Какая функция нечетная. Четность функции

Исследование функции.

1) D(y) – Область опрделения: множество всех тех значений переменной х. при которых алгебраические выражения f(x) и g(x) имеют смысл.

Если функция задана формулой, то область определения состоит из всех значений независимой переменной, при которых формула имеет смысл.

2) Свойства функции: четность/нечетность, периодичность:

Нечётными и чётными называются функции, графики которых обладают симметрией относительно изменения знака аргумента.

    Нечётная функция - функция, меняющая значение на противоположное при изменении знака независимой переменной (симметричная относительно центра координат).

    Чётная функция - функция, не изменяющая своего значения при изменении знака независимой переменной (симметричная относительно оси ординат).

    Ни чётная ни нечётная функция (функция общего вида) - функция, не обладающая симметрией. В эту категорию относят функции, не подпадающие под предыдущие 2 категории.

    Функции, не принадлежащие ни одной из категорий выше, называются ни чётными ни нечётными (или функциями общего вида).

Нечётные функции

Нечётная степень где - произвольное целое число.

Чётные функции

Чётная степень где - произвольное целое число.

Периоди́ческая фу́нкция ― функция, повторяющая свои значения через некоторый регулярный интервал аргумента, то есть не меняющая своего значения при добавлении к аргументу некоторого фиксированного ненулевого числа (пери́ода функции) на всей области определения.

3) Нули (корни) функции - точки, где она обращается в ноль.

Нахождение точки пересечения графика с осью Oy . Для этого нужно вычислить значение f (0). Найти также точки пересечения графика с осью Ox , для чего найти корни уравнения f (x ) = 0 (или убедиться в отсутствии корней).

Точки, в которых график пересекает ось , называют нулями функции . Чтобы найти нули функции нужно решить уравнение , то есть найти те значения «икс» , при которых функция обращается в ноль.

4) Промежутки постоянства знаков, знаки в них.

Промежутки, где функция f(x) сохраняет знак.

Интервал знакопостоянства – это интервал, в каждой точке которого функция положительна либо отрицательна.

ВЫШЕ оси абсцисс.

НИЖЕ оси .

5) Непрерывность (точки разрыва, характер разрыва, ассимптоты).

Непрерывная функция - функция без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.

Устранимые точки разрыва

Если предел функции существует , но функция не определена в этой точке, либо предел не совпадает со значением функции в данной точке:

,

то точка называется точкой устранимого разрыва функции (в комплексном анализе -устранимая особая точка).

Если «поправить» функцию в точке устранимого разрыва и положить , то получится функция, непрерывная в данной точке. Такая операция над функцией называется доопределением функции до непрерывной или доопределением функции по непрерывности , что и обосновывает название точки, как точки устранимого разрыва.

Точки разрыва первого и второго рода

Если функция имеет разрыв в данной точке (то есть предел функции в данной точке отсутствует или не совпадает со значением функции в данной точке), то для числовых функций возникает два возможных варианта, связанных с существованием у числовых функций односторонних пределов :

    если оба односторонних предела существуют и конечны, то такую точку называют точкой разрыва первого рода . Точки устранимого разрыва являются точками разрыва первого рода;

    если хотя бы один из односторонних пределов не существует или не является конечной величиной, то такую точку называют точкой разрыва второго рода .

Аси́мпто́та - прямая , обладающая тем свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви вбесконечность.

Вертикальная

Вертикальная асимптота - прямая предела .

Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:

Горизонтальная

Горизонтальная асимптота - прямая вида при условии существования предела

.

Наклонная

Наклонная асимптота - прямая вида при условии существования пределов

Замечание: функция может иметь не более двух наклонных (горизонтальных) асимптот.

Замечание: если хотя бы один из двух упомянутых выше пределов не существует (или равен ), то наклонной асимптоты при (или ) не существует.

если в п. 2.), то , и предел находится по формуле горизонтальной асимптоты, .

6) Нахождение промежутков монотонности. Найти интервалы монотонности функции f (x )(то есть интервалы возрастания и убывания). Это делается с помощью исследования знака производной f (x ). Для этого находят производную f (x ) и решают неравенство f (x )0. На промежутках, где это неравенство выполнено, функция f (x )возрастает. Там, где выполнено обратное неравенство f (x )0, функция f (x )убывает.

Нахождение локального экстремума. Найдя интервалы монотонности, мы можем сразу определить точки локального экстремума там, где возрастание сменяется убыванием, располагаются локальные максимумы, а там, где убывание сменяется возрастанием - локальные минимумы. Вычислить значение функции в этих точках. Если функция имеет критические точки, не являющиеся точками локального экстремума, то полезно вычислить значение функции и в этих точках.

Нахождение наибольшего и наименьшего значений функции y = f(x) на отрезке (продолжение)

1. Найти производную функции: f (x ).

2. Найти точки, в которых производная равна нулю: f (x )=0x 1, x 2 ,...

3. Определить принадлежность точек х 1 , х 2 ,отрезку [a ; b ]: пусть x 1a ;b , а x 2a ;b .

Функция - это одно из важнейших математических понятий. Функция - зависимость переменной у от переменной x , если каждому значению х соответствует единственное значение у . Переменную х называют независимой переменной или аргументом. Переменную у называют зависимой переменной. Все значения независимой переменной (переменной x ) образуют область определения функции. Все значения, которые принимает зависимая переменная (переменная y ), образуют область значений функции.

Графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты - соответствующим значениям функции, тоесть по оси абсцисс откладываются значения переменной x , а по оси ординат откладываются значения переменной y . Для построения графика функции необходимо знать свойства функции. Основные свойства функции будут рассмотрены далее!

Для построения графика функции советуем использовать нашу программу - Построение графиков функций онлайн. Если при изучении материала на данной странице у Вас возникнут вопросы, Вы всегда можете задать их на нашем форуме. Также на форуме Вам помогут решить задачи по математике, химии, геометрии, теории вероятности и многим другим предметам!

Основные свойства функций.

1) Область определения функции и область значений функции .

Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена.
Область значений функции - это множество всех действительных значений y , которые принимает функция.

В элементарной математике изучаются функции только на множестве действительных чисел.

2) Нули функции .

Значения х , при которых y=0 , называется нулями функции . Это абсциссы точек пересечения графика функции с осью Ох.

3) Промежутки знакопостоянства функции .

Промежутки знакопостоянства функции – такие промежутки значений x , на которых значения функции y либо только положительные, либо только отрицательные, называются промежутками знакопостоянства функции.

4) Монотонность функции .

Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

5) Четность (нечетность) функции .

Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любогох из области определения справедливо равенство f(-x) = - f(x ). График нечетной функции симметричен относительно начала координат.

Четная функция
1) Область определения симметрична относительно точки (0; 0), то есть если точка a принадлежит области определения, то точка -a также принадлежит области определения.
2) Для любого значения x f(-x)=f(x)
3) График четной функции симметричен относительно оси Оу.

Нечетная функция обладает следующими свойствами:
1) Область определения симметрична относительно точки (0; 0).
2) для любого значения x , принадлежащего области определения, выполняется равенство f(-x)=-f(x)
3) График нечетной функции симметричен относительно начала координат (0; 0).

Не всякая функция является четной или нечетной. Функции общего вида не являются ни четными, ни нечетными.

6) Ограниченная и неограниченная функции .

Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

7) Периодическость функции .

Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

Функция f называется периодической, если существует такое число, что при любом x из области определения выполняется равенство f(x)=f(x-T)=f(x+T) . T - это период функции.

Всякая периодическая функция имеет бесконечное множество периодов. На практике обычно рассматривают наименьший положительный период.

Значения периодической функции через промежуток, равный периоду, повторяются. Это используют при построении графиков.

четной , если при всех \(x\) из ее области определения верно: \(f(-x)=f(x)\) .

График четной функции симметричен относительно оси \(y\) :

Пример: функция \(f(x)=x^2+\cos x\) является четной, т.к. \(f(-x)=(-x)^2+\cos{(-x)}=x^2+\cos x=f(x)\) .

\(\blacktriangleright\) Функция \(f(x)\) называется нечетной , если при всех \(x\) из ее области определения верно: \(f(-x)=-f(x)\) .

График нечетной функции симметричен относительно начала координат:

Пример: функция \(f(x)=x^3+x\) является нечетной, т.к. \(f(-x)=(-x)^3+(-x)=-x^3-x=-(x^3+x)=-f(x)\) .

\(\blacktriangleright\) Функции, не являющиеся ни четными, ни нечетными, называются функциями общего вида. Такую функцию можно всегда единственным образом представить в виде суммы четной и нечетной функции.

Например, функция \(f(x)=x^2-x\) является суммой четной функции \(f_1=x^2\) и нечетной \(f_2=-x\) .

\(\blacktriangleright\) Некоторые свойства:

1) Произведение и частное двух функций одинаковой четности - четная функция.

2) Произведение и частное двух функций разной четности - нечетная функция.

3) Сумма и разность четных функций - четная функция.

4) Сумма и разность нечетных функций - нечетная функция.

5) Если \(f(x)\) - четная функция, то уравнение \(f(x)=c \ (c\in \mathbb{R}\) ) имеет единственный корень тогда и только когда, когда \(x=0\) .

6) Если \(f(x)\) - четная или нечетная функция, и уравнение \(f(x)=0\) имеет корень \(x=b\) , то это уравнение обязательно будет иметь второй корень \(x=-b\) .

\(\blacktriangleright\) Функция \(f(x)\) называется периодической на \(X\) , если для некоторого числа \(T\ne 0\) выполнено \(f(x)=f(x+T)\) , где \(x, x+T\in X\) . Наименьшее \(T\) , для которого выполнено данное равенство, называется главным (основным) периодом функции.

У периодической функции любое число вида \(nT\) , где \(n\in \mathbb{Z}\) также будет являться периодом.

Пример: любая тригонометрическая функция является периодической;
у функций \(f(x)=\sin x\) и \(f(x)=\cos x\) главный период равен \(2\pi\) , у функций \(f(x)=\mathrm{tg}\,x\) и \(f(x)=\mathrm{ctg}\,x\) главный период равен \(\pi\) .

Для того, чтобы построить график периодической функции, можно построить ее график на любом отрезке длиной \(T\) (главный период); тогда график всей функции достраивается сдвигом построенной части на целое число периодов вправо и влево:

\(\blacktriangleright\) Область определения \(D(f)\) функции \(f(x)\) - это множество, состоящее из всех значений аргумента \(x\) , при которых функция имеет смысл (определена).

Пример: у функции \(f(x)=\sqrt x+1\) область определения: \(x\in

Задание 1 #6364

Уровень задания: Равен ЕГЭ

При каких значениях параметра \(a\) уравнение

имеет единственное решение?

Заметим, что так как \(x^2\) и \(\cos x\) - четные функции, то если уравнение будет иметь корень \(x_0\) , оно также будет иметь и корень \(-x_0\) .
Действительно, пусть \(x_0\) – корень, то есть равенство \(2x_0^2+a\mathrm{tg}\,(\cos x_0)+a^2=0\) верно. Подставим \(-x_0\) : \(2 (-x_0)^2+a\mathrm{tg}\,(\cos(-x_0))+a^2=2x_0^2+a\mathrm{tg}\,(\cos x_0)+a^2=0\) .

Таким образом, если \(x_0\ne 0\) , то уравнение уже будет иметь как минимум два корня. Следовательно, \(x_0=0\) . Тогда:

Мы получили два значения параметра \(a\) . Заметим, что мы использовали то, что \(x=0\) точно является корнем исходного уравнения. Но мы нигде не использовали то, что он единственный. Следовательно, нужно подставить получившиеся значения параметра \(a\) в исходное уравнение и проверить, при каких именно \(a\) корень \(x=0\) действительно будет единственным.

1) Если \(a=0\) , то уравнение примет вид \(2x^2=0\) . Очевидно, что это уравнение имеет лишь один корень \(x=0\) . Следовательно, значение \(a=0\) нам подходит.

2) Если \(a=-\mathrm{tg}\,1\) , то уравнение примет вид \ Перепишем уравнение в виде \ Так как \(-1\leqslant \cos x\leqslant 1\) , то \(-\mathrm{tg}\,1\leqslant \mathrm{tg}\,(\cos x)\leqslant \mathrm{tg}\,1\) . Следовательно, значения правой части уравнения (*) принадлежат отрезку \([-\mathrm{tg}^2\,1; \mathrm{tg}^2\,1]\) .

Так как \(x^2\geqslant 0\) , то левая часть уравнения (*) больше или равна \(0+ \mathrm{tg}^2\,1\) .

Таким образом, равенство (*) может выполняться только тогда, когда обе части уравнения равны \(\mathrm{tg}^2\,1\) . А это значит, что \[\begin{cases} 2x^2+\mathrm{tg}^2\,1=\mathrm{tg}^2\,1 \\ \mathrm{tg}\,1\cdot \mathrm{tg}\,(\cos x)=\mathrm{tg}^2\,1 \end{cases} \quad\Leftrightarrow\quad \begin{cases} x=0\\ \mathrm{tg}\,(\cos x)=\mathrm{tg}\,1 \end{cases}\quad\Leftrightarrow\quad x=0\] Следовательно, значение \(a=-\mathrm{tg}\,1\) нам подходит.

Ответ:

\(a\in \{-\mathrm{tg}\,1;0\}\)

Задание 2 #3923

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых график функции \

симметричен относительно начала координат.

Если график функции симметричен относительно начала координат, то такая функция является нечетной, то есть выполнено \(f(-x)=-f(x)\) для любого \(x\) из области определения функции. Таким образом, требуется найти те значения параметра, при которых выполнено \(f(-x)=-f(x).\)

\[\begin{aligned} &3\mathrm{tg}\,\left(-\dfrac{ax}5\right)+2\sin \dfrac{8\pi a+3x}4= -\left(3\mathrm{tg}\,\left(\dfrac{ax}5\right)+2\sin \dfrac{8\pi a-3x}4\right)\quad \Rightarrow\quad -3\mathrm{tg}\,\dfrac{ax}5+2\sin \dfrac{8\pi a+3x}4= -\left(3\mathrm{tg}\,\left(\dfrac{ax}5\right)+2\sin \dfrac{8\pi a-3x}4\right) \quad \Rightarrow\\ \Rightarrow\quad &\sin \dfrac{8\pi a+3x}4+\sin \dfrac{8\pi a-3x}4=0 \quad \Rightarrow \quad2\sin \dfrac12\left(\dfrac{8\pi a+3x}4+\dfrac{8\pi a-3x}4\right)\cdot \cos \dfrac12 \left(\dfrac{8\pi a+3x}4-\dfrac{8\pi a-3x}4\right)=0 \quad \Rightarrow\quad \sin (2\pi a)\cdot \cos \frac34 x=0 \end{aligned}\]

Последнее уравнение должно быть выполнено для всех \(x\) из области определения \(f(x)\) , следовательно, \(\sin(2\pi a)=0 \Rightarrow a=\dfrac n2, n\in\mathbb{Z}\) .

Ответ:

\(\dfrac n2, n\in\mathbb{Z}\)

Задание 3 #3069

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \ имеет 4 решения, где \(f\) – четная периодическая с периодом \(T=\dfrac{16}3\) функция, определенная на всей числовой прямой, причем \(f(x)=ax^2\) при \(0\leqslant x\leqslant \dfrac83.\)

(Задача от подписчиков)

Так как \(f(x)\) – четная функция, то ее график симметричен относительно оси ординат, следовательно, при \(-\dfrac83\leqslant x\leqslant 0\) \(f(x)=ax^2\) . Таким образом, при \(-\dfrac83\leqslant x\leqslant \dfrac83\) , а это отрезок длиной \(\dfrac{16}3\) , функция \(f(x)=ax^2\) .

1) Пусть \(a>0\) . Тогда график функции \(f(x)\) будет выглядеть следующим образом:


Тогда для того, чтобы уравнение имело 4 решения, нужно, чтобы график \(g(x)=|a+2|\cdot \sqrtx\) проходил через точку \(A\) :


Следовательно, \[\dfrac{64}9a=|a+2|\cdot \sqrt8 \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &9(a+2)=32a\\ &9(a+2)=-32a \end{aligned} \end{gathered}\right. \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &a=\dfrac{18}{23}\\ &a=-\dfrac{18}{41} \end{aligned} \end{gathered}\right.\] Так как \(a>0\) , то подходит \(a=\dfrac{18}{23}\) .

2) Пусть \(a<0\) . Тогда картинка окажется симметричной относительно начала координат:


Нужно, чтобы график \(g(x)\) прошел через точку \(B\) : \[\dfrac{64}9a=|a+2|\cdot \sqrt{-8} \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &a=\dfrac{18}{23}\\ &a=-\dfrac{18}{41} \end{aligned} \end{gathered}\right.\] Так как \(a<0\) , то подходит \(a=-\dfrac{18}{41}\) .

3) Случай, когда \(a=0\) , не подходит, так как тогда \(f(x)=0\) при всех \(x\) , \(g(x)=2\sqrtx\) и уравнение будет иметь только 1 корень.

Ответ:

\(a\in \left\{-\dfrac{18}{41};\dfrac{18}{23}\right\}\)

Задание 4 #3072

Уровень задания: Равен ЕГЭ

Найдите все значения \(a\) , при каждом из которых уравнение \

имеет хотя бы один корень.

(Задача от подписчиков)

Перепишем уравнение в виде \ и рассмотрим две функции: \(g(x)=7\sqrt{2x^2+49}\) и \(f(x)=3|x-7a|-6|x|-a^2+7a\) .
Функция \(g(x)\) является четной, имеет точку минимума \(x=0\) (причем \(g(0)=49\) ).
Функция \(f(x)\) при \(x>0\) является убывающей, а при \(x<0\) – возрастающей, следовательно, \(x=0\) – точка максимума.
Действительно, при \(x>0\) второй модуль раскроется положительно (\(|x|=x\) ), следовательно, вне зависимости от того, как раскроется первый модуль, \(f(x)\) будет равно \(kx+A\) , где \(A\) – выражение от \(a\) , а \(k\) равно либо \(-9\) , либо \(-3\) . При \(x<0\) наоборот: второй модуль раскроется отрицательно и \(f(x)=kx+A\) , где \(k\) равно либо \(3\) , либо \(9\) .
Найдем значение \(f\) в точке максимума: \

Для того, чтобы уравнение имело хотя бы одно решение, нужно, чтобы графики функций \(f\) и \(g\) имели хотя бы одну точку пересечения. Следовательно, нужно: \ \\]

Ответ:

\(a\in \{-7\}\cup\)

Задание 5 #3912

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет шесть различных решений.

Сделаем замену \((\sqrt2)^{x^3-3x^2+4}=t\) , \(t>0\) . Тогда уравнение примет вид \ Будем постепенно выписывать условия, при которых исходное уравнение будет иметь шесть решений.
Заметим, что квадратное уравнение \((*)\) может максимум иметь два решения. Любое кубическое уравнение \(Ax^3+Bx^2+Cx+D=0\) может иметь не более трех решений. Следовательно, если уравнение \((*)\) имеет два различных решения (положительных!, так как \(t\) должно быть больше нуля) \(t_1\) и \(t_2\) , то, сделав обратную замену, мы получим: \[\left[\begin{gathered}\begin{aligned} &(\sqrt2)^{x^3-3x^2+4}=t_1\\ &(\sqrt2)^{x^3-3x^2+4}=t_2\end{aligned}\end{gathered}\right.\] Так как любое положительное число можно представить как \(\sqrt2\) в какой-то степени, например, \(t_1=(\sqrt2)^{\log_{\sqrt2} t_1}\) , то первое уравнение совокупности перепишется в виде \ Как мы уже говорили, любое кубическое уравнение имеет не более трех решений, следовательно, каждое уравнение из совокупности будет иметь не более трех решений. А значит и вся совокупность будет иметь не более шести решений.
Значит, чтобы исходное уравнение имело шесть решений, квадратное уравнение \((*)\) должно иметь два различных решения, а каждое полученное кубическое уравнение (из совокупности) должно иметь три различных решения (причем ни одно решение одного уравнения не должно совпадать с каким-либо решением второго!)
Очевидно, что если квадратное уравнение \((*)\) будет иметь одно решение, то мы никак не получим шесть решений у исходного уравнения.

Таким образом, план решения становится ясен. Давайте по пунктам выпишем условия, которые должны выполняться.

1) Чтобы уравнение \((*)\) имело два различных решения, его дискриминант должен быть положительным: \

2) Также нужно, чтобы оба корня были положительными (так как \(t>0\) ). Если произведение двух корней положительное и сумма их положительная, то и сами корни будут положительными. Следовательно, нужно: \[\begin{cases} 12-a>0\\-(a-10)>0\end{cases}\quad\Leftrightarrow\quad a<10\]

Таким образом, мы уже обеспечили себе два различных положительных корня \(t_1\) и \(t_2\) .

3) Давайте посмотрим на такое уравнение \ При каких \(t\) оно будет иметь три различных решения?
Рассмотрим функцию \(f(x)=x^3-3x^2+4\) .
Можно разложить на множители: \ Следовательно, ее нули: \(x=-1;2\) .
Если найти производную \(f"(x)=3x^2-6x\) , то мы получим две точки экстремума \(x_{max}=0, x_{min}=2\) .
Следовательно, график выглядит так:


Мы видим, что любая горизонтальная прямая \(y=k\) , где \(0\(x^3-3x^2+4=\log_{\sqrt2} t\) имело три различных решения, нужно, чтобы \(0<\log_ {\sqrt2}t<4\) .
Таким образом, нужно: \[\begin{cases} 0<\log_{\sqrt2}t_1<4\\ 0<\log_{\sqrt2}t_2<4\end{cases}\qquad (**)\] Давайте также сразу заметим, что если числа \(t_1\) и \(t_2\) различны, то и числа \(\log_{\sqrt2}t_1\) и \(\log_{\sqrt2}t_2\) будут различны, значит, и уравнения \(x^3-3x^2+4=\log_{\sqrt2} t_1\) и \(x^3-3x^2+4=\log_{\sqrt2} t_2\) будут иметь несовпадающие между собой корни.
Систему \((**)\) можно переписать так: \[\begin{cases} 1

Таким образом, мы определили, что оба корня уравнения \((*)\) должны лежать в интервале \((1;4)\) . Как записать это условие?
В явном виде выписывать корни мы не будем.
Рассмотрим функцию \(g(t)=t^2+(a-10)t+12-a\) . Ее график – парабола с ветвями вверх, которая имеет две точки пересечения с осью абсцисс (это условие мы записали в пункте 1)). Как должен выглядеть ее график, чтобы точки пересечения с осью абсцисс были в интервале \((1;4)\) ? Так:


Во-первых, значения \(g(1)\) и \(g(4)\) функции в точках \(1\) и \(4\) должны быть положительными, во-вторых, вершина параболы \(t_0\) должна также находиться в интервале \((1;4)\) . Следовательно, можно записать систему: \[\begin{cases} 1+a-10+12-a>0\\ 4^2+(a-10)\cdot 4+12-a>0\\ 1<\dfrac{-(a-10)}2<4\end{cases}\quad\Leftrightarrow\quad 4\(a\) всегда имеет как минимум один корень \(x=0\) . Значит, для выполнения условия задачи нужно, чтобы уравнение \

имело четыре различных корня, отличных от нуля, представляющих вместе с \(x=0\) арифметическую прогрессию.

Заметим, что функция \(y=25x^4+25(a-1)x^2-4(a-7)\) является четной, значит, если \(x_0\) является корнем уравнения \((*)\) , то и \(-x_0\) будет являться его корнем. Тогда необходимо, чтобы корнями этого уравнения были упорядоченные по возрастанию числа: \(-2d, -d, d, 2d\) (тогда \(d>0\) ). Именно тогда данные пять чисел будут образовывать арифметическую прогрессию (с разностью \(d\) ).

Чтобы этими корнями являлись числа \(-2d, -d, d, 2d\) , нужно, чтобы числа \(d^{\,2}, 4d^{\,2}\) являлись корнями уравнения \(25t^2+25(a-1)t-4(a-7)=0\) . Тогда по теореме Виета:

Перепишем уравнение в виде \ и рассмотрим две функции: \(g(x)=20a-a^2-2^{x^2+2}\) и \(f(x)=13|x|-2|5x+12a|\) .
Функция \(g(x)\) имеет точку максимума \(x=0\) (причем \(g_{\text{верш}}=g(0)=-a^2+20a-4\) ):
\(g"(x)=-2^{x^2+2}\cdot \ln 2\cdot 2x\) . Ноль производной: \(x=0\) . При \(x<0\) имеем: \(g">0\) , при \(x>0\) : \(g"<0\) .
Функция \(f(x)\) при \(x>0\) является возрастающей, а при \(x<0\) – убывающей, следовательно, \(x=0\) – точка минимума.
Действительно, при \(x>0\) первый модуль раскроется положительно (\(|x|=x\) ), следовательно, вне зависимости от того, как раскроется второй модуль, \(f(x)\) будет равно \(kx+A\) , где \(A\) – выражение от \(a\) , а \(k\) равно либо \(13-10=3\) , либо \(13+10=23\) . При \(x<0\) наоборот: первый модуль раскроется отрицательно и \(f(x)=kx+A\) , где \(k\) равно либо \(-3\) , либо \(-23\) .
Найдем значение \(f\) в точке минимума: \

Для того, чтобы уравнение имело хотя бы одно решение, нужно, чтобы графики функций \(f\) и \(g\) имели хотя бы одну точку пересечения. Следовательно, нужно: \ Решая данную совокупность систем, получим ответ: \\]

Ответ:

\(a\in \{-2\}\cup\)

Для этого воспользуйтесь миллиметровкой или графическим калькулятором. Выберите несколько любых числовых значений независимой переменной x {\displaystyle x} и подставьте их в функцию, чтобы вычислить значения зависимой переменной y {\displaystyle y} . Найденные координаты точек нанесите на координатную плоскость, а затем соедините эти точки, чтобы построить график функции.

  • В функцию подставьте положительные числовые значения x {\displaystyle x} и соответствующие отрицательные числовые значения. Например, дана функция . Подставьте в нее следующие значения x {\displaystyle x} :
    • f (1) = 2 (1) 2 + 1 = 2 + 1 = 3 {\displaystyle f(1)=2(1)^{2}+1=2+1=3} (1 , 3) {\displaystyle (1,3)} .
    • f (2) = 2 (2) 2 + 1 = 2 (4) + 1 = 8 + 1 = 9 {\displaystyle f(2)=2(2)^{2}+1=2(4)+1=8+1=9} . Получили точку с координатами (2 , 9) {\displaystyle (2,9)} .
    • f (− 1) = 2 (− 1) 2 + 1 = 2 + 1 = 3 {\displaystyle f(-1)=2(-1)^{2}+1=2+1=3} . Получили точку с координатами (− 1 , 3) {\displaystyle (-1,3)} .
    • f (− 2) = 2 (− 2) 2 + 1 = 2 (4) + 1 = 8 + 1 = 9 {\displaystyle f(-2)=2(-2)^{2}+1=2(4)+1=8+1=9} . Получили точку с координатами (− 2 , 9) {\displaystyle (-2,9)} .
  • Проверьте, симметричен ли график функции относительно оси Y. Под симметрией подразумевается зеркальное отображение графика относительно оси ординат. Если часть графика справа от оси Y (положительные значения независимой переменной) совпадает с частью графика слева от оси Y (отрицательные значения независимой переменной), график симметричен относительно оси Y. Если функция симметрична относительно оси ординат, такая функция четная.

    • Проверить симметричность графика можно по отдельным точкам. Если значение y {\displaystyle y} x {\displaystyle x} , совпадает со значением y {\displaystyle y} , которое соответствует значению − x {\displaystyle -x} , функция является четной. В нашем примере с функцией f (x) = 2 x 2 + 1 {\displaystyle f(x)=2x^{2}+1} мы получили следующие координаты точек:
      • (1,3) и (-1,3)
      • (2,9) и (-2,9)
    • Обратите внимание, что при x=1 и x=-1 зависимая переменная у=3, а при x=2 и x=-2 зависимая переменная у=9. Таким образом, функция четная. На самом деле, чтобы точно выяснить вид функции, нужно рассмотреть более двух точек, но описанный способ является хорошим приближением.
  • Проверьте, симметричен ли график функции относительно начала координат. Начало координат – это точка с координатами (0,0). Симметрия относительно начала координат означает, что положительному значению y {\displaystyle y} (при положительном значении x {\displaystyle x} ) соответствует отрицательное значение y {\displaystyle y} (при отрицательном значении x {\displaystyle x} ), и наоборот. Нечетные функции обладают симметрией относительно начала координат.

    • Если в функцию подставить несколько положительных и соответствующих отрицательных значений x {\displaystyle x} , значения y {\displaystyle y} будут различаться по знаку. Например, дана функция f (x) = x 3 + x {\displaystyle f(x)=x^{3}+x} . Подставьте в нее несколько значений x {\displaystyle x} :
      • f (1) = 1 3 + 1 = 1 + 1 = 2 {\displaystyle f(1)=1^{3}+1=1+1=2} . Получили точку с координатами (1,2).
      • f (− 1) = (− 1) 3 + (− 1) = − 1 − 1 = − 2 {\displaystyle f(-1)=(-1)^{3}+(-1)=-1-1=-2}
      • f (2) = 2 3 + 2 = 8 + 2 = 10 {\displaystyle f(2)=2^{3}+2=8+2=10}
      • f (− 2) = (− 2) 3 + (− 2) = − 8 − 2 = − 10 {\displaystyle f(-2)=(-2)^{3}+(-2)=-8-2=-10} . Получили точку с координатами (-2,-10).
    • Таким образом, f(x) = -f(-x), то есть функция нечетная.
  • Проверьте, имеет ли график функции какую-нибудь симметрию. Последний вид функции – это функция, график которой не имеет симметрии, то есть зеркальное отображение отсутствует как относительно оси ординат, так и относительно начала координат. Например, дана функция .

    • В функцию подставьте несколько положительных и соответствующих отрицательных значений x {\displaystyle x} :
      • f (1) = 1 2 + 2 (1) + 1 = 1 + 2 + 1 = 4 {\displaystyle f(1)=1^{2}+2(1)+1=1+2+1=4} . Получили точку с координатами (1,4).
      • f (− 1) = (− 1) 2 + 2 (− 1) + (− 1) = 1 − 2 − 1 = − 2 {\displaystyle f(-1)=(-1)^{2}+2(-1)+(-1)=1-2-1=-2} . Получили точку с координатами (-1,-2).
      • f (2) = 2 2 + 2 (2) + 2 = 4 + 4 + 2 = 10 {\displaystyle f(2)=2^{2}+2(2)+2=4+4+2=10} . Получили точку с координатами (2,10).
      • f (− 2) = (− 2) 2 + 2 (− 2) + (− 2) = 4 − 4 − 2 = − 2 {\displaystyle f(-2)=(-2)^{2}+2(-2)+(-2)=4-4-2=-2} . Получили точку с координатами (2,-2).
    • Согласно полученным результатам, симметрии нет. Значения y {\displaystyle y} для противоположных значений x {\displaystyle x} не совпадают и не являются противоположными. Таким образом, функция является ни четной, ни нечетной.
    • Обратите внимание, что функцию f (x) = x 2 + 2 x + 1 {\displaystyle f(x)=x^{2}+2x+1} можно записать так: f (x) = (x + 1) 2 {\displaystyle f(x)=(x+1)^{2}} . Будучи записанной в такой форме, функция кажется четной, потому что присутствует четный показатель степени. Но этот пример доказывает, что вид функции нельзя быстро определить, если независимая переменная заключена в скобки. В этом случае нужно раскрыть скобки и проанализировать полученные показатели степени.
  • Графики четной и нечетной функции обладают следующими особенностями:

    Если функция является четной, то ее график симметричен относительно оси ординат. Если функция является нечетной, то ее график симметричен относительно начала координат.

    Пример. Построить график функции \(y=\left|x \right|\).

    Решение. Рассмотрим функцию: \(f\left(x \right)=\left|x \right|\) и подставим вместо \(x \) противоположное \(-x \). В результате не сложных преобразований получим: $$f\left(-x \right)=\left|-x \right|=\left|x \right|=f\left(x \right)$$ Другими словами, если аргумент заменить на противоположный по знаку, функция не изменится.

    Значит эта функция - четная, а ее график будет симметричен относительно оси ординат (вертикальной оси). График этой функции приведен на рисунке слева. Это означает что при построении графика, можно строить только половину, а вторую часть (левее вертикальной оси рисовать уже симметрично правой части). Определив симметричность функции перед началом построения ее графика, можно намного упростить процесс построения или исследования функции. Если сложно выполнять проверку в общем виде, можно поступить проще: подставить в уравнение одинаковые значения разных знаков. Например -5 и 5. Если значения функции получатся одинаковыми, то можно надеяться что функция будет четной. С математической точки зрения такой подход не совсем правильный, но с практической - удобный. Чтобы увеличить достоверность результата можно подставить несколько пар таких противоположных значений.


    Пример. Построить график функции \(y=x\left|x \right|\).

    Решение. Выполним проверку так же как в предыдущем примере: $$f\left(-x \right)=x\left|-x \right|=-x\left|x \right|=-f\left(x \right)$$ Это означает, что исходная функция является нечетной (знак функции поменялся на противоположный).

    Вывод: функция симметрична относительно начала координат. Можно строить только одн половину, а вторую рисовать симметрично. Такую симметрию рисовать сложнее. Это означает, что вы смотрите на график с другой строны листа да еще и перевернув вверх ногами. А можно еще так: берем нарисованную часть и вращаем ее вокруг начала координат на 180 градусов против часовой стрелки.


    Пример. Построить график функции \(y=x^3+x^2\).

    Решение. Выполним такую же проверку на смену знака, как и в предыдущих двух примерах. $$f\left(-x \right)=\left(-x \right)^3+\left(-x \right)^2=-x^2+x^2$$ В результате получим, что: $$f\left(-x \right)\not=f\left(x \right),f\left(-x \right)\not=-f\left(x \right)$$ А это означает, что функция не является ни четной, ни нечетной.

    Вывод: функция не симметрична ни относительно начала координат ни относительно центра системы координат. Это произошло потому, что она представляет собой сумму двух функций: четной и не четной. Такая же ситуация будет если вычитать две разные функции. А вот умножение или деление приведет к другому результату. Например, произведение четной и нечетной функций дает нечетную. Или частное двух нечетных приводит к четной функции.