Презентация на тему "медицинская робототехника ". Робомедицина: добро пожаловать в будущее Роботы новые сотрудники больниц

Сегодня исследовательские группы по всему миру пытаются нащупать концепцию использования роботов в медицине. Хотя правильнее, пожалуй, говорить «уже нащупали». Судя по количеству разработок и интересу всевозможных научных групп, можно утверждать о том, что магистральным направлением стало создание медицинских микророботов. Сюда же можно отнести и роботов с приставкой «нано-». Причём первые успехи в этой области были достигнуты сравнительно недавно, всего восемь лет назад.

В 2006 году группа исследователей под руководством Сильвана Мартеля впервые в мире провела успешный эксперимент, запустив крошечного робота размером с шарик от авторучки в сонную артерию живой свиньи. При этом робот перемещался по всем назначенным ему «путевым точкам». И за прошедшие с тех пор годы микроробототехника несколько продвинулась вперёд.

Одной из главных целей для инженеров сегодня является создание таких медицинских роботов, которые будут способны перемещаться не только по крупным артериям, но и по относительно узким кровеносным сосудам. Это позволило бы проводить сложные виды лечения без столь травматического хирургического вмешательства.

Но это далеко не единственное потенциальное преимущество микророботов. В первую очередь, они были бы полезны при лечении рака, целенаправленно доставляя лекарство прямо к злокачественному образованию. Ценность такой возможности сложно переоценить: при химиотерапии препараты подаются через капельницу, нанося сильнейший удар по всему организму. По сути, это сильный яд, который повреждает многие внутренние органы и, за компанию, саму опухоль. Это сравнимо с ковровой бомбардировкой ради уничтожения небольшой одиночной цели.

Задача создания подобных микророботов находится на стыке целого ряда научных дисциплин. Например, с точки зрения физики - как заставить столь малый объект самостоятельно двигаться в вязкой жидкости, которой для него является кровь? С точки зрения инженерии - как обеспечить робота энергией и как отслеживать перемещение по организму крохотного объекта? С точки зрения биологии - какие использовать материалы для изготовления роботов, чтобы они не наносили вреда организму человека? А в идеале, роботы должны быть биоразлагаемыми, чтобы не пришлось ещё решать проблему их вывода из организма.

Одним из примеров того, как микророботы могут «загрязнять» тело пациента, является «биоракета».

Этот вариант микроробота представляет собой титановое ядро, окружённое оболочкой из алюминия. Диаметр робота 20 мкм. Алюминий вступает в реакцию с водой, в ходе которой на поверхности оболочки формируются пузырьки водорода, которые толкают всю конструкцию. В воде такая «биоракета» проплывает за одну секунду расстояние, равное 150 своим диаметрам. Это можно сравнить с человеком двухметрового роста, который за секунду проплывает 300 метров, 12 бассейнов. Работает такой химический двигатель около 5 минут благодаря добавке галлия, уменьшающего интенсивность образования оксидной плёнки. То есть максимальный запас хода составляет около 900 мм в воде. Направление движению задаётся роботу внешним магнитным полем, а использовать его можно для точечной доставки лекарств. Но только после иссякания «заряда», в пациенте окажется россыпь микрошариков с алюминиевой оболочкой, который отнюдь не благотворно влияет на организм человека, в отличие от биологически нейтрального титана.

Микророботы должны быть так малы, что просто масштабировать до нужного размера традиционные технологии не получится. Никаких стандартных деталей подходящего размера тоже не производят. А даже если бы и производили, они бы просто не подошли для таких специфических нужд. И потому исследователи, как это уже много раз было в истории изобретений, ищут вдохновения у природы. Например, у тех же бактерий. На микро, и тем более наноуровне действуют совсем другие физические законы. В частности, вода является очень вязкой жидкость. Поэтому нужно применять другие инженерные решения для обеспечения движения микророботов. Бактерии эту задачу зачастую решают с помощью ресничек.

В начале этого года группа исследователей из Университета Торонто создала прототип микроробота длиной в 1 мм, управляемого внешним магнитным полем и оснащённого двумя захватами. Разработчикам удалось с его помощью построить мост. Также этот робот может использоваться не только для доставки лекарств, но и для механического восстановления тканей в кровеносной системе и органах.

Мускульные роботы

Ещё одно интересное направление в микроробототехнике - роботы, приводимые в движение мускулами. Например, есть такой проект: стимулируемая электричеством мышечная клетка, к которой прикреплён робот, чей «хребет» сделан из гидрогеля.

Эта система, по сути, копирует природное решение, встречающееся в организмах многих млекопитающих. Например, в теле человека сокращение мышц передаётся костям через сухожилия. В данном биороботе, когда клетка сокращается под действием электричества, то «хребет» сгибается и поперечные перекладины, выполняющие роль ног, притягиваются друг к другу. Если одна из них при сгибании «хребта» перемещается на меньшее расстояние, то робот движется по направлению к этой «ноге».

Есть и другое видение, какими должны быть медицинские микророботы: мягкими, повторяющими формы различных живых существ. Например, вот такая робо-пчела (RoboBee).

Правда, она предназначена не для медицинских целей, а для целого ряда других: опыления растений, поисково-спасательных операций, обнаружения ядовитых веществ. Авторы проекта, конечно, не копируют слепо анатомические особенности пчелы. Вместо этого они внимательно анализируют всевозможные «конструкции» организмов различных насекомых, адаптируя и воплощая их в механике.

Или другой пример использования имеющихся в природе «конструкций» - микроробот в виде двустворчатого моллюска. Движется он с помощью хлопанья «створок», создавая тем самым реактивную струю. При размере около 1 мм он может плавать внутри человеческого глазного яблока. Как и большинство других медицинских роботов, этот «моллюск» в качестве источника энергии использует внешнее магнитное поле. Но есть важное отличие - он лишь получает энергию для движения, само поле его не двигает, в отличие от большинства других видов микророботов.

Большие роботы

Конечно, одними лишь микророботами парк медицинской техники не ограничивается. В фантастических фильмах и книгах медицинские роботы обычно представляются в виде замены хирурга-человека. Мол, это некое крупное устройство, которое быстро и очень точно производится всевозможные хирургические манипуляции. И не удивительно, что эта идея была реализована одной из первых. Конечно, современные хирургические роботы не способны заменить человека целиком, но зашивание им уже вполне доверяют. Также они используются в качестве продолжения рук хирурга, как манипуляторы.

Однако в медицинской среде не утихают споры относительно целесообразности использования таких машин. Многие специалисты придерживаются мнения, что особых выгод такие роботы не дают , а благодаря своей высокой цене существенно увеличивают стоимость медицинских услуг. С другой стороны, есть исследование , согласно которому пациентам с раком простаты, подвергавшимся хирургической операции с роботом-ассистентом, в дальнейшем требуется менее интенсивное применение гормональных средств и радиотерапии. В общем, неудивительно, что усилия многих учёных оказались направлены на создание микророботов.

Интересным проектом является Робонавт (Robonaut), телемедицинский робот, предназначенный для оказания помощи космонавтам. Это пока экспериментальный проект, но такой подход может быть использован не только для оказания таким важным и дорогим в подготовке людям, как космонавты. Телемедицинские роботы могут быть использованы и для оказания помощи в различных труднодоступных районах. Конечно, это будет целесообразно только в том случае, если дешевле будет установить в лазарете какого-нибудь глухого таёжного или горного посёлка робота, чем держать фельдшера на зарплате.

А этот медицинский робот ещё более узкоспециализирован, он используется для лечения облысения. ARTAS занимается автоматическим «выкапыванием» волосяных фолликул из кожи головы пациента, основываясь на фотографиях высокого разрешения. Потом врач-человек вручную внедряет «урожай» в облысевшие участки.

Всё-таки мир медицинских роботов вовсе не так однообразен, как может показаться неискушённому человеку. Более того, он активно развивается, идёт накопление идей, результатов экспериментов, ищутся наиболее эффективные подходы. И кто знает, возможно, ещё при нашей жизни слово «хирург» будет означать врача не со скальпелем, а с баночкой микророботов, которых достаточно будет проглотить или внедрить через капельницу.

В мировую медицину активно интегрируются искусственный интеллект и сложные методы автоматизации из робототехники. Применение роботов поднимает здравоохранение на новый уровень, оптимизируя ход лечения, отслеживания динамики, проведения анализа и хирургических операций. Ниже представлена подборка из 10 любопытных медицинских роботов, выпущенных на сегодняшний день.

Робот-ассистент da Vinci

Производитель: компания Intuitive Surgical, США.

Головной офис компании Intuitive Surgical, Inc. расположен в городе Саннивейл, штат Калифорния. Считается мировым лидером в роботической малоинвазивной хирургии.

Краткая справка о роботе

Робот da Vinci разработан как вспомогательный инструмент для хирургов. Робот не запрограммирован под самостоятельное проведение операции, поскольку процедура и ход операции контролируются человеком дистанционно. Робот использует специальные инструменты, включая миниатюрные камеры для визуализации и стандартные инструменты (т.е. ножницы, скальпели и пинцеты), разработанные для точной диссекции при проведении полостных операций.

За 2016 год было проведено 750 000 операций с помощью da Vinci. С момента выпуска робота – 4 000 000. По состоянию на 31 декабря 2016 года в мире было установлено 3919 систем. В России – 26 систем во всех крупных городах. Создатели робота da Vinci нацелены на решение ряда проблем в хирургии. Во-первых, улучшенное качество изображения (в 3D), которое помогает хирургам и персоналу преодолеть ограничения невооруженного глаза при идентификации тканевых структур при операции. Во-вторых, внедрение интеллектуальных систем. Современные датчики, обеспечивающие одновременную обратную связь, упрощают выявление тканевых структур как источника осложнений и вариабельности.

Робот Preceyes

Производитель: компания Preceyes B.V., Голландия.

Головной офис компании Preceyes B.V. расположен в городе Эйндховен, провинция Северный Брабант. Целью компании считается развитие новых высокоточных методов терапии и облегчение способов проведения витреоретинальной хирургии.

Робот Preceyes разработан как деликатное роботизированное решение для помощи хирургам-офтальмологам при проведении операции. Робот не запрограммирован под самостоятельное проведение операции, поскольку процедура и ход операции контролируются человеком дистанционно – через сенсорный экран и джойстик. Компания Preceyes B.V. ставит еще одной своей целью повышение профессионализма хирургов, а не замену человека машиной.

Краткая справка о роботе

Первая операция с использованием робота Preceyes прошла в оксфордской клинике Джона Рэдклиффа в Великобритании в 2016 году. Создатели робота Preceyes нацелены на решение ряда проблем в хирургии:

  • смягчение резких неосторожных движений хирурга, что помогает хирургу исключить повреждения внутренних органов;
  • повышенная точность. Точность движений робота – 1 на 1000 долей миллиметра.

Робот Veebot


Производитель: стартап Veebot, США.

Информация о головном офисе отсутствует. Целью компании считается предоставление точного и непродолжительного забора крови у пациента с автоматизацией процесса и проведением инфузионной терапии.

Краткая справка о роботе

Робот Veebot пока проходит испытания и демонстрирует выбор места введения иглы в 83% случаев. Создатели машины заявляют о планах повысить результат до 90% перед проведением первых клинических испытаний. Для зажатия и улучшения визуализации вен робот оснащен рукавом. Также для улучшения видимости вен применяются инфракрасные и звуковые датчики, вид с камеры и четкий алгоритм для определения места, наклона и глубины введения иглы.

Робот SurgiBot


Производитель: компания TransEnterix, США.

Головной офис компании TransEnterix находится в городе Моррисвилль, штат Северная Каролина. Компания считается пионером в области применения робототехники для повышения качества малоинвазивной хирургии. Также компания нацелена на решение клинических и экономических сложностей при проведении лапароскопии.

Краткая справка о роботе

Роботизированная система SurgiBot TM разработана как малоинвазивная платформа с применением инструментов в ходе единичного рассечения. Применение гибких инструментов при операции контролируется хирургом из стерильного поля. Робот оснащен щупами, регулятором чувствительности управляющих ручек и камерой с фонариком, которая выводит изображение хода процесса на стандартный монитор.

Робот SurgiBot пока не доступен для покупки.

Робот Smart Tissue Autonomous Robot (STAR), США


Производитель: "Национальный детский медицинский центр" (Children"s National Medical Center), город Вашингтон, округ Колумбия. Ученые-разработчики нацелены на создание высокоточного робота для автономных операций на мягких тканях.

Краткая справка о роботе

Робот STAR основан на работе технологии NVIDIA GeForce GTX TITAN GPU с применением механической руки, с 3D-камерой, машинным зрением в ближнем диапазоне инфракрасных волн и биомаркерами для четкой ориентации в оперируемой полости.

Система Robodoc


Производитель: компания Curexo Technology Corporation, США.

Головной офис компании Curexo Technology Corporation расположен в городе Фремонт, штат Калифорния. Миссия компании заключается в повышении заботы о пациентах посредством работы над качеством и создания точных роботизированных платформ.

Краткая справка о роботе

На территории США, Европы, Японии, Кореи и Индии при помощи Robodoc было проведено 28000 операций по замене суставов.

Работа с роботом включает два этапа: планирование и составление плана перед операцией. В ходе первого этапа пациент проходит КТ-сканирование для получения и вывода изображения на 4 рабочих окна, составляющих один экран. После выбора и анализа точной анатомической структуры импланта из базы идет планирование операции с передачей информации на вспомогательный механизм ROBODOС Surgical Assistant. Робот оснащен фиксаторами и специальным регистратором DigiMatch, формирующим точное изображение картины костной ткани в пространстве.

Auris Robotic Endoscopy System (ARES)

Производитель: компания Auris Surgical Robotics, США.

Головной офис компании Auris Surgical Robotics расположен в Силиконовой долине. Компания нацелена на создание нового поколения хирургических роботов, способных расширить сферу применения специализированных платформ для проведения медицинских процедур.

Краткая справка о роботе

В конце 2014 года было проведено клиническое исследование с участием пациентов с подозрением развития рака. Типы хирургических операции проводятся за счет взаимозаменяемости механических рук робота с инструментами и гибкого эндоскопа. Среди инструментов отмечены лазеры, пинцеты, иглы и скальпели, при помощи которых хирург проведет биопсию, операцию по восстановлению слизистой желудка и иссечение опухолей. Робот не запрограммирован под самостоятельное проведение операции, поскольку процедура и ход операции контролируются человеком дистанционно через рабочую станцию на рабочем столе компьютера.

Роботизированная установка CorPath 200

Производитель: компания Corindus Vascular Robotics, США.

Головной офис компании Corindus Vascular Robotics расположен в городе Уолтем, штат Массачуссетс. Компания считается мировым лидером в области роботизированной сердечно-сосудистой хирургии.

Краткая справка о роботе

Роботизированная установка CorPath 200 предназначена для коронарной ангиопластики с расширением суженных или заблокированных артерий. Стандартное проведение операции допускает риск облучения из-за рентгена. Установка не запрограммирована под самостоятельное проведение операции, поскольку процедура и ход операции контролируются человеком дистанционно через джойстик. Удаленный контроль уточняет движение катетера и повышает безопасность пациента.

Магнитные микророботы


Производитель: Федеральная политехническая школа Лозанны (EPFL), Франция, и Eidgenössische Technische Hochschule Zürich (ETHZ), Швейцария.

Краткая справка о роботе

Магнитные микророботы предназначены для точечной доставки лекарственных веществ в организм пациента. Структура микроробота имитирует тело червя Trypanosoma brucei, который передвигается при помощи регулярного сжатия придатка-жгутика. Использование биосовместимого гидрогеля и магнитных наночастиц делает микророботов безмоторными, гибкими и мягкими. Управление проходит через электромагнитное поле, которое преобразует магнитные наночастицы в крепления и инициируют движение микроробота.


Страна-производитель: компания Medtech S.A., Франция.

Головной офис компании Medtech расположен в городе Монпелье. Миссия компании заключается в создании отношений, инструментов и программ, нацеленных на внедрение передовых медицинских решений на рынок медицинских услуг.

Краткая справка о роботе

Робот Rosa разработан для результативности и безопасности хирургических операций по неврологии. Робот Rosa – единственный роботизированный механизм, который прошел одобрение на проведение неврологических операций на территории Европы, США и Канады. Механизм работает по принципу GPS для черепа в ходе краниальных операций, требующих хирургического планирования на основании предоперационной информации, точной анатомии пациента и управления инструментами. Робот Rosa включает нейронавигационную станцию и высокоточный манипулятор, которые повышают безопасность и скорость точных нейрохирургических операций.

Профессор Дмитрий Пушкарь говорит: "Роботизированная хирургия стала настоящим переворотом в медицине. Робот da Vinci изменил качество хирургии во всем мире".

Применение роботов в медицине аналогично революции, которая предвосхищает тесное взаимодействие человека и технологий. Благодаря автоматизации снижается роль человеческого фактора, приводящего к ошибкам врачей, а лечение становится доступнее.

Фото: roboticsbusinessreview.com

На сегодняшний день робототехнологии шагнули далеко вперед, благодаря чему концепция лечения людей значительно изменилась. Исходя из того, какое количество исследовательских групп сейчас занимается изготовлением роботов, в медицине намечается огромный прогресс, особенно если сравнивать с успехами восьмилетней давности.

Первые успешные мероприятия по приходятся на 2006 год, когда ученый Сильван Мартель собрал исследовательскую группу и создал уникального на тот момент крошечного робота, габариты которого едва превышали шарик от обычной ручки. Этот искусственный организм был помещен в сонную артерию живой свиньи, где он успешно перемещался по заданным точкам. С тех пор роботы в медицине заняли свою нишу и продолжают активно развиваться. А если судить по опыту последних нескольких лет, эти технологии движутся огромными шагами.

Преимущества роботов

Главная цель создания подобных «помощников» - перемещаться не только по наиболее крупным артериям человека, но и получать данные с участков с узкими кровеносными сосудами. Благодаря этому применение роботов в медицине позволит выполнять довольно сложные операции без травматического вмешательства. Таким образом, значительно снижается риск смертности от слишком агрессивной анестезии или из-за того, что пациент страдает от аллергической реакции на тот или иной препарат.

Однако это не единственный плюс использования роботов в медицине. Например, подобные технологии могут помочь при лечении рака. Дело в том, что микророботы способны доставлять лекарственные препараты непосредственно к очагу злокачественного образования. В отличие от химиотерапии, когда агрессивные препараты распространяются по всему телу больного и вызывают непоправимые последствия, такой метод не нанесет сильного удара по иммунной системе человека.

Современные роботы в медицине способны справляться с большим перечнем задач. Однако и сегодня остается масса вопросов касательно того, как заставить столь малый искусственный организм перемещаться по крови или отслеживать его местоположение. Но некоторые современные разработки, позволяют справляться с поставленными задачами. Рассмотрим их подробнее.

«Биоракеты»

Эти роботы-помощники в медицине являются своего рода титановыми ядрами, заключенными в алюминиевые оболочки. При этом их размер не превышает 20 мкм. Когда алюминиевая оболочка соприкасается с водой, начинается реакция, в ходе которой на поверхности ядра образуется водород. Именно это вещество заставляет микроконструкцию перемещаться со скоростью, равной 150 своим диаметрам за секунду. Это равносильно тому, что человек ростом 2 метра способен проплыть за столько же времени 300 метров. Химический двигатель этого уникального робота в медицине применяется благодаря добавке специального вещества - галлия. Этот компонент уменьшает скорость образования оксидного налета. Благодаря этому микроробот может проработать порядка 5 минут с максимальным запасом хода 900 мм (при условии пребывания в воде).

Чтобы направить микроскопический агрегат по заданному направлению, используется внешнее магнитное поле. Таким образом, «биоракета» применима для доставки лекарственных препаратов в определенную точку организма человека.

Мускульные роботы

Это довольно интересное направление робототехники. Мускульные роботы в медицине применяются для стимуляции мышечных клеток. Работают такие микроскопические агрегаты посредством электрических импульсов, которые они передают. Сами роботы представляют собой своего рода хребты, изготовленные из гидрогеля. Они работают по такому же принципу, что и в организме млекопитающих. Например, если речь идет о человеческом теле, то мышцы начинают сокращаться благодаря сухожилиям. В случае с микророботом этот процесс происходит благодаря электрическому заряду.

Да Винчи

Робот «Леонардо» в медицине получил особую популярность. Он был создан, чтобы в будущем заменить хирургов. На сегодняшний день этот самостоятельный механизм весом 500 кг, оснащенный четырьмя «руками», способен справляться с огромным количеством задач. Три его конечности оснащены миниатюрными инструментами для выполнения сложнейших операций. На четвертой «руке» находится крошечная видеокамера.

То, как действуют такие роботы в медицине, фото демонстрирует лучше всего. Да Винчи способен оперировать через самые крошечные разрезы, ширина которых составляет не более нескольких сантиметров. Благодаря этому после хирургического вмешательства у пациента не остается безобразных шрамов.

В процессе работы «Леонардо» на некотором отдалении от него сидит медицинский работник, который управляет пультом. Благодаря современному джойстику врач может выполнять сложнейшие манипуляции с ювелирной точностью. Все действия передаются конечностям робота, который повторяет движения пальцев рук.

Стоит также отметить, что «руки» агрегата немного отличаются от человеческих кистей тем, что манипуляторы способны работать в режимах. Кроме этого искусственные «пальцы» не устают и могут мгновенно замирать, если оператор случайно отпустит пульт управления. Врач может контролировать свои движения при помощи мощных окуляров, которые позволяют увеличивать картинку в 12 раз.

«Киробо»

Этот интересный робот был разработан специально для космонавтов, которые испытывают психологическое давление, находясь так далеко от родной планеты. Человекообразная машина отличается небольшими габаритами. Ее рост составляет всего 34 см. Однако этого вполне достаточно. Робот способен поддерживать полноценную беседу, реагировать на вопросы и имитировать «живое» общение. Единственный минус новой разработки заключается в том, что общается он пока что исключительно на японском языке.

Робот прекрасно отличает человеческую речь от прочих звуков. Кроме этого, он способен узнавать людей, с которыми уже общался до этого. Он может определять настроение исходя из мимики и вообще много чего умеет. При необходимости он может даже обнять.

Некоторые ученые полагают, что данные интеллектуальные роботы в медицине не нужны. Однако они вполне могут найти применение в психотерапии.

«ПАРО»

Этот помощник работает в качестве зоотерапевта. Внешне он был создан в виде Наружная оболочка робота изготовлена из мягкого материала, который напоминает натуральную белую шкуру реального животного. Внутри он набит всевозможными датчиками (прикосновения, температуры, света, положения, звука и прочего). Этот полноценный искусственный интеллект прекрасно осознает где он находится, способен откликаться на присвоенное ему имя. Уникальный робот с умилительной мордочкой различает грубость и ласковое отношение.

Сегодня этот интересный робот уже широко применяется для терапии различных категорий пациентов. Его можно погладить, обнять, пообщаться с ним или просто рассказать о своих переживаниях. В будущем данные роботы будут направлены в дома престарелых, детские сады и реабилитационные центры для помощи людям, страдающим от психологических переживаний. Очень часто в послеоперационный период пациенты нуждаются в поддержке, однако в медицинских учреждениях невозможно содержать животных, поэтому такой искусственный интеллект станет настоящим прорывом в восстановительной медицине.

«Хоспи»

Этот робот предназначен для того, чтобы заменить фармацевтов. Это поможет медперсоналу значительно сэкономить время на поиск нужных лекарственных препаратов и доставку их в стенах больниц. По большому счету этот помощник представляет собой роботизированную аптечку, высота которой составляет 130 см. Робот способен перевозить вес до 20 кг, этого вполне достаточно для того, чтобы перемещать по госпиталю большое количество самых разных лекарственных препаратов и образцов. При перемещении "Хоспи" способен огибать препятствия, поэтому риск того, что он столкнется с персоналом или посетителями больницы сведен практически к нулю.

«РП Вита»

Этот робот способен оказывать помощь в консультировании на расстоянии. Виртуальный «помощник» позволяет лечащему врачу совершать обход за считанные минуты. Кроме этого благодаря роботу становится возможным следить за состоянием тяжелобольных пациентов, требующих особенного внимания на протяжении дня и ночи.

Высота чуда техники составляет 1,5 метров. Внутри робота установлена система специальных звуковых и лазерных датчиков, за счет которых осуществляется построение маршрута агрегата. Также он оснащен экраном, на котором будет отображаться лицо лечащего врача. Благодаря этому имитируется полноценное общение с пациентами, которые в полной мере ощущают присутствие медицинского сотрудника. «РП Вита» также оснащен современными диагностическими инструментами. Для работы с агрегатом достаточно ноутбука или планшета.

«Хал»

Данный робот представляет собой специализированный экзоскелет, благодаря которому парализованные люди смогут полноценно передвигаться.

Датчики оборудования закрепляются на коже пациентов и начинают считывать силу импульсов, которые исходят от тех или иных мышц. Если какой-либо узел работает не в полной мере, то активируется экзоскелет, и органы получают необходимые для их работы заряды.

Сегодня робот представлен в двух модификациях: целый скелет или только для ног.

«Ватсон»

Этот суперкомпьютер оснащен сразу 90 серверами по четыре процессора, в каждом из которых установлено по восемь ядер. Оперативная память робота составляет шестнадцать терабайт. «Ватсон» - это онколог, который способен ставить диагнозы за короткое время. Агрегат оснащен отличным искусственным интеллектом, благодаря чему он способен быстро считывать информацию и делать необходимые выводы. Робот за считанные минуты обрабатывает до 600 000 медицинских справочников и других необходимых для диагностирования документов. Врачу остается загрузить в память болезни пациента и получить вероятный диагноз. Кроме того, «Ватсону» можно задавать вопросы, только пока что исключительно в письменной форме.

В заключение

Исходя из быстро развивающихся технологий, несложно сделать вывод, что роботы в медицине в будущем будут незаменимы. Они позволят медицинским учреждениям перейти на новый уровень диагностирования и лечения самых сложных заболеваний. При этом речь идет также и о психических больных.

Da Vinci

Назначение : хирург

Как устроен : Пока робот-хирург - это не самостоятельно действующий механизм, а послушный 500-килограммовый инструмент в руках врача. У операционного модуля четыре «руки». Три из них оканчиваются миниатюрными хирургическими инструментами - скальпелями и зажимами, а четвертая управляет крошечной видеокамерой. Da Vinci оперирует через сантиметровые проколы, поэтому без камеры не обойтись, зато у пациента почти не остается шрамов. Когда робот «колдует» над больным, хирург-человек сидит за пультом в отдалении от стола. Врач манипулирует джойстиками, которые с ювелирной точностью передают движения пальцев и кисти «рукам» da Vinci. Как и у человеческой кисти, у них семь степеней свободы, но манипуляторы гораздо сильнее, не устают и мгновенно замирают, если хирург отпустит джойстики. Свои действия врач контролирует через окуляр, куда поступает увеличенная до 12 раз картинка с видеокамеры.

Где применяется : Роботы-хирурги da Vinci работают в сотнях клиник по всему миру. В России 20 таких аппаратов. Один из них - в Федеральном центре сердца, крови и эндокринологии им. В.А. Алмазова (СПб.), где da Vinci выполняет около сотни операций в год. Его «конек» - точное и аккуратное удаление лишнего: опухолей, грыж, аневризм.

Kirobo

Назначение : антидепрессант для космонавтов

Как устроен : Человекоподобный робот высотой всего 34 см создан специально для «живого» общения с человеком. Робот разговаривает, понимает сказанное и естественно реагирует на вопросы. Искусственный интеллект Kirobo отличает человеческую речь (пока только японскую) от окружающих звуков, выделяет в ее потоке отдельные слова и определяет смысл фраз. Андроид запоминает и узнает конкретных людей, различает эмоции, выраженные мимикой и жестами. Тело робота имеет 20 степеней свободы, так что Kirobo отвечает человеку не только словом, но и движениями.

Где применяется : С декабря 2013 года Kirobo общается на Международной космической станции с астронавтом из Японии Коити Ваката. Все беседы записываются на видео, и по итогам миссии японские ученые хотят выяснить, может ли андроид оказать реальную психологическую поддержку человеку.

PARO

Назначение : зоотерапевт

Как устроен : PARO - робот, который выглядит как детеныш гренландского тюленя. Снаружи - мягкая белая шкурка и умильная мордочка. Внутри - датчики прикосновения, света, звука, температуры, положения в пространстве, синтезатор голоса и искусственный интеллект. Электронная зверушка понимает, где находится, запоминает данное ей имя и откликается на него, различает грубость и похвалу. Общаясь с человеком, робот формирует собственный «характер» и становится «настоящим» питомцем.

Где применяется : PARO можно гладить, обнимать, делиться с ним переживаниями. Робозверь поймет и ответит соответственно. Такого эмоционального отклика часто не хватает в больницах детям, пожилым и тем, кто надолго прикован к постели. Зоотерапия помогает пережить долгие дни в госпитале, но содержать животных в больнице часто невозможно. Поэтому с 2003 года роботюленями обзавелись клиники Японии, Европы и США, например клиника Национальной ассоциации болезни Альцгеймера (Чикаго), Детский диагностический центр (Вентура, Калифорния).

HOSPI

Назначение : фармацевт

Как устроен : Огромную часть времени медперсонал больниц тратит на простые действия вроде «принеси-унеси-найди-где-лежит». HOSPI освободил врачей и медсестер для более важных дел. Роботизированная «аптечка» высотой 130 см перевозит до 20 кг лекарств и образцов. В память робота вводят указания, кому какие препараты прописаны, и HOSPI сам выбирает оптимальный маршрут. По пути он огибает препятствия, в том числе движущиеся. Прибыв на сестринский пост, робот сообщает, что и кому он привез. Персоналу остается только отдать лекарства пациентам.

Где применяется : У себя на родине, в Японии, HOSPI работает более чем в 50 клиниках. В 2009 году несколько экземпляров отправились в больницы Южной Кореи.

RP-VITA

Назначение : врач на расстоянии

Как устроен : RP-VITA - робот телеприсутствия, с его помощью врач может виртуально делать обходы или наблюдать за тяжелым больным круглые сутки, находясь в другом месте. По больничным коридорам за доктора будет кататься робот высотой около 1,5 м, который прокладывает путь с помощью системы лазерных и звуковых датчиков. В палате пациент или медсестра видят лицо врача на экране и могут пообщаться с доктором. RP-VITA возит с собой базовый набор диагностических инструментов, и, если доктору нужно что-то уточнить, медсестра тут же проводит обследование. Врачу для общения с пациентом нужен только ноутбук или планшет.

Где применяется : С мая 2013 года RP-VITA находится на службе в шести клиниках США и в Институте здравоохранения Мексики. Роботы следят за тяжелыми пациентами, чтобы вовремя заметить опасные изменения жизненных показателей.

HAL

Назначение : экзоскелет

Как устроен : HAL - робот-костюм, предназначенный для того, чтобы в прямом смысле поднять на ноги парализованных людей. Датчики экзоскелета, прикрепленные к поверхности кожи, считывают слабые электрические импульсы, которые мозг посылает мышцам, а затем двигатели робота делают всю работу. HAL существует в двух вариантах: целый скелет или только «ноги».

Где применяется : Роботы HAL проходят испытания в 10 японских клиниках. Они помогают восстановить двигательные навыки пациентов, временно обездвиженных из-за травмы или долгой болезни.

IBM Watson

Назначение : онколог-диагност

Как устроен : IBM Watson - классический суперкомпьютер из 90 серверов по 4 восьмиядерных процессора в каждом, а его оперативная память - 16 терабайт. «Ватсон» - машина с искусственным интеллектом, он самостоятельно изучает источники информации и делает выводы. Прежде чем приступить к работе, будущий диагност проанализировал 605 000 медицинских документов. Врач загружает в память робота историю болезни и через несколько минут получает вероятный диагноз и курс лечения. Если доктору нужно что-то уточнить, он может задать Ватсону вопрос в письменной форме.

Где применяется : В 2013 году шесть «Ватсонов» были приняты в клиники США в качестве онкологов-диагностов. Результаты превзошли все ожидания: суперкомпьютеры ставят диагноз и выбирают курс лечения на 40% точнее, чем живые врачи. Впрочем, итоговое решение все равно остается за онкологом-человеком. Зато с суперкомпьютером всегда можно посоветоваться. Например, отправить сообщение вроде «Пациент ночью кашлял» или «Эритроциты упали» - «Ватсон» тут же пересмотрит историю болезни и уточнит вердикт.

Фото: AFP/EAST NEWS, CORBIS/FOTO S.A., PANASONIC, DIOMEDIA, REUTERS/VOSTOCK PHOTO, IBM

В начале 2018 года стало известно об использовании роботов в качестве медсестер. Проект анонсирован в больнице города Нагоя (Япония), в котором находится большой музей, посвященный робототехнике.

В феврале 2018 года в Университетской клинике Нагои (Nagoya University Hospital) запустит четырех роботов Toyota , которые станут помощниками медицинскому персоналу. В частности, на это автоматизированное оборудование возложат функции раздачи медикаментов больным в палатах, доставку анализов и т. п. Роботы смогут передвигаться как по этажу, так и между различными отделениями, которые располагаются на разных этажах.

Каждый робот имеет высоту 125 см, ширину 50 см и глубину 63 см. Максимальная скорость передвижения составляет 3,6 км/ч, максимальный вес перевозимого груза - 30 кг.

Как отмечает издание Engadget, по сути, роботы представляют собой портативные холодильники объемом 90 литров, которые оснащены радарами и камерами для передвижения по медицинскому учреждению. Роботы объезжают людей, а в случае столкновения приносят извинения и вежливо просят пройти. Работники клиники могут вызывать роботов к себе и назначать пункты следования при помощи планшетных компьютеров.


Роботы разработаны совместными усилиями специалистов Университетской клиники Нагои и подразделения Toyota Industries (производит автозапчасти и электронику). Пробный запуск устройств будет проходить в ночную смену - в период с 17:00 до 8:00, когда меньше людей ходят по этажам. В случае успешного тестирования роботы могут быть развернуты в других больницах.

Использование роботов в домах престарелых в Японии

В ноябре 2017 года стало известно о тестировании роботов в нескольких тысячах домов престарелых в Японии . Искусственный интеллект и механические ассистенты помогают персоналу ухаживать за людьми в возрасте и заменяют последним собеседников.

По прогнозам японского правительства, объем рынка роботов, заменяющих медицинских работников для ухода за больными, к 2020 году достигнет 54,3 млрд иен (около $480 млн), увеличившись втрое по сравнению с показателем 2015-го. Расходы здесь гораздо ниже по сравнению с роботами, применяемыми на предприятиях и в сфере услуг.

Одной из причин такого отставания спроса на автоматизированное оборудование, присматривающего за здоровьем людей, является дороговизна. Несмотря на достаточно высокий уровень жизни в Японии, далеко не все пенсионеры могут позволить себе покупку робота .

В Японии предусмотрены субсидии для разработчиков роботов. Дополнительные льготы предоставляются при поставках устройств в лечебно-реабилитационные центры для престарелых и инвалидов. Около 5 тыс. таких учреждений к ноябрю 2017 года задействуют роботов.

Они используются для общения с пациентами, проведения лечебной физкультуры, обхода больничных коридоров для мониторинга за экстренными ситуациями, а робот-пес Aibo от Sony вовсе заменяет домашнего питомца.

В домах престарелых все сильнее распространяются системы, помогающие медперсоналу ухаживать за пожилыми людьми: например, поднимать и перемещать парализованных по этажу.

Роботы еще не смогут полностью заменить людей в социальных учреждениях, однако позволяют персоналу сосредоточиться на общении и других задачах, требующих большего вовлечения, отдав бытовые дела на попечение гаджетов. Кроме того, как показало общенациональное исследование, примерно треть жителей Японии, пользующихся роботами, в итоге стали более активными и независимыми, отмечает издание The Economist.

Прогноз IDC по использованию роботов в медицине

К 2020 году больницы станут активнее использовать роботов. Планируется как клиническое применение, так и автоматизация с их помощью несложных задач, сообщает издание Healthcare IT News со ссылкой на проведенное в 2017 году исследование IDC .


Опрос IDC среди лечебных учреждений на 200 и более койко-мест позволил оценить планы внедрения роботов и дронов . Почти треть респондентов заявили, что уже используют у себя роботов. Такая практика станет обычным явлением для учреждений здравоохранения, как только в больницах и клиниках поймут, каким образом внедрение роботов способно помочь автоматизировать процессы, снизить издержки и улучшить качество оказания медицинских услуг. По оценкам IDC, повсеместное распространение роботов в больницах США произойдет в период от одного года до трех лет.

Интересно, что в отличие от роботов, которые уже успели проникнуть в сферу здравоохранения, беспилотные летательные аппараты (БПЛА) пока не используются лечебными учреждениями. Во всяком случае, такого опыта не оказалось ни у одной из больниц, участвовавших в опросе IDC.

Тем не менее, аналитики убеждены, что в следующие три-пять лет дроны также найдут применение в здравоохранении.

То, как беспилотники могут пригодиться для оказания медицинской помощи, в июне 2017 года стало известно из опыта шведских ученых. С помощью экспериментальных полетов БПЛА специалисты продемонстрировали, что дроны способны на 17 минут быстрее доставлять в нужную точку автоматический внешний дефибриллятор для помощи пациенту, нежели это происходит в случае с обычной машиной скорой помощи.