают их датчики. Если автономные системы не смогут доверять своим чувствам-датчикам, то безопасность и надежность их находится под угрозой. В случае, когда система или устройство использует уязвимый датчик МЭМС для принятия решений, злоумышленники могут использовать их в качестве вектора атаки.

    Чтобы добиться такого эффекта, исследователи определили резонансные частоты 20 различных акселерометров пяти производителей. В своих экспериментах они не использовали шумы ниже 110 дБ, но отмечают, что более низкие амплитуды могут также негативно повлиять на различные датчики.

    Другие датчики МЭМС, включая гироскопы, также потенциально восприимчивы к звуковой атаке. В ходе своих экспериментов ученые обнаружили дополнительные уязвимости. Так, например, при разработке цифровых низкочастотных фильтров, которые отсеивают самые высокие частоты, а также усилителей, не учитывались проблемы безопасности.

    Чтобы защитить датчики от звуковой атаки, необходимо использовать сочетание различных методов, однако существует два основных подхода:

    1. Располагать МЭМС-датчики таким образом, чтобы ограничить воздействие звуковых помех. Например, окружить его звукоизоляционным материалом.
    2. Развернуть алгоритмы обработки данных, отклоняющих аномально ускоряющиеся сигналы, особенно с частотами, близкими к резонансной частоте датчика МЭМС.
    Кроме того, исследователи разработали несколько программных решений, которые могли бы минимизировать уязвимости, и сообщили об этом производителям.

    Руководитель исследовательской группы и ведущий автор исследования Кевин Фу (Kevin Fu) ранее занимался исследованием рисков кибербезопасности медицинской техники, в том числе потенциальной угрозы передачи смертельных сердечных ритмов в кардиостимулятор по беспроводной сети.

    По его словам, на проведение исследования, направленного на изучение влияния акустических сигналов на технику, их вдохновил случай, когда с помощью музыки были выведены из строя квадрокоптеры. Он добавил, что более ранние работы ученых продемонстрировали успешность DoS-атак, в которых звук используется для отключения акселерометров.

    Это не единственное исследование, где безопасность использования акселерометров ставится под сомнение. В 2014 году исследователи в области безопасности из Стэнфордского университета продемонстрировали , как датчик может скрытно использоваться в качестве примитивного микрофона. Еще раньше, в 2011 году, группа из Массачусетского технологического института и Технологического института Джорджии показала , как с помощью акселерометра в смартфоне можно расшифровать примерно 80% всех слов, набранных на клавиатуре компьютера.

    Изобретение относится к области приборостроения инерциальных навигационных систем и может использоваться для определения текущих координат объекта и его угловой ориентации. Технический результат - повышение точности определения угловой ориентации объекта и его координат. Для достижения данного результата увеличивают число используемых акселерометров (с 6-ти до 12-ти). При этом взаимное расположение и ориентация их чувствительных осей обеспечивают измерение всех базовых навигационных параметров. Выделение из измеренных данных базовых параметров, составляющих угловой скорости, обеспечивает определение угловой ориентации объекта на основе однократного интегрирования показаний акселерометров. Предложенная система обеспечивает снижение скорости роста погрешностей определения угловой ориентации и координат объекта. 1 ил., 2 табл.

    Рисунки к патенту РФ 2483279

    Область техники

    Изобретение относится к области инерциальной навигации и может использоваться для определения текущих координат объекта и его угловой ориентации. Устройство может применяться как автономно, так и в сочетании со спутниковыми радионавигационными системи GPS и ГЛОНАСС.

    Уровень техники

    Известно устройство, описанное в патенте США 2010/0268414 . Данное устройство предназначено для оценки угловой скорости мобильного объекта.

    Известно устройство, описанное в патенте США 2010/0114517 . Данное устройство предназначено для определения пространственной ориентации объекта.

    К недостаткам данных устройств относится невысокая точность определения пространственной ориентации объекта на основе показаний акселерометров.

    Наиболее близким аналогом предлагаемого изобретения и принятым в качестве прототипа является устройство, описанное в работе , которое включает модуль из шести акселерометров, блок расчета составляющих углового ускорения, интегрирующий блок, блок расчета коэффициентов матрицы координатных преобразований, блок расчета ускорений в связанной системе координат, блок расчета ускорений в Земной системе координат, блок расчета навигационных параметров.

    При этом модуль из шести акселерометров содержит одноосные акселерометры, координаты которых в подвижной системе координат и ориентация их чувствительных осей заданы следующим образом:

    где r - расстояние от точки установки акселерометра до центра подвижной системы координат.

    Определение навигационных параметров объекта (координат и скорости) в текущий момент времени с помощью данного устройства выполняется следующим образом. Блок расчета составляющих углового ускорения определяет величины углового ускорения объекта на основе показаний шести акселерометров. Интегрирующий блок определяет значения угловой скорости путем интегрирования значений углового ускорения. Блок расчета коэффициентов матрицы координатных преобразований выполняет определение угловой ориентации объекта на основе значений угловой скорости. Блок расчета ускорений в связанной системе координат выполняет расчет данных ускорений на основе значений составляющих угловой скорости и данных, снимаемых с акселерометров. Блок расчета ускорений в Земной системе координат определяет данные ускорения путем компенсации вектора гравитации из значений «кажущегося» ускорения. Блок расчета навигационных параметров осуществляет расчет скорости и координат объекта путем однократного и 2-кратного интегрирования ускорений в Земной системе координат.

    Недостатком прототипа является невысокая точность определения угловой ориентации объекта. Это обусловлено тем, что для определения угловой ориентации необходимо двойное интегрирование углового ускорения, определяемого на основе показаний акселерометров. При этом происходит двойное интегрирование низкочастотного шума акселерометров. Поскольку низкочастотная составляющая практически является детерминированной величиной, то это ведет к тому, что погрешность определения угловой ориентации имеет монотонный рост и зависит от времени как ~t 2 . Т.к. координаты объекта определяются на основе последующего двойного интегрирования значений угловой ориентации, то погрешность определения координат монотонно возрастает и оценивается как ~t 4 .

    Раскрытие изобретения

    Задачей предлагаемого изобретения является повышение точности определения угловой ориентации объекта за счет перехода от двухкратного к однократному интегрированию показаний акселерометров. Техническим результатом, позволяющим выполнить поставленную задачу, является снижение кратности интегрирования показаний акселерометров и уменьшение скорости роста погрешностей определения угловой ориентации и координат объекта.

    Сутью данного изобретения является определение угловой скорости объекта на основе «прямых» показаний акселерометров, т.е. без выполнения процедуры интегрирования. В этом случае при определении угловой ориентации будет использоваться однократное интегрирование показаний акселерометров, что приведет к уменьшению роста погрешности до величины ~t. Для выполнения данного условия предлагается определять базовые навигационные переменные на основе показаний акселерометров (A accel,j), где j - номер акселерометра. В общем случае, имеется 12 базовых навигационных переменных

    где F X , F Y , F Z - составляющие «кажущегося» ускорения, - составляющие углового ускорения, W X , W Y , X Z - составляющие угловой скорости. Выражение, связывающее значения акселерометров (A accel,j) и базовых навигационных переменных (), имеет следующий вид:

    A accel,j =Q j · , где

    При этом матрица Q полностью определяется параметрами установки акселерометров: координатами акселерометров (R accel,j) и ориентацией их чувствительных осей ( accel,j). Значения может быть определено на основе решения системы линейных уравнений:

    Поскольку имеется 12 базовых навигационных переменных (), то для их однозначного выделения на основе решения системы уравнений (2) предлагается использовать показания 12-ти акселерометров. При этом взаимное расположение акселерометров и ориентация их чувствительных осей выбираются из следующих условий:

    Отсутствие вырожденности матрицы Q;

    Максимизация значения детерминанта матрицы Q для снижения величины погрешности вычисления значения , поскольку в выражении (2) используется Q -1 .

    Таким образом, увеличение числа акселерометров с 6-ти до 12-ти в предлагаемом изобретении, а также соответствующий выбор координат установки акселерометров и взаимной ориентации их чувствительных осей обеспечивают однозначное решение системы уравнений (2). При этом на основе показаний 12-ти акселерометров осуществляется расчет базовых навигационных параметров, из которых выделяются соответствующие составляющие угловой скорости. Однократное интегрирование составляющих угловой скорости обеспечивает более точное (по сравнению с прототипом) определение угловой ориентации объекта, задаваемое матрицей координатных преобразований.

    Краткое описание чертежей

    На фигуре представлена структурная схема безгироскопной инерциальной навигационной системы, состоящей из блоков:

    1 - модуль первых шести акселерометров;

    2 - блок расчета коэффициентов матрицы координатных преобразований;

    3 - блок расчета ускорений в связанной системе координат;

    4 - блок расчета ускорений в Земной системе координат;

    5 - блок расчета навигационных параметров;

    6 - модуль вторых шести акселерометров;

    7 - блок расчета базовых навигационных переменных;

    8 - блок расчета составляющих угловой скорости.

    Осуществление изобретения

    Безгироскопная инерциальная навигационная система, содержащая распределенное множество акселерометров, состоит из модуля акселерометров (1), блока расчета коэффициентов матрицы координатных преобразований (2), блока расчета ускорений в связанной системе координат (3), блока расчета ускорений в Земной системе координат (4), блока расчета навигационных параметров (5), при этом первые шесть акселерометров имеют координаты

    в связанной системе координат, где r - расстояние от точки установки акселерометра до центра системы координат.

    Для обеспечения повышенной точности определения угловой ориентации объекта, а так же навигационных параметров: скорости и координат объекта, в устройство введены:

    Модуль вторых шести акселерометров (6);

    Блок расчета базовых навигационных переменных (7);

    Блок расчета составляющих угловой скорости (8).

    При этом ориентация чувствительных осей акселерометров (), расположенных в модуле первых шести акселерометров (1), задана в связанной системе координат как

    акселерометры, расположенные в модуле вторых шести акселерометров (6), имеют координаты

    в связанной системе координат, а ориентация их чувствительных осей задана в связанной системе координат как

    Модуль вторых шести акселерометров (6) в сочетании с модулем первых шести акселерометров обеспечивает возможность выделения базовых навигационных переменных: , которые содержат составляющие угловой скорости объекта.

    Блок расчета базовых навигационных переменных (7) предназначен для определения данных составляющих () на основе показаний акселерометров.

    Блок расчета составляющих угловой скорости (8) предназначен для расчета данных составляющих на основе базовых навигационных переменных.

    Блоки (7) и (8) могут быть реализованы как аппаратно, так и программно.

    Связи между устройствами осуществляются следующим образом:

    Выходы модуля первых шести акселерометров (1) и модуля вторых шести акселерометров (6) подсоединены ко входам блока расчета базовых навигационных переменных (7) и блока расчета ускорений в связанной системе координат (3);

    Выход блока базовых навигационных переменных (7) подсоединен ко входу блока расчета ускорений в связанной системе координат (3) и ко входу блока расчета составляющих угловой скорости (8);

    Выход блока расчета составляющих угловой скорости (8) подсоединен во входу блока расчета коэффициентов матрицы координатных преобразований (2);

    Выход блока расчета коэффициентов матрицы координатных преобразований (2) подключен ко входу блока расчета ускорений в Земной системе координат (4);

    Выход блока расчета ускорений в связанной системе координат (3) подключен ко входу блока расчета ускорений в Земной системе координат (4);

    Выход блока расчета ускорений в Земной системе координат (4) подключен ко входу блока расчета навигационных параметров (5).

    Пример конкретной реализации.

    Проведенное моделирование показало, что максимальное значение детерминанта матрицы Q, обеспечивающее минимизацию погрешности определения базовых навигационных параметров, выполняется при задании координат установки акселерометров и ориентации их чувствительных осей, представленных ниже в таблицах 1, 2.

    Таблица 1
    Координаты установки акселерометров
    R accel Acc 1 Acc 2 Асс 3 Acc 4 Acc 5 Acc 6 Acc 7 Acc 8 Acc 9 Acc 10 Acc 11 Acc 12
    X 0 0 r r 0 0 -r -r 0 0 0 0
    Y r r 0 0 -r -r 0 0 0 0 0 0
    Z 0 0 0 0 0 0 0 0 -r -r r r
    Таблица 2
    Ориентация чувствительных осей акселерометров
    accel Acc 1 Acc 2 Асс 3 Acc 4 Acc 5 Acc 6 Acc 7 Acc 8 Acc 9 Acc 10 Acc 11 Acc 12
    Х 0 0 0 -1 -1 0 0 1 1 0 0 0
    Y 0 -1 0 0 0 1 -1 0 0 0 1 0
    Z 1 0 -1 0 0 0 0 0 0 1 0 -1

    Определение навигационных параметров объекта (координат и скорости ) в текущий момент времени (t i) с помощью предлагаемого устройства выполняется следующим образом:

    Показания акселерометра могут быть определены как:

    где F - «кажущееся» ускорение объекта в подвижной системе координат; R j - координаты установки акселерометра (см. табл.1); accel,j - ориентация чувствительных осей акселерометров (см. табл.2); W - угловая скорость объекта.

    На основе 12-ти акселерометров базовые навигационные параметры определяются как =Q -1 ·F accel .

    Блок расчета базовых навигационных переменных (3) обеспечивает вычисление:

    где - элементы матрицы (обратной Q j), det(Q) - детерминант матрицы Q.

    Блок расчета составляющих угловой скорости (4) выполняет следующее преобразование на основе полученных составляющих базовых навигационных параметров:

    Проведем оценку погрешности определения угловой ориентации и расчета координат объекта. Поскольку угловая ориентация определяется на основе однократного интегрирования показаний акселерометров, то это ведет к тому, что погрешность определения угловой ориентации оценивается как ~t. Т.к. координаты определяются на основе последующего двойного интегрирования значений угловой ориентации, то погрешность определения координат так же имеет монотонный рост и оценивается уже как ~t 3 .

    Сравнение оценок роста погрешностей для прототипа и предложенного устройства показало, что предложенное устройство имеет выигрыш по точностным характеристикам определения навигационных параметров за счет уменьшения скорости роста погрешностей: если для прототипа вклад в погрешность ориентации и координат от низкочастотных шумов акселерометров составляет ~t 2 ~t 4 , соответственно, то аналогичные оценки для прототипа выглядят как ~t и ~t 3 , соответственно.

    Применение данного изобретения дает возможность повысить точность определения угловой ориентации объекта, а так же точность определения его навигационных параметров (координат и скорости).

    Источники информации

    1. Патент США 2010/0268414, G06F 7/00 20060101, G06F 007/00.

    2. Патент США 2010/0114517, 702/92; 702/153.

    3. Chao-Yu Hung, Chun-Min Fang, and Sou-Chen Lee "A Compensator to Advance Gyro-Free INS Precision", International Journal of Control, Automation, and Systems, vol.4, no.3, p.351-358, June 2006.

    ФОРМУЛА ИЗОБРЕТЕНИЯ

    Безгироскопная инерциальная навигационная система, содержащая распределенное множество акселерометров, а именно модуль акселерометров, блок расчета коэффициентов матрицы координатных преобразований, блок расчета ускорений в связанной системе координат, блок расчета ускорений в земной системе координат, блок расчета навигационных параметров, при этом первые шесть акселерометров имеют координаты в связанной системе координат,

    где r - расстояние от точки установки акселерометра до центра системы координат, при этом выход модуля этих акселерометров подключен во входу блока расчета ускорений в связанной системе координат, выход блока расчета коэффициентов матрицы координатных преобразований подключен ко входу блока расчета ускорений в земной системе координат, выход блока расчета ускорений в связанной системе координат подключен ко входу блока расчета ускорений в земной системе координат, выход блока расчета ускорений в земной системе координат подключен ко входу блока расчета навигационных параметров, отличающаяся тем, что в состав системы введены модуль вторых шести акселерометров, блок расчета базовых навигационных переменных, блок расчета составляющих угловой скорости, при этом ориентация чувствительных осей акселерометров (), расположенных в модуле первых шести акселерометров, задана в связанной системе координат как акселерометры, расположенные в модуле вторых шести акселерометров, имеют координаты в связанной системе координат, а ориентация их чувствительных осей задана в связанной системе координат как при этом выход модуля вторых шести акселерометров соединен со входами блока расчета базовых навигационных переменных и блока расчета ускорений в связанной системе координат, выход модуля первых шести акселерометров соединен со входом блока расчета базовых навигационных переменных, выход блока расчета базовых навигационных переменных соединен со входами блока расчета ускорений в связанной системе координат и блока расчета составляющих угловой скорости, а выход блока расчета составляющих угловой скорости соединен со входом блока расчета коэффициентов матрицы координатных преобразований.

    МЭМС АКСЕЛЕРОМЕТРЫ

    Акселерометр (ускоряю + измеряю) - прибор, измеряющий разность между истинным ускорением объекта и гравитационным ускорением.

    Схема простейшего акселерометра показана на рис.1. Груз (Масса ) закреплён на пружине. Демпфер подавляет колебания груза. Чем больше истинное ускорение, тем сильнее деформируется пружина, изменяя показания прибора.

    Рис.1 Схема простейшего акселерометра

    Реализация выходного сигнала и принципа измерения обеспечивается преобразователями перемещении, дефор­мации, сил и электроникой. Конструктив­ный узел, включающий в себя ИнМ и под­вес с элементами крепления, можно опре­делить как чувствительный элемент (ЧЭ) акселерометра. Чувствительный элемент является основным конструктивным узлом акселерометра.

    По виду движений инерци­онной массы акселеромет­ры делятся на осевые и маятниковые . В осевых акселерометрах конструкция уп­ругого подвеса обеспечивает прямоли­нейное перемещение инерци­онной массы, а в маятниковых - угловое. Маятниковые акселерометры называют также угловыми , а иногда - балочными .

    У акселерометра выделяют ось чув­ствительности и перпендикулярные к ней поперечные оси. Ось чувствительности - это ось, в направлении которой возможно перемещение ИнМ, обусловленное конст­рукцией подвеса. Акселерометры, с одной осью чувствительности называют одно- компонентными . В одном корпусе могут быть установлены ЧЭ с разным направле­нием осей чувствительности (двух- и трехкомпонентные акселерометры).

    С помощью акселеро­метров возможно измерение линейного и углового ускорения. По виду измеряемого ускорения различают линейные к угловые акселерометры.

    В линейных акселерометрах ось чув­ствительности параллельна вектору изме­ряемого ускорения. В акселерометрах для измерения углового ускорения она долж­на быть параллельна вектору линейного ускорения, являющегося следствием уг­лового ускорения.

    По принципу измерения акселеро­метры делятся на:

    Приборы прямого измерения/преобразо­вания;

    Приборы компенсационного измерения/преобразо­вания.

    Чувствительные элементы приборов прямого измерения непосредственно переда­ют информацию о действующем на него ускорении в виде перемещений ИнМ или деформаций упругих элементов подвеса на вторичный преобразователь (переме­щений или деформаций). В этом случае все погрешности измерительной цепи присутствуют в выходном сигнале аксе­лерометра.

    В акселерометрах компенсационного измерения сила, вызванная измеряемым ускорением и действующая на ИнМ, час­тично или полностью (интегратор в кон­туре) уравновешивается с помощью цепи отрицательной обратной связи, реали­зующей силовую разгрузку (компенса­цию) ЧЭ посредством выходного сигнала, поступающего на устройство компенса­ции (преобразователи силы, момента). В этом случае точность измерительной цепи зависит в основном от преобразователя силы (момента).

    В условиях невесомости показания любого акселерометра равны нулю (почему?). Все системы, использующие акселерометр как датчик наклона, прекращают функционировать. Например, планшетный компьютер не изменяет положение изображения при повороте корпуса.

    17 марта 2017 в 18:56

    Исследование: звуковая атака на акселерометры подменяет показания

    • Информационная безопасность

    Исследование группы ученых из Мичиганского университета и Университета Южной Каролины ставит под сомнение давнее убеждение о том, что программное обеспечение может автоматически доверять аппаратным датчикам, которые поставляют автономным системам информацию, необходимую для принятия решений.

    Согласно результатам научной работы, звуковые волны можно использовать для взлома важных датчиков в широком спектре технологических устройств, включая смартфоны, автомобили, медицинскую технику и Интернет вещей.

    В этом исследовании изучались инерциальные датчики – емкостные МЭМС-акселерометры, измеряющие изменение скорости объекта в трех измерениях. Команда исследователей использовала точно настроенные акустические сигналы, чтобы обмануть 20 различных моделей акселерометров, регистрирующих движения. Такой подход позволил обнаружить бэкдор, с помощью которого можно было управлять другими элементами системы.


    Основы физики аппаратных средств позволили ученым обмануть датчики и заставить их передавать ложную информацию в микропроцессор. Емкостные МЭМС-акселерометры для измерения ускорения регистрируют отклонение инерционной массы. При воздействии силы инерционная масса изменяется, вызывая изменение емкости, которое преобразуется в аналоговый сигнал.

    Воздействие звукового давления на чувствительную пружинно-массовую систему может сместить ее, тем самым создавая ложные сигналы ускорения. Эти поддельные сигналы ускорения коррелируют с сигналом акустических помех.

    Важно отметить, что резонансная частота пружинно-массовой системы – характеристика того, как она спроектированна на физическом уровне, и для успешного обмана частота акустических помех должна ей соответствовать.

    Исследователи провели несколько показательных демонстраций: аудиосигнал из простого динамика за $5 заставил браслет Fitbit показывать тысячи фальшивых шагов. В другом случае включали на смартфоне вредоносный музыкальный файл, и динамик управлял акселерометром другого смартфона, на котором приложение Android «крутило баранку» игрушечного автомобиля. Еще одна музыкальная дорожка вывела из строя акселерометр Samsung Galaxy S5, который вместо графика показаний выводил слово WALNUT (грецкий орех).

    Команда исследователей также отмечает, что нарушить поведение акселерометра можно даже в сочетании с видео и музыкой, которые автоматически воспроизводятся с сайтов, вложений электронной почты, получением уведомлений и прочим.


    МЭМС-акселерометры уже установлены в тысячи устройств и бытовых приборов. Автономные системы, такие как беспилотные летательные аппараты и автопилоты автомобилей, принимают решения на основе того, что подсказывают их датчики. Если автономные системы не смогут доверять своим чувствам-датчикам, то безопасность и надежность их находится под угрозой. В случае, когда система или устройство использует уязвимый датчик МЭМС для принятия решений, злоумышленники могут использовать их в качестве вектора атаки.

    Чтобы добиться такого эффекта, исследователи определили резонансные частоты 20 различных акселерометров пяти производителей. В своих экспериментах они не использовали шумы ниже 110 дБ, но отмечают, что более низкие амплитуды могут также негативно повлиять на различные датчики.

    Другие датчики МЭМС, включая гироскопы, также потенциально восприимчивы к звуковой атаке. В ходе своих экспериментов ученые обнаружили дополнительные уязвимости. Так, например, при разработке цифровых низкочастотных фильтров, которые отсеивают самые высокие частоты, а также усилителей, не учитывались проблемы безопасности.

    Чтобы защитить датчики от звуковой атаки, необходимо использовать сочетание различных методов, однако существует два основных подхода:

    1. Располагать МЭМС-датчики таким образом, чтобы ограничить воздействие звуковых помех. Например, окружить его звукоизоляционным материалом.
    2. Развернуть алгоритмы обработки данных, отклоняющих аномально ускоряющиеся сигналы, особенно с частотами, близкими к резонансной частоте датчика МЭМС.
    Кроме того, исследователи разработали несколько программных решений, которые могли бы минимизировать уязвимости, и сообщили об этом производителям.

    Руководитель исследовательской группы и ведущий автор исследования Кевин Фу (Kevin Fu) ранее занимался исследованием рисков кибербезопасности медицинской техники, в том числе потенциальной угрозы передачи смертельных сердечных ритмов в кардиостимулятор по беспроводной сети.

    По его словам, на проведение исследования, направленного на изучение влияния акустических сигналов на технику, их вдохновил случай, когда с помощью музыки были выведены из строя квадрокоптеры. Он добавил, что более ранние работы ученых продемонстрировали успешность DoS-атак, в которых звук используется для отключения акселерометров.

    Это не единственное исследование, где безопасность использования акселерометров ставится под сомнение. В 2014 году исследователи в области безопасности из Стэнфордского университета