Производственный шум. Его виды и источники. Основные характеристики Шум и вибрация как факторы производственной среды

Производственный шум – это совокупность звуков различной интенсивности и высоты, беспорядочно изменяющихся во времени, возникающих в условиях производства и неблагоприятно воздействующих на организм. Производственный шум при превышении гигиенического уровня вызывает у работников профессиональную тугоухость, а иногда и глухоту. Еще одной профессиональной патологией органа слуха может быть звуковая травма. Она чаще всего обусловлена воздействием интенсивного импульсного шума и заключается в механическом повреждении барабанной перепонки среднего уха. Наряду с воздействием на орган слуха происходит и общее воздействие шума на организм, в первую очередь, на нервную и сердечно-сосудистую системы.

Характеристикой постоянного шума на рабочих местах являются уровни звукового давления в децибелах в октавных полосах со среднегеометрическими частотами 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц, определяемые следующим образом, дБ:

где Р – среднеквадратичная величина звукового давления, Па; Р 0 – исходное значение звукового давления (в воздухе Р 0 = 2·10 -5 Па, – порог слышимости).

В качестве характеристики постоянного широкополосного шума на рабочих местах, используемой для аттестации рабочих мест , принимают уровень звука, измеренный на временной характеристике «медленно» шумомера, определяемый по формуле, дБА:

где Р (А) – среднеквадратичная величина звукового давление с учетом коррекции «А» шумомера, Па; Р 0 – исходное значение звукового давления (в воздухе Р 0 = 2·10 -5 Па).

Для измерения используется стандартизованная шкала «А» шумомера, вводящая поправки к уровню звука и показывающая уровни звука, адекватные восприятию шума органами слуха. Характеристика «медленно» позволяет усреднить уровень постоянного шума.

По характеру спектра шума выделяют:

– тональный шум, в спектре которого имеются выраженные тоны. Тональный характер шума для практических целей устанавливается измерением в 1/3 октавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ.

По временным характеристикам шум разделяют на постоянный, или стабильный, и непостоянный.

Постоянный шум – это шум, уровень звука которого за 8-часовой рабочий день или за время измерения в помещениях жилых и общественных зданий, на территории жилой застройки изменяется во времени не более чем на 5 дБА при измерениях на временной характеристике шумомера «медленно».

Непостоянный шум – это шум, уровень звука которого за 8-часовой рабочий день, за рабочую смену или во время измерения в помещениях жилых и общественных зданий, на территории жилой застройки изменяется во времени более чем на 5 дБА при измерениях на временной характеристике шумомера «медленно».


Непостоянный шум может быть колеблющимся, прерывистым и импульсным.

Колеблющийся во времени шум – это шум, уровень звука которого непрерывно изменяется во времени.

Прерывистый шум – это шум, уровень звука которого ступенчато изменяется (на 5 дБА и более), причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 с и более.

Импульсный шум – это шум, состоящий из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с, при этом уровни звука в дБАI и дБА, измеренные соответственно на временных характеристиках «импульс» и «медленно», различаются не менее чем на 7 дБ.

Для двух последних видов шума (прерывистый и импульсный) характерно резкое изменение звуковой энергии во времени (свистки, гудки, удары кузнечного молота, выстрелы и пр.).

Характеристикой непостоянного шума на рабочих местах является эквивалентный (по энергии) уровень звука в децибелах по шкале «А» (дБА).

Оценка условий труда при воздействии на работника непостоянного шума производится по результатам измерения эквивалентного уровня звука за смену (интегрирующим шумомером) или расчетным способом.

Необходимо характеризовать воздействие шума на работника за все время рабочей смены. Продолжительность измерения для непостоянного шума должна составлять :

– для колеблющегося во времени – половина рабочей смены или полный технологический цикл (допускается общая продолжительность измерения 30 мин, состоящая из трех циклов, каждый продолжительностью 10 мин);

– для импульсного – 30 мин;

– для прерывистого – полный цикл характерного действия шума.

Измерение шума для контроля соответствия фактических уровней шума на рабочих местах допустимым уровням должно проводиться при работе не менее 2/3 установленных в данном помещении единиц технологического оборудования в наиболее часто реализуемом (характерном) режиме работы. Во время проведения измерений должно быть включено оборудование вентиляции, кондиционирования воздуха и другие обычно используемые в помещении устройства, являющиеся источником шума.

Микрофон следует располагать на высоте 1,5 м над уровнем пола и рабочей площадки (если работа выполняется стоя) или на высоте уха человека, подвергающегося воздействию шума (если работа выполняется сидя), в направлении максимального уровня шума и на расстоянии от оператора, который проводит измерения, равном или более 0,5 м.

Для оценки шума на постоянных рабочих местах измерения следует проводить в точках, соответствующих установленным постоянным рабочим местам. Для оценки шума на непостоянных рабочих местах измерение нужно проводить в рабочей зоне наиболее частого пребывания работника.

При измерении уровней звука и эквивалентных уровней звука, дБА, переключатель частотной характеристики шумомера устанавливают в положение «А», переключатель временной характеристики измерительного прибора устанавливают в положение «медленно».

При проведении измерений эквивалентных уровней звука прерывистого шума измеряют уровни звука и продолжительность каждой ступени. Расчет эквивалентного уровня звука можно произвести по методике из руководства Р2.2.2006–05 , которая приведена ниже. Так же можно рассчитать средний уровень звука, создаваемого различными источниками, если известны значения уровней звука, создаваемого каждым источником.

Определение среднего уровня звука

Средний уровень звука по результатам нескольких измерений определяется как среднее арифметическое по формуле (12), если измеренные уровни различаются не более чем на 7 дБА, и по формуле (13), если они различаются более чем на 7 дБА:

где L 1 , L 2 , L 3 , L n – измеренные уровни звука (шума), дБА; n – число измерений.

Для вычисления среднего значения уровней звука по формуле (13) измеренные уровни возможно просуммировать с использованием табл. 30 и вычесть из этой суммы 10 lg n , значение которых определяется по табл. 31, при этом формула (13) принимает вид:

L ср = L сум – 10 lg n . (14)

Суммирование измеренных уровней L 1 , L 2 , L 3 , … L n производят попарно последовательно следующим образом. По разности уровней L 1 и L 2 по табл. 30 определяют добавку ΔL , которую прибавляют к большему уровню L 1 , в результате чего получают уровень L 1,2 = L 1 +ΔL . Уровень L 1,2 суммируется таким же образом с уровнем L 3 и получают уровень L 1,2,3 и т. д. Окончательный результат L cy м округляют до целого числа децибел.

Таблица 30

Добавка уровня звука при определении среднего уровня звука

При равных слагаемых уровнях, т. е. при L 1 = L 2 = L 3 = ... = L n = L ,
L сум можно определять по формуле

L сум = L + 10 lg n . (15)

В табл. 31 приведены значения 10 lg n в зависимости от n .

Таблица 31

Значения 10 lg n для расчета среднего значения уровней звука

Пример . Необходимо определить среднее значение для измеренных уровней звука 84, 90, и 92 дБА.

Складываем первые два уровня – 84 и 90 дБА; их разности 6 дБ соответствует добавка по табл. 30, равная 1 дБ, т. е. их сумма равна
90 + 1 = 91 дБА. Затем складываем полученный уровень 91 дБА с оставшимся уровнем 92 дБА; их разности 1 дБ соответствует добавка 2,5 дБ,
т. е. суммарный уровень равен 92 + 2,5 = 94,5 дБА, или округленно получаем 95 дБА.

По табл. 31 величина 10 lg n для трех уровней равна 5 дБ, поэтому получаем окончательный результат для среднего значения, равный
95 – 5 = 90 дБА.

Расчет эквивалентного уровня звука

Метод основан на использовании поправок на время действия каждого уровня. Он применим в тех случаях, когда имеются данные об уровнях и продолжительности воздействия шума на рабочем месте, в рабочей зоне или различных помещениях.

Расчет производится следующим образом. К каждому измеренному уровню звука добавляется (с учетом знака) поправка по табл. 32, соответствующая времени его действия (в часах или процентах от длительности смены). Затем полученные уровни звука складываются попарно последовательно с учетом разности двух уровней с использованием табл. 30, (см. ниже пример расчета).

Таблица 32

Поправка к расчету эквивалентного уровня звука

Время ч 0,5 15 мин 5 мин
%
Поправка в дБ –0,6 –1,2 –2 –3 –4,2 –6 –9 –12 –15 –20

Пример № 1 расчета эквивалентного уровня звука

Уровни шума за 8-часовую рабочую смену составляли 80, 86 и
94 дБА в течение 5, 2 и 1 ч соответственно. Этим промежуткам времени соответствуют поправки по табл. 32, равные –2, –6, –9 дБ. Складывая их
с уровнями шума, получаем 78, 80, 85 дБА. Теперь, используя табл. 30, складываем эти уровни попарно: сумма первого и второго дает 82 дБА, а их сумма с третьим составляет 86,7 дБА. Округляя, получаем окончательное значение эквивалентного уровня шума 87 дБА. Таким образом, воздействие этих шумов равносильно действию шума с постоянным уровнем
87 дБА в течение 8 ч.

Пример № 2 расчета эквивалентного уровня звука

Прерывистый шум 119 дБА действовал в течение 6-часовой смены суммарно в течение 45 мин (т. е. 11 % смены), уровень фонового шума в паузах (т. е. 89 % смены) составлял 73 дБА. По табл. 30 поправки равны
–9 и –0,6 дБ: складывая их с соответствующими уровнями шума, получаем 110 и 72,4 дБА, и поскольку второй уровень значительно меньше первого (табл. 30), им можно пренебречь. Окончательно получаем эквивалентный уровень шума за смену 110 дБА, что превышает допустимый уровень
80 дБА на 30 дБА.

При воздействии в течение смены на работающего шумов с разными временными (постоянный, непостоянный – колеблющийся, прерывистый, импульсный) и спектральными (тональный) характеристиками в различных сочетаниях измеряют или рассчитывают эквивалентный уровень звука. Для получения в этом случае сопоставимых данных измеренные или рассчитанные эквивалентные уровни звука импульсного и тонального шумов следует увеличить на 5 дБА, после чего полученный результат можно сравнивать с ПДУ без внесения в него понижающей поправки, установленной СН 2.2.4/2.1.8.562–96 .

Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах с учетом напряженности и тяжести трудовой деятельности представлены в табл. 33.

Таблица 33

Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах для трудовой деятельности разных категорий тяжести и напряженности, дБА

Количественную оценку тяжести и напряженности трудового процесса следует проводить в последовательности, изложенной в разделе «Оценка тяжести и напряженности трудового процесса» в соответствии с Руководством Р2.2.2006–05 .

Предельно допустимые уровни звукового давления в октавных полосах частот, уровни звука и эквивалентные уровни звука для основных наиболее типичных видов трудовой деятельности и рабочих мест, разработанные с учетом категорий тяжести и напряженности труда, представлены
в табл. 34.

Таблица 34

ПДУ звукового давления, уровни звука и эквивалентные уровни звука для основных наиболее типичных видов трудовой деятельности и рабочих мест

№ п/п Вид трудовой деятельности, рабочее место Уровни звукового давления, дБ, в октавных полосах со среднегеометрическими частотами, Гц Уровни звука и эквива-лентные уровни звука, дБА
31,5
Творческая деятельность, руководящая работа с повышенными требованиями, научная деятельность, конструирование и проектирование, программирование, преподавание и обучение, врачебная деятельность. Рабочие места в помещениях дирекции, проектно конструкторских бюро, расчетчиков, программистов вычислительных машин, в лабораториях для теоретических работ и обработки данных, приема больных в здравпунктах
Высококвалифицированная работа, требующая сосредоточенности, административно управленческая деятельность, измерительные и аналитические работы в лаборатории; рабочие места в помещениях цехового управленческого аппарата, в рабочих комнатах конторских помещений, в лабораториях

Продолжение табл. 34

Работа, выполняемая с часто получаемыми указаниями и акустическими сигналами; Работа, требующая постоянного слухового контроля; операторская работа по точному графику с инструкцией; диспетчерская работа. Рабочие места в помещениях диспетчерской службы, кабинетах и помещениях наблюдения и дистанционного управления с речевой связью по телефону; машинописных бюро, на участках точной сборки, на телефонных и телеграфных станциях, в помещениях мастеров, в залах обработки информации на вычислительных машинах
Работа, требующая сосредоточенности; работа с повышенными требованиями к процессам наблюдения и дистанционного управления производственными циклами. Рабочие места за пультами в кабинах наблюдения и дистанционного управления без речевой связи по телефону, в помещениях для размещения шумных агрегатов вычислительных машин
Выполнение всех видов работ за исключением перечисленных в п.п.1-4 и аналогичных им) на постоянных рабочих местах в производственных помещениях и на территории предприятий

Окончание табл. 34

Подвижной состав железнодорожного транспорта
Рабочие места в кабинах машинистов тепловозов, электровозов, поездов метрополитена, дизель-поездов и автомотрис
Рабочие места в кабинах машинистов скоростных и пригородных электропоездов
Помещения для персонала вагонов поездов дальнего следования, служебных помещений, рефрижераторных секций, вагонов электростанций, помещений для отдыха багажных и почтовых отделений
Служебные помещения в багажных и почтовых вагонов, вагонов-ресторанов
Тракторы, самоходные шасси, самоходные, прицепные и навесные сельскохозяйственные машины, строительно-дорожные, землеройно-транспортные, мелиоративные и другие аналогичные виды машин
Рабочие места водителей и обслуживающего персонала автомобилей
Рабочие места водителей и обслуживающего персонала (пассажиров) легковых автомобилей
Рабочие места водителей и обслуживающего персонала тракторов, самоходных шасси, прицепных и навесных сельскохозяйственных машин, строительно-дорожных и других аналогичных машин

Шум — это совокупность звуков, неблагоприятно воздействующих на организм человека и мешающих его работе и отдыху.

Источниками звука являются упругие колебания материальных частиц и тел, передаваемых жидкой, твердой и газообразной средой.

Скорость звука в воздухе при нормальной температуре составляет приблизительно 340 м/с, в воде -1 430 м/с, в алмазе — 18 000 м/с.

Звук с частотой от 16 Гц до 20 кГц называется слышимый, с частотой менее 16 Гц — и более 20 кГц — .

Область пространства, в котором распространяются звуковые волны, называется звуковым полем, которое характеризуется интенсивностью звука, скоростью его распространения и звуковым давлением.

Интенсивность звука — это количество звуковой энергии, передаваемой звуковой волной за 1 с через площадку 1 м 2, перпендикулярную направлению распространения звука, Вт/м2.

Звуковое давление — им называется разность между мгновенным значением полного давления, создаваемого звуковой волной и средним давлением, которое наблюдается в невозмущенной среде. Единица измерения — Па.

Порог слуха молодого человека в диапазоне частот от 1 000 до 4 000 Гц соответствует давлению 2× 10-5 Па. Наибольшее значение звукового давления, вызывающего болезненные ощущения, называется порогом болевого ощущения и составляет 2× 102 Па. Между этими значениями лежит область слухового восприятия.

Интенсивность воздействия шума на человека оценивается уровнем звукового давления (L), который определяется как логарифм отношения эффективного значения звукового давления к пороговому. Единица измерения — децибел, дБ.

На пороге слышимости при среднегеометрической частоте 1 000 Гц уровень звукового давления равен нулю, а на пороге болевого ощущения — 120-130 дБ.

Окружающие человека шумы имеют разную интенсивность: шепот — 10-20 дБА, разговорная речь — 50-60 дБА, шум от двигателя легкового автомобиля — 80 дБА, а от грузового — 90 дБА, шум от оркестра — 110-120 дБА, шум при взлете реактивного самолета на расстоянии 25 м — 140 дБА, выстрел из винтовки — 160 дБА, а из тяжелого орудия — 170 дБА.

Виды производственного шума

Шум, в котором звуковая энергия распределена по всему спектру, называется широкополосным ; если прослушивается звук определенной частоты, шум называется тональным ; шум, воспринимаемый как отдельные импульсы (удары), называется импульсным.

В зависимости от характера спектра шумы разделяются на низкочастотные (максимальное звуковое давление меньше 400 Гц), среднечастотные (звуковое давление в пределах 400-1000 Гц) и высокочастотные (звуковое давление больше 1000 Гц).

В зависимости от временных характеристик шумы разделяются на постоянные и непостоянные.

Непостоянные шумы бывают колеблющимися по времени, уровень звука которых непрерывно изменяется во времени; прерывистыми, уровень звука которых резко падает до уровня фонового шума; импульсными , состоящими из сигналов менее 1 с.

В зависимости от физической природы шумы могут быть:

  • механическими - возникающими при вибрации поверхностей машин и при одиночных или периодических ударных процессах (штамповка, клепка, обрубка и т.п.);
  • аэродинамическими — шумы вентиляторов, компрессоров, двигателей внутреннего сгорания, выпусков пара и воздуха в атмосферу;
  • электромагнитными - возникающими в электрических машинах и оборудовании за счет магнитною поля, обусловленного электрическим током;
  • гидродинамическими - возникающими вследствие стационарных и нестационарных процессов в жидкостях (насосы).

В зависимости от характера действия шумы делятся на стабильные, прерывистые и воющие ; последние два особенно неблагоприятно действуют на слух.

Шум создается одиночными или комплексными источниками, находящимися снаружи или внутри здания, — это прежде всего транспортные средства, техническое оборудование промышленных и бытовых предприятий, вентиляторные, газотурбокомпрессорные установки, санигарно-техническое оборудование жилых зданий, трансформаторы.

В производственной сфере шумы наиболее распространены в промышленности и сельском хозяйстве. Значительный уровень шума наблюдается в горнорудной промышленности, машиностроении, лесозаготовительной и деревообрабатывающей, текстильной промышленности.

Воздействие шума на организм человека

Шум, возникающий при работе производственного оборудования и превышающий нормативные значения, воздействует на центральную и вегетативную нервную систему человека, органы слуха.

Шум воспринимается весьма субъективно. При этом имеет значение конкретная ситуация, состояние здоровья, настроение, окружающая обстановка.

Основное физиологическое воздействие шума заключается в том, что повреждается внутреннее ухо, возможны изменения электрической проводимости кожи, биоэлектрической активности головного мозга, сердца и скорости дыхания, общей двигательной активности, а также изменения размера некоторых желез эндокринной системы, кровяного давления, сужение кровеносных сосудов, расширение зрачков глаз. Работающий в условиях длительного шумового воздействия испытывает раздражительность, головную боль, головокружение, снижение памяти, повышенную утомляемость, понижение аппетита, нарушение сна. В шумном фоне ухудшается общение людей, в результате чего иногда возникает чувство одиночества и неудовлетворенности, что может привести к несчастным случаям.

Длительное воздействие шума, уровень которого превышает допустимые значения, может привести к заболеванию человека шумовой болезнью — нейросенсорная тугоухость. На основании всего выше сказанного шум следует считать причиной потери слуха, некоторых нервных заболеваний, снижения продуктивности в работе и некоторых случаях потери жизни.

Гигиеническое нормирование шума

Основная цель нормирования шума на рабочих местах — это установление предельно допустимого уровня шума (ПДУ), который при ежедневной (кроме выходных дней) работе, но не более 40 часов в неделю в течение всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или отдаленные сроки жизни настоящего и последующих поколений. Соблюдение ПДУ шума не исключает нарушения здоровья у сверхчувствительных лиц.

Допустимый уровень шума — это уровень, который не вызывает у человека значительного беспокойства и существенных изменений показателей функционального состояния систем и анализаторов, чувствительных к шуму.

Предельно допустимые уровни шума на рабочих местах регламентированы СН 2.2.4/2.8.562-96 “Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки”, СНиП 23-03-03 “Защита от шума”.

Мероприятия по защите от шума

Защита от шума достигается разработкой шумобезопасной техники, применением средств и методов коллективной защиты, а также средств индивидуальной защиты.

Разработка шумобезопасной техники — уменьшение шума в источнике — достигается улучшением конструкции машин, применением малошумных материалов в этих конструкциях.

Средства и методы коллективной защиты подразделяются на акустические, архитектурно-планировочные, организационно-технические.

Защита от шума акустическими средствами предполагает:

  • звукоизоляцию (устройство звукоизолирующих кабин, кожухов, ограждений, установку акустических экранов);
  • звукопоглощение (применение звукопоглощающих облицовок, штучных поглотителей);
  • глушители шума (абсорбционные, реактивные, комбинированные).

Архитектурно-планировочные методы — рациональная акустическая планировка зданий; размещение в зданиях технологического оборудования, машин и механизмов; рациональное размещение рабочих мест; планирование зон движения транспорта; создание шумозащищенных зон в местах нахождения человека.

Организационно-технические мероприятия — изменение технологических процессов; устройство дистанционного управления и автоматического контроля; своевременный планово-предупредительный ремонт оборудования; рациональный режим труда и отдыха.

Если невозможно уменьшить шум, действующий на работников, до допустимых уровней, то необходимо использовать средства индивидуальной защиты (СИЗ) — противошумные вкладыши из ультратонкого волокна “Беруши” одноразового использования, а также противошумные вкладыши многократного использования (эбонитовые, резиновые, из пенопласта) в форме конуса, грибка, лепестка. Они эффективны для снижения шума на средних и высоких частотах на 10-15 дБА. Наушники снижают уровень звукового давления на 7-38 дБ в диапазоне частот 125-8 000 Гц. Для предохранения от воздействия шума с общим уровнем 120 дБ и выше рекомендуется применять шлемофоны, оголовья, каски, которые снижают уровень звукового давления на 30-40 дБ в диапазоне частот 125-8 000 Гц.

См.также

Защита от производственного шума

Основные мероприятия по борьбе с шумом — это технические мероприятия, которые проводятся потрем главным направлениям:

  • устранение причин возникновения шума или снижение его в источнике;
  • ослабление шума на путях передачи;
  • непосредственная защита работающих.

Наиболее эффективным средством снижения шума является замена шумных технологических операций малошумными или полностью бесшумными, однако этот путь борьбы с шумом не всегда возможен, поэтому большое значение имеет снижение шума в источнике — путем совершенствования конструкции или схемы той части оборудования, которая производит шум, использования в конструкции материалов с пониженными акустическими свойствами, оборудования на источнике шума дополнительного звукоизолирующего устройства или ограждения, расположенного по возможности ближе к источнику.

Одним из наиболее простых технических средств борьбы с шумом на путях передачи является звукоизолирующий кожух , закрывающий отдельный шумный узел машины.

Значительный эффект снижения шума от оборудования дает применение акустических экранов, отгораживающих шумный механизм от рабочего места или зоны обслуживания машины.

Применение звукопоглощающих облицовок для отделки потолка и стен шумных помещений (рис. 1) изменяет спектр шума в сторону более низких частот, что даже при относительно небольшом снижении уровня существенно улучшает условия труда.

Рис. 1. Акустическая обработка помещений: а — звукопоглощающие облицовки; б — штучные звукопоглощатели; 1 — защитный перфорированный слой; 2 — звукопоглощающий материал; 3 — защитная стеклоткань; 4 — стена или потолок; 5 — воздушный промежуток; 6 — плита из звукопоглощающего материала

Для снижения аэродинамического шума применяют глушители , которые принято делить на абсорбционные, использующие облицовку поверхностей воздуховодов звукопоглощающим материалом: реактивные типа расширительных камер, резонаторов, узких отростков, длина которых равна 1/4 длины волны заглушаемого звука: комбинированные, в которых поверхности реактивных глушителей облицовывают звукопоглощающим материалом; экранные.

Учитывая, что с помощью технических средств в настоящее время не всегда удается решить проблему снижения уровня шума, большое внимание должно уделяться применению средств индивидуальной защиты : наушников, вкладышей, шлемов, защищающих ухо от неблагоприятного действия шума. Эффективность средств индивидуальной защиты может быть обеспечена их правильным подбором в зависимости от уровней и спектра шума, а также контролем за условиями их эксплуатации.

шум - один из наиболее распространенных неблагоприятных физических факторов окружающей среды, приобретающих важное социально-гигиеническое значение, в связи с урбанизацией, а также механизацией и автоматизацией технологических процессов, дальнейшим развитием авиации, транспорта. Шум - сочетание различных по частоте и силе звуков.

Звук - колебания частиц воздушной среды, которые воспринимаются органами слуха человека, в направлении их распространения. Производственный шум характеризуется спектром, который состоит из звуковых волн разных частот. обычно слышимый диапазон 16 Гц - 20 кГц.

ультразвуковой диапазон - свыше 20 кГц, инфразвук - меньше 20 Гц,устойчивый слышимый звук - 1000 Гц - 3000 Гц

Вредное воздействие шума :

сердечно-сосудистая система;

неравная система;

органы слуха (барабанная перепонка)

Физические характеристики шума

интенсивность звука J, [Вт/м2];

звуковое давление Р, [Па];

частота f, [Гц]

Интенсивность - кол-во энергии, переносимое звуковой волной за 1 с через площадь в 1м2, перпендикулярно распространению звуковой волны.

Звуковое давление - дополнительное давление воздуха, которое возникает при прохождении через него звуковой волны.

Длительное воздействие шума на организм человека приводит к развитию утомления, нередко переходящего в переутомление, к снижению производительности и качества труда. Особенно неблагоприятно шум действует на орган слуха, вызывая поражение слухового нерва с постепенным развитием тугоухости. Как правило, оба уха страдают в одинаковой степени. Начальные проявления профессиональной тугоухости чаще всего встречаются у лиц со стажем работы в условиях шума около 5 лет.

25 Классификация производственного шума и вибрации.

Шум классифицируется по частоте, спектральным и временным характеристикам, природе его возникновения.

Классификация производственного шума приведена в таблице 37.

По характеру спектра шумы подразделяются на широкополосные (с непрерывным спектром шириной более одной октавы) и тональные, в спектре которого имеются дискретные тона.

В практических оценках шума пользуются стандартным рядом из 8 октавных полос, среднегеометрическое значение которых составляет 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц.

По спек тральному составу шумы подразделяются на низкочастотные (максимум звуковой энергии приходится на частоты ниже 400 Гц); средне-частотные (максимум звуковой энергии на частотах от 400 до 1000 Гц) и высокочастотные (максимум звуковой энергии на частотах выше 1000 Гц).

По временным характеристикам шумы подразделяются на постоянные (уровень звука за 8-ми часовой рабочий день изменяется во времени менее чем на 5 дБ) и непостоянные (уровни которого за 8-ми часовой рабочий день изменяются более чем на 5 дБА). К непостоянному шуму относится колеблющийся шум, при котором уровень звука непрерывно изменяется во времени; прерывистый шум (уровень звука остается постоянным в течение интервала длительностью 1 сек. и более); импульсный шум, состоящий из одного или нескольких звуковых сигналов длительностью менее 1 сек.

По среде распространения р азличают шум воздушный и структурный.

Воздушный шум излучается в окружающее пространство и распространяется в воздушной среде при движении транспортных средств на открытых участках, эстакадах и мостах, а также от звуковых сигнальных устройств, стационарного оборудования, при производстве работ по ремонту и содержанию путей и дорог, перегрузочных работах, техническом обслуживании и ремонте подвижного состава на территории транспортных предприятий.

Структурный шум возбуждается динамическими силами в точке контакта колеса с дорогой или рельсом при движении. Он распространяется по верхнему строению пути, несущим конструкциям дорожного полотна и передается через грунт близлежащим строениям. Особенно сильно структурный шум проявляется при движении транспорта в тоннелях, под землей.

Воздействие вибрации на человека классифицируется:

по способу передачи вибрации на человека;

по источнику возникновения;

по направлению действия вибрации;

по характеру спектра;

по частотному составу;

по временной характеристике вибрации .

По способу передачи на человека различают:

общую вибрацию , передающуюся через опорные поверхности на тело сидящего или стоящего человека;

локальную вибрацию , передающуюся через руки человека.

Примечание. Вибрация, передающаяся на ноги сидящего человека и на предплечья, контактирующие с вибрирующими поверхностями рабочих столов, относится к локальной вибрации.

По направлению действия вибрацию подразделяют в соответствии с направлением осей ортогональной системы координат.

Для общей вибрации направление осей X о , Y о , Z о и их связь с телом человека следующая: ось X о – горизонтальная от спины к груди; ось Y о – горизонтальная от правого плеча к левому); Z л – вертикальная ось, перпендикулярная опорным поверхностям тела в местах его контакта с сиденьем, полом и т.п.

Для локальной вибрации направление осей X л , Y л , Z л и их связь с рукой человека следующая: ось X л – совпадает или параллельна оси места охвата источника вибрации (рукоятки, ложемента, рулевого колеса, рычага управления, удерживаемого в руках обрабатываемого изделия и т.п.); ось Y л – перпендикулярна ладони, а ось Z л – лежит в плоскости, образованной осью X л и направлением подачи или приложения силы, и направлена вдоль оси предплечья.

По источнику возникновения вибрацию различают:

локальную вибрацию, передающуюся человеку от ручного механизированного инструмента (с двигателями), органов ручного управления машинами и оборудованием;

локальную вибрацию , передающуюся человеку от ручного немеханизированного инструмента (без двигателей), например, рихтовочных молотков разных моделей и обрабатываемых деталей, шпалоподбоек;

общую вибрацию 1 категории транспортную вибрацию ;

общую вибрацию 2 категории транспортно-технологическую вибрацию ;

общую вибрацию 3 категории технологическую вибрацию .

на постоянных рабочих местах производственных помещений предприятий;

на рабочих местах на складах, в столовых, бытовых, дежурных и других производственных помещений, где нет машин, генерирующих вибрацию;

на рабочих местах в помещениях заводоуправления, конструкторских бюро, лабораторий, учебных пунктов, вычислительных центров, здравпунктов, конторских помещениях, рабочих комнатах и других помещениях для работников умственного труда;

общую вибрацию в жилых помещениях и общественных зданиях от внешних источников: городского рельсового транспорта (мелкого залегания и открытые линии Метрополитена, трамвай, железнодорожный транспорт) и автотранспорта; промышленных предприятий и передвижных промышленных установок (при эксплуатации гидравлических и меха-нических прессов, строгальных, вырубных и других металлообрабатывающих механизмов, поршневых компрессоров, бетономешалок, дробилок, строительных машин и др.);

общую вибрацию в жилых помещениях и общественных зданиях от внутренних источников: инженерно-технического оборудования зданий и бытовых приборов (лифты, вентиляционные системы, насосные, пылесосы, холодильники, стиральные машины и т.п.), а также встроенных предприятий торговли (холодильное оборудование), предприятий коммунально-бытового обслуживания, котельных и т.д.

По характеру спектра вибрации различают:

узкополосную вибрацию, у которой контролируемые параметры в одной 1/3 октавной полосе частот более чем на 15 дБ превышают значения в соседних 1/3 октавных полосах;

широкополосную вибрацию – с непрерывным спектром шириной более одной октавы.

По частотному составу вибрации различают:

низкочастотную вибрацию (с преобладанием максимальных уровней в октавных полосах частот 1÷4 Гц для общих вибраций, 8÷16 Гц – для локальных вибраций);

среднечастотную вибрацию (8÷16 Гц – для общей вибрации, 31,5÷63 Гц – для локальной вибрации);

высокочастотную вибрацию (31,5÷63 Гц – для общей вибрации, 125÷1000 Гц – для локальной вибрации).

По временной характеристике вибрации различают:

постоянную вибрацию , для которой величина нормируемых параметров изменяется не более чем в 2 раза (на 6 дБ) за время наблюдения;

непостоянную вибрацию , для которой величина нормируемых параметров изменяется не менее чем в 2 раза (на 6 дБ) за время наблюдения не менее 10 мин при измерении с постоянной времени 1 с, в том числе:

колеблющуюся во времени вибрацию , для которой величина нормируемых параметров непрерывно изменяется во времени;

прерывистую вибрацию , когда контакт человека с вибрацией прерывается, причем длительность интервалов, в течение которых имеет место контакт, составляет более 1 с;

импульсную вибрацию , состоящую из одного или нескольких вибрационных воздействий (например, ударов), каждый длительностью менее 1 с.

Шумом называют любой нежелательный звук или совокупность таких звуков. Звук представляет собой волнообразно распространяющийся в упругой среде колебательный процесс в виде чередующихся волн сгущения и разряжения частиц этой среды - звуковые волны.

Источником звука может являться любое колеблющееся тело. При соприкосновении этого тела с окружающей средой образуются звуковые волны. Волны сгущения вызывают повышение давления в упругой среде, а волны разряжения - понижение. Отсюда возникает понятие звукового давления - это переменное давление, возникающее при прохождении звуковых волн дополнительно к атмосферному давлению.

Звуковое давление измеряется в Паскалях (1 Па = 1 Н/м 2). Ухо человека ощущает звуковое давление от 2-10 -5 до 2-10 2 Н/м 2 .

Звуковые волны являются носителями энергии. Звуковая энергия, которая приходится на 1 м 2 площади поверхности, расположенной перпендикулярно к распространяющимся звуковым волнам, называется силой звука и выражается в Вт/м 2 . Так как звуковая волна представляет собой колебательный процесс, то он характеризуется такими понятиями, как период колебания (Т) - время, в течение которого совершается одно полное колебание, и частота колебаний (Гц) - число полных колебаний за 1 с. Совокупность частот дает спектр шума.

Шумы содержат звуки разных частот и различаются между собой распределением уровней по отдельным частотам и характером изменения общего уровня во времени. Для гигиенической оценки шума используют звуковой диапазон частот от 45 до 11 000 Гц, включающий 9 октавных полос со среднегеометрическими частотами в 31,5; 63; 125; 250; 500; 1000; 2000; 4000 и 8000 Гц.

Орган слуха различает не разность, а кратность изменения звуковых давлений, поэтому интенсивность звука принято оценивать не абсолютной величиной звукового давления, а его уровнем, т.е. отношением создаваемого давления к давлению, принятому за единицу

сравнения. В диапазоне от порога слышимости до болевого порога отношение звуковых давлений изменяется в миллион раз, поэтому для уменьшения шкалы измерения звуковое давление выражают через его уровень в логарифмических единицах - децибелах (дБ).

Ноль децибел соответствует звуковому давлению 2-10 -5 Па, что приблизительно соответствует порогу слышимости тона с частотой 1000 Гц.

Шум классифицируют по следующим признакам:

В зависимости от характера спектра выделяют следующие шумы:

широкополосные, с непрерывным спектром шириной более одной октавы;

тональные, в спектре которых имеются выраженные тоны. Тональный характер шума устанавливают путем измерения в третьоктавных полосах частот по превышению уровня в одной полосе по сравнению с соседними не менее чем на 10 дБ.

По временным характеристикам различают шумы:

постоянные, уровень звука которых за 8-часовой рабочий день изменяется во времени не более чем на 5 дБА;

непостоянные, уровень шума которых за 8-часовой рабочий день изменяется во времени не менее чем на 5 дБА. Непостоянные шумы можно подразделить на следующие виды:

- колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени;

- прерывистые, уровень звука которых ступенчато изменяется (на 5 дБ-А и более), причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 с и более;

- импульсные, состоящие из одного или нескольких звуковых сигналов, каждый из которых имеет длительность менее 1 с; при этом уровни звука, измеренные соответственно на временных характе- ристиках «импульс» и «медленно» шумомера, различаются не менее чем на 7 дБ.

11.1. источники ШУМА

Шум является одним из наиболее распространенных неблагоприятных факторов производственной среды, воздействие которого на работающих сопровождается развитием у них преждевременного утомления, снижением производительности труда, ростом общей и профессиональной заболеваемости, а также травматизма.

В настоящее время трудно назвать производство, на котором не встречаются повышенные уровни шума на рабочих местах. К наиболее шумным относятся горнорудная и угольная, машино- строительная, металлургическая, нефтехимическая, лесная и цел- люлозно-бумажная, радиотехническая, легкая и пищевая, мясомолочная промышленности и др.

Так, в цехах холодной высадки шум достигает 101-105 дБА, в гвоздильных цехах - 104-110 дБА, в оплеточных - 97-100 дБА, в отделениях полировки швов - 115-117 дБА. На рабочих местах токарей, фрезеровщиков, мотористов, кузнецов-штамповщиков уровень шума колеблется в пределах от 80 до 115 дБА.

На заводах железобетонных конструкций шум достигает 105- 120 дБА. Шум является одной из ведущих профессиональных вредностей в деревообрабатывающей и лесозаготовительной промышленностях. Так, на рабочем месте рамщика и обрезчика уровень шума колеблется от 93 до 100 дБА с максимумом звуковой энергии в области средних и высоких частот. В этих же пределах колеблется шум в столярных цехах, а лесозаготовительные работы (валка, трелевка леса) сопровождаются уровнем шума от 85 до 108 дБА за счет работы трелевочных лебедок, тракторов и других механизмов.

Подавляющее большинство производственных процессов в прядильных и ткацких цехах также сопровождается образованием шума, источником которого является бойковый механизм ткацкого станка, удары погонялки челнока. Наиболее высокий уровень шума наблюдается в ткацких цехах - 94-110 дБА.

Изучение условий труда на современных швейных фабриках показало, что уровень шума на рабочих местах швей-мотористок составляет 90-95 дБА с максимумом звуковой энергии на высоких частотах.

Наиболее шумными операциями в машиностроении, в том числе, авиастроении, автомобилестроении, вагоностроении и др. следует считать обрубные и клепальные работы с использованием пневматических инструментов, режимные испытания двигателей и их агрегатов различных систем, стендовые испытания на вибропрочность изделий, барабанную готовку, шлифовку и полировку деталей, штампопрессовую заготовку.

Для нефтехимической отрасли характерными являются высокочастотные шумы различных уровней за счет сброса сжатого воздуха из замкнутого технологического цикла химических производств или

от оборудования, работающего на сжатом воздухе, например, сборочных станков и вулканизационных линий шинных заводов.

Вместе с тем в машиностроении, как ни в одной другой отрасли, наибольший объем работ приходится на станочную металлообработ- ку, где занято около 50% всех рабочих отрасли.

Металлургическую промышленность в целом можно отнести к отрасли с выраженным шумовым фактором. Так, интенсивный шум характерен для плавильных, прокатных и трубопрокатных производств. Из производств, относящихся к этой отрасли, шумными условиями характеризуются метизные заводы, оснащенные холодновысадочными автоматами.

К наиболее шумным процессам следует отнести шум от открытой воздушной струи (обдув), вырывающейся из отверстий малого диаметра, шум от газовых горелок и шум, образующийся при напылении металлов на различные поверхности. Спектры от всех этих источников очень схожие, типично высокочастотные, без заметного спада энергии до 8-10 кГц.

В лесной и целлюлозно-бумажной отраслях наиболее шумными являются деревообрабатывающие цеха.

Промышленность строительных материалов включает ряд шумных производств: машины и механизмы по дроблению и размолу сырья и производству сборного железобетона.

В горнорудной и угольной промышленностях наиболее шумными являются операции механизированной добычи полезных ископа- емых как с использованием ручных машин (пневмоперфораторы, отбойные молотки), так и с помощью современных стационарных и самоходных машин (комбайны, буровые станки и пр.).

Радиотехническая промышленность в целом сравнительно менее шумная. Лишь подготовительные и заготовительные цеха ее имеют оборудование, характерное для машиностроительной промышленности, но в значительно меньшем количестве.

В легкой промышленности как по шумности, так и по числу занятых рабочих наиболее неблагоприятными являются прядильные и ткацкие производства.

Пищевая промышленность - наименее шумная из всех. Характерные для нее шумы генерируют поточные агрегаты кондитерских и табачных фабрик. Однако отдельные машины этих производств создают значительный шум, например, мельницы зерен какао, некоторые сортировочные машины.

В каждой отрасли промышленности имеются цеха или отдельные компрессорные станции, снабжающие производство сжатым воздухом или перекачивающие жидкости или газообразные продукты. Последние имеют большое распространение в газовой промышленности как большие самостоятельные хозяйства. Компрессорные установки создают интенсивный шум.

Примеры шумов, характерных для различных отраслей промышленности, в абсолютном большинстве случаев имеют общую форму спектров: все они широкополосные, с некоторым спадом звуковой энергии в области низких (до 250 Гц) и высоких (выше 4000 Гц) частот с уровнями 85-120 дБА. Исключением являются шумы аэродинамического происхождения, где уровни звукового давления растут от низких к высоким частотам, а также низкочастотные шумы, которых в промышленности по сравнению с описанными выше значительно меньше.

Все описанные шумы характеризуют наиболее шумные производства и участки, где в основном преобладает физический труд. Вместе с тем широко распространены и шумы менее интенсивные (60-80 дБА), которые, однако, гигиенически значимы при работах, связанных с нервной нагрузкой, например, на пультах управления, при машинной обработке информации и других работах, получающих все большее распространение.

Шум является также наиболее характерным неблагоприятным фактором производственной среды на рабочих местах пассажирских, транспортных самолетов и вертолетов; подвижного состава железнодорожного транспорта; морских, речных, рыбопромысловых и других судов; автобусов, грузовых, легковых и специальных автомобилей; сельскохозяйственных машин и оборудования; строительнодорожных, мелиоративных и других машин.

Уровни шума в кабинах современных самолетов колеблются в широком диапазоне - 69-85 дБА (магистральные самолеты для авиалиний со средней и большой дальностью полета). В кабинах автомобилей средней грузоподъемности при различных режимах и условиях эксплуатации уровни звука составляют 80-102 дБА, в кабинах большегрузных автомобилей - до 101 дБА, в легковых автомобилях - 75-85 дБА.

Таким образом, для гигиенической оценки шума важно знать не только его физические параметры, но и характер трудовой деятель- ности человека-оператора, и, прежде всего, степень его физической или нервной нагрузки.

11.2. биологическое действие шума

Большой вклад в изучение проблемы шума внесла профессор Е.Ц. Андреева-Галанина. Она показала, что шум является обще- биологическим раздражителем и оказывает влияние не только на слуховой анализатор, но, в первую очередь, действует на структуры головного мозга, вызывая сдвиги в различных системах организма. Проявления шумового воздействия на организм человека могут быть условно подразделены на специфические изменения, наступающие в органе слуха, и неспецифические, возникающие в других органах и системах.

Ауральные эффекты. Изменения звукового анализатора под влиянием шума составляют специфическую реакцию организма на акустическое воздействие.

Общепризнано, что ведущим признаком неблагоприятного влияния шума на организм человека является медленно прогрессирующее понижение слуха по типу кохлеарного неврита (при этом, как правило, страдают оба уха в одинаковой степени).

Профессиональное снижение слуха относится к сенсоневральной (перцепционной) тугоухости. Под этим термином подразумевают нарушение слуха звуковоспринимающего характера.

Снижение слуха под влиянием достаточно интенсивных и длительно действующих шумов связано с дегенеративными измене- ниями как в волосковых клетках кортиева органа, так и в первом нейроне слухового пути - спиральном ганглии, а также в волокнах кохлеарного нерва. Однако единого мнения о патогенезе стойких и необратимых изменений в рецепторном отделе анализатора не существует.

Профессиональная тугоухость развивается обычно после более или менее длительного периода работы в шуме. Сроки ее возникновения зависят от интенсивности и частотно-временных параметров шума, длительности его воздействия и индивидуальной чувствительности органа слуха к шуму.

Жалобы на головную боль, повышенную утомляемость, шум в ушах, которые могут возникать в первые годы работы в условиях шума, не являются специфическими для поражения слухового анализатора, а скорее характеризуют реакцию ЦНС на действие шумового фактора. Ощущение понижения слуха возникает обычно значительно позже появления первых аудиологических признаков поражения слухового анализатора.

С целью обнаружения наиболее ранних признаков действия шума на организм и, в частности, на звуковой анализатор, наиболее широко используется метод определения временного смещения порогов слуха (ВСП) при различной длительности экспозиции и характере шума.

Кроме того, этот показатель применяется для прогнозирования потерь слуха на основании соотношения между постоянными сме- щениями порогов (потерями) слуха (ПСП) от шума, действующего в течение всего времени работы в шуме, и временными смещениями порогов (ВСП) за время дневной экспозиции тем же шумом, измеренными спустя две минуты после экспозиции шумом. Например, у ткачей временные смещения порогов слуха на частоте 4000 Гц за дневную экспозицию шумом численно равны постоянным потерям слуха на этой частоте за 10 лет работы в этом же шуме. Исходя из этого, можно прогнозировать возникающие потери слуха, определив лишь сдвиг порога за дневную экспозицию шумом.

Шум, сопровождающийся вибрацией, более вреден для органа слуха, чем изолированный.

Экстраауральное влияние шума. Представление о шумовой болезни сложилось в 1960-70 гг. на основании работ по влиянию шума на сердечно-сосудистую, нервную и др. системы. В настоящее время ее заменила концепция экстраауральных эффектов как неспецифических проявлений действия шума.

Рабочие, подвергающиеся воздействию шума, предъявляют жалобы на головные боли различной интенсивности, нередко с локализацией в области лба (чаще они возникают к концу работы и после нее), головокружение, связанное с переменой положения тела, зависящее от влияния шума на вестибулярный аппарат, снижение памяти, сонливость, повышенную утомляемость, эмоциональную неустойчивость, нарушение сна (прерывистый сон, бессонница, реже сонливость), боли в области сердца, снижение аппетита, повышенную потливость и др. Частота жалоб и степень их выраженности зависят от стажа работы, интенсивности шума и его характера.

Шум может нарушать функцию сердечно-сосудистой системы. Отмечены изменения в электрокардиограмме в виде укорочения интервала Q-T, удлинения интервала P-Q, увеличения длительности и деформации зубцов Р и S, смещения интервала T-S, изменение вольтажа зубца Т.

Наиболее неблагоприятным с точки зрения развития гипертензивных состояний является широкополосный шум с преобладанием высокочастотных составляющих и уровнем свыше 90 дБА, особенно импульсный шум. Широкополосный шум вызывает максимальные сдвиги в периферическом кровообращении. Следует иметь в виду, что если к субъективному восприятию шума имеется привыкание (адаптация), то в отношении развивающихся вегетативных реакций адаптации не наблюдается.

По данным эпидемиологического изучения распространенности основных сердечно-сосудистых заболеваний и некоторых факторов риска (избыточная масса, отягощенный анамнез и др.) у женщин, работающих в условиях воздействия постоянного производственного шума в диапазоне от 90 до 110 дБА, показано, что шум, как отдельно взятый фактор (без учета общих факторов риска), может увеличивать частоту артериальной гипертонии (АГ) у женщин в возрасте до 39 лет (при стаже меньше 19 лет) лишь на 1,1%, а у женщин старше 40 лет - на 1,9%. Однако при сочетании шума хотя бы с одним из «общих» факторов риска можно ожидать учащения АГ уже на 15%.

При воздействии интенсивного шума 95 дБА и выше может иметь место нарушение витаминного, углеводного, белкового, холестерино- вого и водно-солевого обменов.

Несмотря на то что шум оказывает влияние на организм в целом, основные изменения отмечаются со стороны органа слуха, цент- ральной нервной и сердечно-сосудистой систем, причем изменения нервной системы могут предшествовать нарушениям в органе слуха.

Шум является одним из наиболее сильных стрессорных производственных факторов. В результате воздействия шума высокой интенсивности одновременно возникают изменения как в нейроэндокринной, так и в иммунной системах. При этом происходит стимуляция передней доли гипофиза и увеличение секреции надпочечниками стероидных гормонов, а как следствие этого - развитие приобретенного (вторичного) иммунодефицита с инволюцией лимфоидных органов и значительными изменениями содержания и функционального состояния Т- и В-лимфоцитов в крови и костном мозге. Возникающие дефекты иммунной системы касаются, в основном, трех основных биологических эффектов:

Снижение антиинфекционного иммунитета;

Создание благоприятных условий для развития аутоиммунных и аллергических процессов;

Снижение противоопухолевого иммунитета.

Доказана зависимость между заболеваемостью и величиной потерь слуха на речевых частотах 500-2000 Гц, свидетельствующая о том, что одновременно со снижением слуха наступают изменения, способствующие снижению резистентности организма. При увеличении производственного шума на 10 дБА показатели общей заболеваемости работающих (как в случаях, так и в днях) возрастают в 1,2-1,3 раза.

Анализ динамики специфических и неспецифических нарушений с возрастанием стажа работы при шумовом воздействии на примере ткачей показал, что с увеличением стажа у ткачей формируется полиморфный симптомокомплекс, включающий патологические изменения органа слуха в сочетании с вегетососудистой дисфункцией. При этом темп прироста потерь слуха в 3,5 раза выше, чем прирост функциональных нарушений нервной системы. При стаже до 5 лет преобладают преходящие вегетососудистые нарушения, при стаже свыше 10 лет - потери слуха. Выявлена также взаимосвязь частоты вегетососудистой дисфункции и величины потери слуха, проявляющаяся в их росте при снижении слуха до 10дБ и в стабилизации при прогрессировании тугоухости.

Установлено, что в производствах с уровнями шума до 90-95 дБА вегетативно-сосудистые расстройства появляются раньше и пре- валируют над частотой кохлеарных невритов. Максимальное их развитие наблюдается при 10-летнем стаже работы в условиях шума. Только при уровнях шума, превышающих 95 дБА, к 15 годам работы в «шумной» профессии экстраауральные эффекты стабилизируются, и начинают преобладать явления тугоухости.

Сравнение частоты потерь слуха и нервно-сосудистых нарушений в зависимости от уровня шума показало, что темп роста потерь слуха почти в 3 раза выше темпа роста нервно-сосудистых нарушений (соответственно около 1,5 и 0,5% на 1 дБА), то есть с увеличением уровня шума на 1 дБА потери слуха будут возрастать на 1,5%, а нервно-сосудистые нарушения - на 0,5%. При уровнях 85 дБА и выше на каждый децибел шума нервно-сосудистые нарушения наступают на полгода раньше, чем при более низких уровнях.

На фоне происходящей интеллектуализации труда, роста удельного веса операторских профессий отмечается повышение значения шумов средних уровней (ниже 80 дБА). Указанные уровни не вызывают потерь слуха, но, как правило, оказывают мешающее, раздражающее и утомляющее действия, которые суммируются с

таковым от напряженного труда и при возрастании стажа работы в профессии могут привести к развитию экстраауральных эффектов, проявляющихся в общесоматических нарушениях и заболеваниях. В связи с этим был обоснован биологический эквивалент действия на организм шума и нервно-напряженного труда, равный 10 дБА шума на одну категорию напряженности трудового процесса (Суворов Г.А. и др., 1981). Этот принцип положен в основу действующих санитарных норм по шуму, дифференцированных с учетом напряженности и тяжести трудового процесса.

В настоящее время большое внимание уделяется оценке профессиональных рисков нарушения здоровья работающих, в том числе обусловленных неблагоприятным воздействием производственного шума.

В соответствии со стандартом ИСО 1999.2 «Акустика. Определение профессионального воздействия шума и оценка нарушений слуха, вызванного шумом» можно оценивать риск нарушений слуха в зависимости от экспозиции и прогнозировать вероятность возникновения профзаболеваний. На основе математической модели стандарта ИСО определены риски развития профессиональной тугоухости в процентах с учетом отечественных критериев профессиональной тугоухости (табл. 11.1 ). В России степень профессиональной тугоухости оценивается по средней величине потерь слуха на трех речевых частотах (0,5-1-2 кГц); величины более 10, 20, 30 дБ соответствуют 1-й, II-й, III-й степени снижения слуха.

Учитывая, что снижение слуха I-й степени с довольно большой вероятностью может развиться и без шумового воздействия в результате возрастных изменений, представляется нецелесообразным использовать I-ую степень снижения слуха для оценки безопасного стажа работы. В связи с этим в таблице представлены вычисленные значения рабочего стажа, в течение которого могут развиться потери слуха II-й и III-й степени в зависимости от уровня шума на рабочих местах. Данные даются для разных вероятностей (в %).

В табл. 11.1 приведены данные для мужчин. У женщин из-за более медленного, чем у мужчин, нарастания возрастных изменений слуха данные слегка отличаются: для стажа более 20 лет у женщин безо- пасный стаж на 1 год больше, чем у мужчин, а для стажа более 40 лет - на 2 года.

Таблица 11.1. Стаж работы до развития потерь слуха, превышающих

критериальные значения, в зависимости от уровня шума на рабочем месте (при 8-часовом воздействии)

Примечание. прочерк означает, что стаж работы составляет более 45 лет.

Вместе с тем следует отметить, что стандарт не учитывает характер трудовой деятельности, как это предусмотрено в санитарных нормах по шуму, где предельно допустимые уровни шума дифференцированы по категориям тяжести и напряженности труда и тем самым охватывают неспецифическое действие шума, что важно для сохранения здоровья и работоспособности лиц операторских профессий.

11.3. нормирование шума на рабочих местах

Профилактика неблагоприятного влияния шума на организм работающих основана на его гигиеническом нормировании, целью которого является обоснование допустимых уровней и комплекса гигиенических требований, обеспечивающих предупреждение функциональных расстройств или заболеваний. В гигиенической практике в качестве критерия нормирования используют предельно допустимые уровни (ПДУ) для рабочих мест, допускающие ухудшение и изменение внешних показателей деятельности (эффективности

и производительности) при обязательном возврате к прежней системе гомеостатического регулирования исходного функционального состояния с учетом адаптационных изменений.

Нормирование шума проводится по комплексу показателей с учетом их гигиенической значимости. Действие шума на организм оценивают по обратимым и необратимым, специфическим и неспецифическим реакциям, снижению работоспособности или дискомфорта. Для сохранения здоровья, работоспособности и самочувствия человека оптимальное гигиеническое нормирование должно учитывать вид трудовой деятельности, в частности, физический и нервноэмоциональный компоненты труда.

Воздействие шумового фактора на человека состоит из двух составляющих: нагрузки на орган слуха как систему, воспринимаю- щую звуковую энергию, - ауральный эффект, и воздействие на центральные звенья звукового анализатора как систему приема информации - экстраауральный эффект. Для оценки первой составляющей есть специфический критерий - «утомление органа слуха», выражающийся в смещении порогов восприятия тонов, которое пропорционально величине звукового давления и времени экспозиции. Вторая составляющая получила название неспецифического влияния, кото- рое можно объективно оценить по интегральным физиологическим показателям.

Шум может рассматриваться как фактор, участвующий в эфферентном синтезе. На этой стадии в нервной системе происходит сопоставление всех возможных эфферентных влияний (обстановочных, обратных и поисковых) с тем, чтобы выработать наиболее адекватную ответную реакцию. Действие сильного производственного шума является таким фактором внешней среды, который по своей природе тоже влияет на эфферентную систему, т.е. воздействует на процесс формирования рефлекторной реакции в стадии эфферентного синтеза, но как обстановочный фактор. При этом результат воз- действия обстановочного и пускового влияний зависит от их силы.

В случаях установки на деятельность обстановочная информация должна являться элементом стереотипа и, следовательно, не вызывать неблагоприятных изменений в организме. Вместе с тем привыкание к шуму в физиологическом смысле не наблюдается, выраженность утомления и частота неспецифических нарушений нарастают с увеличением стажа работы в условиях шума. Следовательно, механизм действия шума нельзя ограничивать фактором участия его в

обстановочной афферентации. В обоих случаях (шум и напряжение) речь идет о нагрузке на функциональные системы высшей нервной деятельности, и, следовательно, генез утомления при таком воздействии будет носить сходный характер.

Критерием нормирования по оптимальному уровню для многих факторов, в том числе для шума, можно рассматривать такое состоя- ние физиологических функций, при котором данный уровень шума не вносит своей доли в их напряжение, и последнее целиком определяется выполняемой работой.

Напряженность труда складывается из элементов, входящих в биологическую систему рефлекторной деятельности. Анализ информации, объем оперативной памяти, эмоциональное напряжение, функциональное напряжение анализаторов - все эти элементы оказываются загруженными в процессе трудовой деятельности, и естественно, что их активная нагрузка вызывает развитие утомления.

Как и в любом случае, ответ на воздействие состоит из компонентов специфического и неспецифического характеров. Какова доля каждого из этих элементов в процессе утомления - вопрос нерешенный. Однако нет никаких сомнений в том, что воздействие шума и напряженности труда нельзя рассматривать одно без учета другого. В связи с этим эффекты, опосредованные через нервную систему (утомление, снижение работоспособности), как для шума, так и для напряженности труда имеют качественное сходство. Производственные и экспериментальные исследования с использованием социально-гигиенических, физиологических и клинических методов и показателей подтвердили указанные теоретические положения. На примере изучения разных профессий была установлена величина физиолого-гигиенического эквивалента шума и напряжен- ности нервно-эмоционального труда, которая находилась в пределах 7-13 дБА, т.е. в среднем 10 дБА на одну категорию напряженности. Следовательно, оценка напряженности трудового процесса оператора является необходимой для полноценной гигиенической оценки шумового фактора на рабочих местах.

Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах с учетом напряженности и тяжести трудовой деятельности представлены в табл. 11.2.

Количественную оценку тяжести и напряженности трудового процесса следует проводить в соответствии с критериями Руководства 2.2.2006-05.

Таблица 11.2. Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах для трудовой деятельности разных категорий тяжести и напряженности, дБА

Примечание.

Для тонального и импульсного шумов ПДУ на 5 дБА меньше значений, указанных в таблице;

Для шума, создаваемого в помещениях установками кондиционирования воздуха, вентиляции и воздушного отопления, ПДУ на 5 дБА меньше фактических уровней шума в помещениях (измеренных или рассчитанных), если последние не превышают значений табл. 11.1 (поправка для тонального и импульсного шумов при этом не учитывается), в противном случае - на 5 дБА меньше значений, указанных в таблице;

Дополнительно для колеблющегося во времени и прерывистого шумов максимальный уровень звука не должен превышать 110 дБА, а для импульсного шума - 125 дБА.

Поскольку целью дифференцированного нормирования шума является оптимизация условий труда, встречающиеся сочетания напряженного и очень напряженного с тяжелым и очень тяжелым физическим трудом не нормируются исходя из необходимости их ликвидации как недопустимых. Однако для практического использования новых дифференцированных норм как при проектировании предприятий, так и при текущем контроле за уровнями шума на действующих предприятиях серьезной проблемой является приведение в соответствие категорий тяжести и напряженности труда с видами трудовой деятельности и рабочих помещений.

Импульсный шум и его оценка. Понятие импульсного шума не является строго определенным. Так, в действующих санитарных нормах к импульсному шуму относят шумы, состоящие из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с, при этом уровни звука в дБА, измеренные по характеристикам «импульс» и «медленно», различаются не менее чем на 7 дБ.

Одним из важных факторов, определяющих различие реакций на постоянный и импульсный шумы, является пиковый уровень. В соответствии с концепцией «критического уровня» шумы с уровнями выше определенного, даже очень кратковременные, могут вызывать прямую травматизацию органа слуха, что подтверждается морфологическими данными. Многие авторы указывают разные значения критического уровня: от 100-105 дБА до 145 дБА. Такие уровни шума встречаются на производстве, например, в кузнечных цехах шум от молотов достигает 146 и даже 160 дБА.

По-видимому, опасность импульсного шума определяется не только высокими эквивалентными уровнями, но и дополнительным вкладом временных характеристик, вероятно, за счет травмирующего эффекта высоких пиковых уровней. Исследования распределения уровней импульсного шума показали, что, несмотря на малое суммарное время действия пиков с уровнями выше 110 дБА, их вклад в общую дозу может достигать 50%, и это значение 110 дБА было рекомендовано как дополнительный критерий при оценке непостоянных шумов к ПДУ по действующим санитарным нормам.

Приведенные нормы устанавливают ПДУ для импульсного шума на 5 дБ ниже, чем для постоянных шумов (т.е. вносят поправку минус 5 дБА по эквивалентному уровню), и дополнительно ограничивают максимальный уровень звука 125 дБА «импульс», но не регламентируют пиковые значения. Тем самым действующие нормы

ориентируются на громкостные эффекты шума, поскольку характеристика «импульс» с t = 40 мс адекватна верхним отделам звукового анализатора, а не возможному травматическому действию его пиков, являющемуся общепризнанным в настоящее время.

Шумовое воздействие на работающих, как правило, является непостоянным по уровню шума и (или) времени его действия. В связи с этим для оценки непостоянных шумов введено понятие эквивалентного уровня звука. С эквивалентным уровнем связана доза шума, которая отражает количество переданной энергии и поэтому может служить мерой шумовой нагрузки.

Наличие в действующих санитарных нормах шума на рабочих местах, в помещениях жилых и общественных зданий и на территории жилых застроек в качестве нормируемого параметра эквивалентного уровня и отсутствие такового в качестве дозы шума объясняются рядом факторов. Во-первых, отсутствием в стране отечественных дозиметров; во-вторых, при нормировании шума для жилых помещений и для некоторых профессий (работников, у которых орган слуха является рабочим органом) энергетическая концепция требует поправок, вносимых в измерительные приборы, для выражения шума не в уровнях звукового давления, а в величинах субъективной громкости.

Учитывая появление в последние годы нового направления в гигиенической науке по установлению степени профессионального риска от различных факторов производственной среды, в том числе и от шума, следует учитывать в перспективе величину дозы шума с различными категориями риска не столько по специфическому влиянию (слуховому), сколько по неспецифическим проявлениям (нарушениям) со стороны других органов и систем организма.

До настоящего времени влияние шума на человека изучалось изолированно: в частности, промышленного шума - на рабочих различных производств, служащих административно-управленческого аппарата; городского и жилищно-бытового шума - на население различных категорий в условиях проживания. Эти исследования позволяли обосновать нормативы для постоянного и непостоянного, производственного и бытового шумов в различных местах и условиях пребывания человека.

Однако для гигиенической оценки влияния шумов на человека в производственных и внепроизводственных условиях целесообразно учитывать суммарное шумовое воздействие на организм, что

возможно на основе концепции суточной дозы шума с учетом видов жизнедеятельности человека (работа, отдых, сон), исходя из возможности кумуляции их эффектов.

11.4. профилактика неблагоприятного действия шума

Мероприятия по борьбе с шумом могут быть техническими, архитектурно-планировочными, организационными и медико-профи- лактическими.

Технические средства борьбы с шумом:

Устранение причин возникновения шума или снижение его в источнике;

Ослабление шума на путях передачи;

Непосредственная защита работающего или группы рабочих от воздействия шума.

Наиболее эффективным средством снижения шума является замена шумных технологических операций на малошумные или полностью бесшумные. Большое значение имеет снижение шума в источнике. Этого можно добиться усовершенствованием конструкции или схемы установки, производящей шум, изменением режима ее работы, оборудованием источника шума дополнительными звукоизолирующими устройствами или ограждениями, расположенными по возможности ближе к источнику (в пределах его ближнего поля). Одним из наиболее простых технических средств борьбы с шумом на путях передачи является звукоизолирующий кожух, который может закрывать отдельный шумный узел машины (например, коробку передач) или весь агрегат в целом. Кожухи из листового металла с внутренней облицовкой звукопоглощающим материалом могут снижать шум на 20-30 дБ. Увеличение звукоизоляции кожуха достигается за счет нанесения на его поверхность вибродемпфирующей мастики, обеспечивающей снижение уровней вибрации кожуха на резонансных частотах и быстрое затухание звуковых волн.

Для ослабления аэродинамического шума, создаваемого компрессорами, вентиляционными установками, системами пневмотранспорта и др., применяются глушители активного и реактивного типов. Наиболее шумное оборудование размещают в звукоизолирующих камерах. При больших габаритах машин или значительной зоне обслуживания оборудуют специальные кабины для операторов.

Акустическая отделка помещений с шумным оборудованием может обеспечить снижение шума в зоне отраженного звукового поля на 10-12 дБ и в зоне прямого звука до 4-5 дБ в октавных полосах частот. Применение звукопоглощающих облицовок для потолка и стен приводит к изменению спектра шума в сторону более низких частот, что даже при относительно небольшом снижении уровня существенно улучшает условия труда.

В многоэтажных промышленных зданиях особенно важна защита помещений от структурного шума (распространяющегося по конструкциям здания). Его источником может быть производственное оборудование, которое имеет жесткую связь с ограждающими конструкциями. Ослабление передачи структурного шума достигается виброизоляцией и вибропоглощением.

Хорошей защитой от ударного шума в зданиях является устройство «плавающих» полов. Архитектурно-планировочные решения во многих случаях предопределяют акустический режим производственных помещений, облегчая или затрудняя решение задач по их акустическому благоустройству.

Шумовой режим производственных помещений обусловлен размерами, формой, плотностью и видами расстановки машин и обору- дования, наличием звукопоглощающего фона и т.д. Планировочные мероприятия должны быть направлены на локализацию звука и уменьшение его распространения. Помещения с источниками высокого уровня шума по возможности следует группировать в одной зоне здания, примыкающей к складским и вспомогательным помещениям, и отделять коридорами пли подсобными помещениями.

Учитывая, что с помощью технических средств не всегда удается снижать уровни шума на рабочих местах до нормативных значений, необходимо применять средства индивидуальной защиты органа слуха от шума (антифоны, заглушки). Эффективность средств индивидуальной защиты может быть обеспечена правильным подбором в зависимости от уровней и спектра шума, а также контролем за условиями их эксплуатации.

В комплексе мероприятий по защите человека от неблагоприятного действия шума определенное место занимают медицинские средства профилактики. Важнейшее значение имеет проведение предварительных и периодических медицинских осмотров.

Противопоказаниями к приему на работу, сопровождаемую шумовым воздействием, служат:

Стойкое понижение слуха (хотя бы на одно ухо) любой этиологии;

Отосклероз и другие хронические заболевания уха с неблагоприятным прогнозом;

Нарушение функции вестибулярного аппарата любой этиологии, в том числе, болезнь Меньера.

Принимая во внимание значение индивидуальной чувствительности организма к шуму, исключительно важным является дис- пансерное наблюдение за рабочими первого года работы в условиях шума.

Одним из направлений индивидуальной профилактики шумовой патологии является повышение сопротивляемости организма рабочих к неблагоприятному действию шума. С этой целью рабочим шумных профессий рекомендуется ежедневный прием витаминов группы В в количестве 2 мг и витамина С в количестве 50 мг (продолжительность курса 2 недели с перерывом в неделю). Следует также рекомендовать введение регламентированных дополнительных перерывов с учетом уровня шума, его спектра и наличия средств индивидуальной защиты.

Общие сведения В различных отраслях экономики на предприятиях и фирмах имеются источники шума это оборудование машины работа которых сопровождается шумом людские потоки. Постоянно находящийся в этих условиях персонал рабочие операторы подвергаются воздействию шума вредно действующего на их организм и снижающего производительность труда. Длительное воздействие шума может привести к развитию такого профессионального заболевания как шумовая болезнь. Тональный характер шума устанавливается измерением в третьоктавных полосах частот по...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


58. Промышленный шум. Меры борьбы с ним.

1 Общие сведения

В различных отраслях экономики, на предприятиях и фирмах имеются источники шума — это оборудование, машины, работа которых сопровождается шумом, людские потоки. Постоянно находящийся в этих условиях персонал, рабочие, операторы подвергаются воздействию шума, вредно действующего на их организм и снижающего производительность труда. Длительное воздействие шума может привести к развитию такого профессионального заболевания, как "шумовая болезнь".

Шум как гигиенический фактор представляет собой совокупность звуков, неблагоприятно воздействующих на организм человека, мешающих его работе и отдыху.

Как и для всякого волнообразного колебательного движения, основными параметрами, характеризующими звук, являются амплитуда колебания, скорость распространения и длина волны.

Одна из основных характеристик колебательного движения — изменение во времени. Время, в течение которого колеблющееся тело совершает одно полное колебание, называется периодом колебания (Т) и измеряется в секундах.

Частота колебаний (f) — число полных колебаний, совершенных в течение одной секунды. Единица измерения частоты — герц (Гц) равна одному колебанию в секунду.

Расстояние, на которое а течение одной секунды может распространиться волновой процесс, называется скоростью звука и обозначается "с".

Расстояние между двумя соседними сгущениями или разрежениями в звуковом поле характеризует длину волны (), которая измеряется в метрах.

Распространение звуковых волн сопровождается переносом энергии в пространстве. Количество энергии, проходящее через единицу поверхности, расположенной перпендикулярно направлению распространения звуковой волны, в единицу времени, называется интенсивностью или силой звука.

2 Классификация шумов

Шумы классифицируются: по характеру спектра, временным характеристикам и длительности.

По характеру спектра различают шумы: широкополосные—обладающие непрерывным спектром шириной более 1 октавы; тональные — в спектре которых имеются слышимые дискретные тона. Тональный характер шума устанавливается измерением в третьоктавных полосах частот по превышению уровня в 1-й полосе над соседними не менее чем на 10 дБ.

По временным характеристикам различают: постоянные—уровень звука которых за 8-часовой рабочий день изменяется во времени не более чем на 5 дБ (А) при измерениях на временной характеристике «Медленно» шумомера по ГОСТ 17187; непостоянные—уровень звука за 8-часовой рабочий день изменяется во времени не менее чем на 5 дБ (А) при измерениях на временной характеристике «Медленно» шумомера по ГОСТ 17187.

По длительности (непостоянные шумы) различают: колеблющиеся во времени — уровень звука которых непрерывно изменяется во времени; прерывистые — уровень звука которых резко падает до уровня фонового шума, причем длительность интервалов, в течение которых уровень остается постоянным и превышающим уровень фонового шума, составляет 1 с и более; импульсные — состоящие из одного или нескольких звуковых сигналов каждый длительностью менее 1 с; при этом уровни звуков, дБ (А), измеренные при включении характеристик «Медленно» и «Импульс» шумомера по ГОСТ 17187, отличаются не менее чем на 10 дБ.

3 Действие шума на организм человека

Длительное воздействие интенсивного шума может приводить к раздражению клеток звукового анализатора и его утомлению, а затем к стойкому снижению остроты слуха.

Особенности его воздействия существенно зависят от превышения уровня импульса над среднеквадратичным уровнем, определяющим шумовой фон на рабочем месте.

Развитие профессиональной тугоухости зависит от суммарного времени воздействия шума в течение рабочего дня и наличия пауз, а также общего стажа работы. Начальные стадии профессионального поражения наблюдаются у рабочих со стажем 5 лет, выраженные (поражение слуха на все частоты, нарушение восприятия шепотной и разговорной речи) — свыше 10 лет.

Помимо действия шума на органы слуха, установлено его вредное влияние на многие органы и системы организма, в первую очередь на центральную нервную систему, функциональные изменения в которой происходят раньше, чем диагностируется нарушение слуховой чувствительности. Поражение нервной системы под действием шума сопровождается раздражительностью, ослаблением памяти, апатией, подавленным настроением, изменением кожной чувствительности и другими нарушениями, в частности, замедляется скорость психических реакций, наступает расстройство сна и т. д. У работников умственного труда происходит снижение темпа работы, ее качества и производительности.

Действие шума может привести к заболеваниям желудочно-кишечного тракта, сдвигам в обменных процессах (нарушение основного, витаминного, углеводного, белкового, жирового, солевого обменов), нарушению функционального состояния сердечно-сосудистой системы. Звуковые колебания могут восприниматься не только органами слуха, и непосредственно через кости черепа (так называемая костная проводимость). При действии шума очень высоких уровней (более 145 дБ) возможен разрыв барабанной перепонки.

Таким образом, воздействие шума может привести к сочетанию профессиональной тугоухости (неврит слухового нерва) с функциональными расстройствами центральной нервной, вегетативной, сердечно-сосудистой и других систем, которые могут рассматриваться как профессиональное заболевание — шумовая болезнь. Профессиональный неврит слухового нерва (шумовая болезнь) чаще всего встречается у рабочих различных отраслей машиностроения, текстильной промышленности и пр. Случаи заболевания встречаются у лиц, работающих на ткацких станках, с рубильными, клепальными молотками, обслуживающих прессо-штамповочное оборудование, у испытателей-мотористов и других профессиональных групп, длительно подвергающихся интенсивному шуму.

5 Способы и средства борьбы с шумом

При разработке технологических процессов, проектировании, изготовлении и эксплуатации машин, производственных зданий и сооружений, а также при организации рабочего места следует принимать все необходимые меры по снижению шума, ультразвука и вибрации на рабочем месте до значений, не превышающих допустимых, указанных в ГОСТ 12.1.003 и ГОСТ 12.1.001.

Осуществлять эти меры следует: техническими средствами борьбы с шумом (уменьшением шума машин в источнике; применением технологических процессов, при которых уровни звукового давления на рабочих местах не превышают допустимые; применением дистанционного управления шумными машинами; автоматизацией управления шумными машинами; применением звукоизолирующих кожухов, полукожухов, кабин; устройством систем блокировок, отключающих генераторы источника ультразвука при нарушении звукоизоляции и др.); строительно-акустическими мероприятиями; применением средств индивидуальной защиты; организационными мероприятиями (выбором рационального режима труда и отдыха, сокращением времени нахождения в шумных условиях, лечебно-профилактическими и другими мероприятиями).

Зоны с уровнем звука выше 85 дБ должны, быть обозначены знаками безопасности. Работающих в этих зонах администрация обязана снабжать средствами индивидуальной защиты. Запрещается даже кратковременное пребывание в зонах с октавными уровнями звукового давления свыше 135 дБ в любой октавной полосе.

На предприятиях, в организациях и учреждениях должен быть обеспечен контроль уровней шума на рабочих местах и установлены правила безопасной работы в шумных условиях.

Конструктивные и планировочные решения по борьбе с шумами. Уменьшить шум в источнике можно за счет повышения точности изготовления отдельных узлов машины, уменьшения зазоров, улучшения статической и динамической балансировки движущихся частей, замены звучных материалов менее звучными (стальных шестерен пластмассовыми), устройства глушителей шума. Глушители, разделяются на активные—поглощающие поступившую в них звуковую энергию и реактивные - отражающие энергию обратно к источнику.

Интенсивный шум, вызванный вибрацией, можно уменьшить покрытием вибрирующей поверхности материалом с большим внутренним трением (резиной, асбестом, битумом), при этом часть звуковой энергии поглощается. Чем больше плотность прилегания материала к вибрирующей поверхности, тем больше эффект поглощения.

Звукопоглощение обусловлено переходом колебательной энергии в тепло за счет трения в звукопоглотителе. Материалы, имеющие хорошие звукопоглощающие свойства, сравнительно легки, пористы (минеральный войлок, стекловата, поролон). В малых помещениях звукопоглотительными материалами облицовывают стены. В больших помещениях (более 300 м) облицовка малоэффективна, и в них снижение шума достигается при помощи звукопоглощающих экранов (плоских и объемных). Экраны размещают вблизи источников шума, и снижение шума при этом достигает 7—8 дБ.

Звукоизоляция—это метод снижения шума путем создания конструкций, препятствующих распространению шума из одного в другое изолируемое помещение. Звукоизолирующие конструкции изготовляют из плотных твердых материалов (металла, дерева, пластмасс), хорошо препятствующих распространению шума.

Шумящие агрегаты можно изолировать при помощи звукоизолирующих полукожухов, кожухов, кабин, которые следует устанавливать без жестких связей с оборудованием. Для увеличения эффективности звукоизоляции внутренние поверхности кожухов облицовывают звукопоглощающими материалами.

Снижение вредного воздействия производственного шума на другие здания может быть достигнуто рациональной планировкой цехов и размещением зеленых насаждений на территории предприятия.

Снижение шума строительно-акустическими мероприятиями. К числу основных строительно-акустических мероприятий по снижению уровней звукового давления в цехах относятся:

установка оборудования, производящего шум меньших уровней;

установка оборудования и машин в отдельное помещение с повышенной звукоизоляцией конструкций и минимальными размерами необходимых технологических отверстий;

установка звукоизолирующих полукожухов, кожухов и кабин закрытого и полуоткрытого типов для оператора (рисунок 1), а также звукоизолирующих укрытии для вспомогательного персонала, кабин для отдыха и дистанционного управления;

установка акустических экранов у наиболее интенсивных источников шума;

устройство вибропоглощающих покрытий; устройство глушителей шума в системах отопления, вентиляции и кондиционирования воздуха, вакуум-насосах, компрессорных установках, выделение приводного оборудования в отдельное помещение либо частичная его изоляция с обязательным устройством звукопоглощающей облицовки на участке размещения приводного оборудования;

установка глушителей на технологические конвейеры подачи древесины окорочного барабана к рубильной машине;

установка приемных и выгрузочных воронок к рубильной машине из металлов с демпфирующим слоем.

Уменьшения шума в производственных помещениях можно достичь его локализацией около источника звукоизолирующими кожухами, кабинами, камерами.

Средства индивидуальной защиты от шума. Применение средств индивидуальной защиты целесообразно в тех случаях, когда активные методы либо не обеспечивают желаемого акустического эффекта, либо являются неэкономичными, а также в период разработки основных мероприятий по шумоглушению.

К средствам индивидуальной защиты от шума относятся вкладыши, наушники, шлемы — они позволяют снизить шум до 40 дБ.

Другие похожие работы, которые могут вас заинтересовать.вшм>

12700. Биологические особенности вредных организмов и меры борьбы с ними 62.79 KB
Особенно значительные потери урожая происходят в результате присутствия сорных растений которые выносят питательные вещества и влагу из почвы затеняют культурные растения а во многих случаях и загрязняют продукцию ядовитыми веществами и семенами вызывающими отравление человека и животных. Основные направления химизации сельского хозяйства: применение удобрений химических средств защиты растений от вредителей болезней и сорняков использование химических продуктов в животноводстве консервировании сельскохозяйственных продуктов и...
12893. Система обработки почвы в севообороте и меры борьбы с сорняками 51.27 KB
Система обработки почвы в севообороте и меры борьбы с сорняками. Теоретической основой науки являются законы земледелия и учение о плодородии почвы. Задачи научного земледелия на современном этапе и на ближайшую перспективу сводятся к следующему: показывать пути наиболее рационального использования земельных растительных водных ресурсов и биоклиматического потенциала в каждой зоне Западной Сибири; обеспечивать наилучшие условия для высокой продуктивности растений с применением новых технологий и новейшей техники;...
20421. 552.67 KB
Мята – имеет невысокий, распростертый стебель, он может достигать в длину до 1 м, с опушенными побегами. Листья у мяты округлые, яйцевидные или продолговатые с заостренной верхушкой. Края их зубчатые. С лицевой и нижней стороны листовые пластинки опушенные, реже голые с короткими черешками. Из всех растений, относящихся к семейству губоцветных, мята имеет самые незамысловатые цветки. У перечной мяты цветки эти мелкие с колокольчатыми чашечками, красновато-фиолетовые волосистые и собраны в круглые полумутовки, образующие колосовидные соцветия. Цветет мята с июня до сентября. Опыляется мята мухами и жуками.
8331. Интегрированные пакеты программ. Пакет офисных программ Microsoft Office 2003, 2007 и 2010. Средства автоматизации разработки документов в MSWord. Инструменты для создания комплексных документов. Вопросы компьютерной безопасности: вирусы и меры борьбы с н 26.36 KB
В состав комплектов Microsoft Office 2003 2010 входят приложения общего назначения: текстовый процессор MS Word; табличный процессор электронные таблицы MS Excel; система управления базами данных MS ccess; средство для подготовки презентаций MS PowerPoint; средство организации групповой работы MS Outlook. По сравнению с предыдущими версиями в нём как и в других приложениях общего назначения пакета MS Office добавлены следующие новые возможности: новый более привлекательный интерфейс; использование в окнах приложений...
403. ШУМ И МЕТОДЫ БОРЬБЫ С НИМ 83.04 KB
Таким образом при борьбе с шумом в первую очередь необходимо заглушать наиболее интенсивные источники шума. Кроме того при наличии большого числа одинаковых источников шума устранение одного или двух из них очень слабо влияет на общее снижение уровня шума. Характеристикой источника шума являются звуковая мощность и её уровень.
6909. Средства борьбы от компьютерных вирусов 7.6 KB
Наличие антивирусные программы и средства аппаратной защиты предоставляют следующие возможности. Программы обнаружения и защиты от вирусов Антивирусными называются виды специальных программ которые служат для обнаружения удаления и защиты от компьютерных. Виды антивирусных программ: Программы – детекторы осуществляют поиск характерной для конкретного вируса сигнатуры в оперативной памяти и в файлах и при обнаружении выдают соответствующее сообщение.
10486. СОВРЕМЕННЫЕ СРЕДСТВА ВООРУЖЕННОЙ БОРЬБЫ 59.96 KB
Высокоточное оружие кассетные и объемнодетонирующие боеприпасы.Ядерное оружие.Химическое оружие. Биологическое оружие.
3882. Государственная политика в области борьбы с коррупцией 45.75 KB
Проблема коррупции неоднократно определялась руководителями государства, как системная проблема. Системная коррупция – это признание того факта, что коррупция не просто распространена, но и воспроизводится в различных звеньях государственного аппарата и общества.
19388. Телевизионный образ как главная технология политической борьбы 21.3 KB
Несмотря на то что телевидение внесло серьезные перемены в характер этих взаимоотношений сама по себе их связь не нова. В идеологии неолиберализма заложено как постулат что информация - товар а движение товаров должно быть свободным. Аргументация проста: принципом рынка является свобода потребителя покупателя товара заключать или не заключать сделку о купле-продаже; свобода каждого потребителя ТВ гарантируется тем что он в любой момент может нажать кнопку и перестать потреблять данное сообщение.Сааведра заявил на специальных...
21372. Совершенствование мер борьбы с организационной преступностью в Тюменской области 23.45 KB
Специфика детерминации и причинности организационной преступности. Криминальная характеристика организационной преступности в Тюменской области Суть организованной преступности не в преступной деятельности отдельных членов преступной организации а в опасности преступной организации в целом. Дать определение организованной преступности которое охватывало бы уголовно-правовые и социально-философские признаки и свойства этого явления довольно сложно.