Место образование рибосом. Ядро клетки, рибосомы. Строение и функции

Сборка полипептидных цепей осуществляется непосредственно в рибосомах, настоящих фабриках в . Рибосомы, как машины молекулярных размеров, штампуют различные с огромной скоростью — одна белковая молекула средних размеров в минуту.

Лучше всего изучены рибосомы одной из — кишечной палочки. Ее рибосомы получают в чистом виде при помощи ультрацентрифугирования тонко измельченных бактериальных . Сначала оседают крупные частицы, которые удаляют. Затем при очень больших скоростях вращения осаждаются рибосомы. Скорость их оседания 70 S (S — единица Сведберга, характеризующая скорость оседания).

Рибосомы 70 S можно разделить на субчастицы, размер которых характеризуют скоростью их оседания: 30 S и 50 S. В каждой субчастице, как и в полной рибосоме, равное весовое количество РНК и . В 30 S субчастице одна молекула РНК с молекулярной массой 0,5 млн. (~1500 нуклеотидных остатков), а в 50 S одна молекула РНК с молекулярной массой около 1 млн. (~3 тыс. нуклеотидных остатков) и еще маленькая молекула РНК (5 S), состоящая всего из 120 нуклеотидных остатков.

Схема организации рибосомы 70S кишечной палочки: а — по представлениям, сложившимся в 60-е гг. на основании электронно-микроскопических наблюдений, субчастица 30S выглядела, как шапочка, одетая на почти сферическую субчастицу 50S; б — согласно результатам электронно-микроскопического изучения В. Д. Васильевым высушенных рибосом (1974). Видно, что субчастица SOS палочковидная и составлена из головки и тела, а субчастнца 50S имеет впадину, в которой располагается малая субчастица: в — по данным группы немецкого ученого Г. Виттмана (1977), субчастица 50S имеет два малых и один большой выступ, а также углубление, в котором располагается палочковидная, но более сложной морфологии субчастица 30S: г — по данным группы американского исследователя Дж. Лейка (1974 — 1977), субчастица 50S имеет пальцевидный выступ. В трех последних моделях (В. Д. Васильева, Г. Виттмана и Дж. Лейка) при образовании рибосомы 70S между субчастицамн 30S и 50S возникает отверстие (зазор), предназначенное, как полагают, для размещения молекулы информационной РНК.

Модель вторичной структуры рибосомальной РНК, содержащейся в малой субчастице рибосом: А, У, Г, И — полностью консервативные (неизменные) области; 1-4 — постоянные домены (структурно и функционально обособленные области); А-Ж — вариабельные домены (в скобках указаны пределы изменения числа нуклеотидных остатков в них в зависимости от источника выделения рибосом).

Для всех живых организмов характерно исключи тельно упорядоченное строение. Эта упорядоченность определяется генетической информацией, записанной у каждого организма в виде определенной и строгой специфической последовательности нуклеотидов ДНК. У прокариотов наследственная информация находится в ядерном веществе (бактериальной хромосоме), а у эука риотов - в ядре. Именно ядро, благодаря наличию в нем ДНК, является информационным центром эукарио тической клетки, местом хранения и воспроизводства наследственной информации, которая определяет все признаки данной клетки и организма в целом и служит центром управления обмена веществ в клетке.

Ядро - важнейший органоид клетки. Большинство клеток имеет одно ядро. Нередко в клетке содержит ся два-три (например, в клетках печени) и более ядер. По форме ядро бывает шаровидным, линзовидным, вере теновидным или многолопастным.

От цитоплазмы ядро отделено ядерной оболочкой, состоящей из двух мембран. Пространство между мембранами называется перинуклеарным. Наружная мембрана переходит непосредственно в эндоплазматическую сеть. Обмен веществ между ядром и цитоплазмой осуществляется двумя основными путями. Во-первых, ядерная оболочка пронизана многочисленными порами, через которые происходит обмен молекулами между ядром и цитоплазмой. Во-вторых, вещества из ядра в цитоплазму и обратно могут попадать посредством отшнуровывания выпячиваний и выростов ядерной оболочки.

Внутреннее содержимое ядра подразделяют на кариоплазму (ядерный сок), хроматин и ядрышко.

Кариоплазма представлена гелеобразным матриксом (РНК, белки, свободные нуклеотиды и другие вещества), в котором располагаются хроматин и одно или несколько ядрышек.

Хроматин представляет собой молекулы ДНК, связанные с белками. Он может находиться в виде тонких, неразличимых в световой микроскоп нитей (эухроматин) и в виде глыбок, лежащих главным образом по периферии ядра (гетерохроматин). Различная степень конденсации (спирализации) хроматина обусловлена разной генетической активностью расположенных в нем участков ДНК.

Ядрышко - плотное округлое тельце, не ограниченное мембраной. Число ядрышек в ядре колеблется от одного до пяти, семи и более. Ядрышко не являет ся самостоятельной структурой ядра. Оно образуется вокруг участка хромосомы, в котором закодирована информация о структуре рРНК. Этот участок хромо сомы называется ядрышковым организатором, на нем происходит синтез рРНК. Кроме рРНК в ядрышке формируются субъединицы рибосом (рРНК соединяется с белковыми молекулами). Таким образом, ядрышко - это скопление рРНК и субъединиц рибосом на разных этапах формирования, в основе которого лежит участок хромосомы - ядрышковый организатор. Главными функциями ядра являются:

1) хранение генетической информации и передача ее дочерним клеткам в процессе деления;

2) управление обменом веществ клетки путем определения, какие белки, в какое время и в каких количествах должны синтезироваться. Это осуществляется путем синтеза иРНК и реализации генетической информации в ходе трансляции.

Все клетки, имеющие ядра, называются эукариоти ческими, а организмы с такими клетками - эукариотами. К ним относятся растения, животные, протисты и грибы.

Рибосомы (рис. 1) присутствуют в клетках как эукариот, так и прокариот, поскольку выполняют важную функцию в биосинтезе белков. В каждой клетке имеются десятки, сотни тысяч (до нескольких миллионов) этих мелких округлых органоидов. Это округлая рибонуклеопротеиновая частица. Диаметр ее составляет 20-30 нм. Состоит рибосома из большой и малой субъединиц, которые объединяются в присутствии нити м-РНК (матричной, или информационной, РНК). Комплекс из группы рибосом, объединенных одной молекулой м-РНК наподобие нитки бус, называется полисомой . Эти структуры либо свободно расположены в цитоплазме, либо прикреплены к мембранам гранулярной ЭПС (в обоих случаях на них активно протекает синтез белка).

Рис.1. Схема строения рибосомы, сидяшей на мембране эндоплазматической сети: 1 - малая субъединииа; 2 иРНК; 3 - аминоацил-тРНК; 4 - аминокислота; 5 - большая субъединица; 6 - - мембрана эндоплазматической сети; 7 - синтезируемая полипептидная цепь

Полисомы гранулярной ЭПС образуют белки, выводимые из клетки и используемые для нужд всего организма (например, пищеварительные ферменты, белки женского грудного молока). Кроме этого, рибосомы присутствуют на внутренней поверхности мембран митохондрий, где также принимают активное участие в синтезе белковых молекул.

Рибосомы, внутриклеточные частицы, осуществляющие биосинтез белка

В процессе функционирования (т. е. синтеза белка)
Рибосомы осуществляет несколько функций:

1) специфическое связывание и удержание компонентов белоксинтезирующей системы [информационная, или матричная, РНК (иРНК): аминоацил-тРНК; пептидил-тРНК; гуанозинтрифосфат (ГТФ); белковые факторы трансляции EF - Т и EF - G]:

2) каталитические функции (образование пептидной связи, гидролиз ГТФ): 3) функции механического перемещения субстратов (иРНК, тРНК), или транслокации. Функции связывания (удержания) компонентов и катализа распределены между двумя рибосомными субчастицами. Малая рибосомная субчастица содержит участки для связывания иРНК и аминоацил-тРНК и, по-видимому, не несёт каталитических функций. Большая субчастица содержит каталитический участок для синтеза пептидной связи, а также центр, участвующий в гидролизе ГТФ: кроме того, в процессе биосинтеза белка она удерживает на себе растущую цепь белка в виде пептидил-тРНК.

Каждая из субъединиц может проявить связанные с ней функции отдельно, без связи с другой субчастицей. Однако ни одна из субчастиц в отдельности не обладает функцией транслокации, осуществляемой только полной Рибосомы

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ОМСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

Кафедра ботаники и физиологии растений.

Контрольная работа

по дисциплине «Физиология растений»

Выполнила: Лоскутова Нина Александровна

студент 302 группы садоводство

агротехнологического факультета

заочной формы обучения

№ зачетной книжки1331051

Проверила: Потоцкая И. В.

9. Химический состав, строение и функции рибосом

Строение рибосомы. Рибосомы это микроскопические тельца округлой формы диаметром 15-20 нм. Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой.

Большая субчастица, в свою очередь, состоит из:

Одной молекулы рибосомальной РНК, которая является высокополимерной;

Одной молекулы РНК, которая является низкополимерной;

Некоторого количества молекул белка, как правило, их около трех десятков.

Что касается меньшей субчастицы, то тут немного проще. В ее состав входят:

Молекула высокополимерной РНК;

Несколько десятков молекул белка, как правило, около 40 штук (молекулы при этом разнообразные по структуре и форме).

В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме. В состав рибосом входят белки и РНК. Функция рибосом - это синтез белка. Синтез белка - сложный процесс, который осуществляется не одной рибосомой, а целой группой, включающей до нескольких десятков объединенных рибосом. Такую группу рибосом называют полисомой. Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки, где они потребляются. Эндоплазматическая сеть и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков.

Химический состав рибосом. В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа - 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы - полирибосомы (полисомы). В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты). Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому, происходит, в цитоплазме, как правило, во время биосинтеза белка.

В процессе выполнения основной своей функции, то есть во время синтеза белка, рибосома выполняет и ряд дополнительных функций. Связка, а также удержание всех составляющих так называемой белоксинтезирующей системы. Принято называть данную функцию информационной, или матричной. Рибосома функции эти распределяет между двумя своими субчастицами, каждая из которых выполняет свою определенную задачу в данном процессе. Рибосомы выполняют функцию каталитическую, которая заключается в образовании особой пептидной связи (амидная связь, которая возникает как при образовании белков, так и при возникновении пептидов). Сюда же можно отнести и гидролиз ГТФ (субстрата для синтеза РНК). За выполнение этой функции отвечает большая субъединица рибосомы. Именно в ней находятся специальные участки, в которых и происходит процесс синтеза пептидной связи, а также центр необходимый для гидролиза ГТФ. Помимо этого именно большая субъединица рибосомы во время биосинтеза белка удерживает на себе цепь, которая постепенно вырастает. Выполняет рибосома функции механического передвижения субстратов, к коим относятся иРНК и тРНК. Иными словами, они отвечают за транслокацию.

Изучение основных процессов, которые поддерживают существование органической жизни, ведется в разных направлениях. Львиная доля исследований приходится на молекулярную биологию и микробиологию. Как уже сейчас ясно, здоровье и жизнь многоклеточных сложных организмов по большей части зависит от тех операций, которые протекают внутри клеток. Изучение внутриклеточных метаморфоз – трудоемкое занятие, поскольку клетка не может жить жизнью отдельного организма. Жизнь эукариотов изучается, в том числе, и на базе знаний о простейших и бактерий. Так, рибосомы простейших бактерий очень похожи и по строению, и по функциям с ядерными клетками.

Бактериальная рибосома

Изучая рибосомы в составе бактерий, человек получает не только важные знания о сложном процессе синтеза белка из аминокислот в органической клетке, но и добывает инструменты в борьбе со многими болезнями. Именно рибосомные нуклеопротеиды бактерий дают информацию о механизмах воздействия антибиотиков на патогенные микроорганизмы (вирусы, бактерии и т.д.).

В клетке бактерии рибосома выполняет функцию формировщика молекул белка. Ее строение обуславливает сложный процесс биосинтеза.

Суть работы нуклеопротеида заключается в том, что с его помощью на базе матричных РНК, с использованием транспортных РНК, производятся сложные полипептидные соединения, без которых бактериальная клетка не может продолжать свое существование.

Матричная и транспортная РНК не являются частью рибосомы, а содержатся в .

Таким образом, в синтезе белка принимает участие три клеточных структуры:

  • матрица;
  • транспортная РНК;
  • рибосома.

Методы изучения

Современные биологические лаборатории имеют широкие возможности для изучения клетки и ее органоидов.

В сравнении с рибосомами эукариот, эти органоиды у прокариотов очень мелкие. Хотя в остальном эти составляющие клеток и бактерий и эукариотов очень похожи. Они также состоят из двух субчастиц, и сам процесс синтеза белка имеет массу схожих механизмов.

В связи с тем, что рибосомные нуклеопротеиды представляют одну из наиболее интересных человеку структурных единиц клетки, сегодня есть достаточно методов выявления закономерностей устройства и функционирования этого органоида.

Одним из самых широко используемых методов выявления нуклеопротеидов в бактериях является рибосомальный профилинг.

Этот метод выполняют следующим образом:

  1. Разрушение бактериальной клетки путем механического воздействия на нее. Химические реакции в данном случае исказят картину.
  2. Разрушение молекул РНК, которые не входят в состав рибосомы.
  3. Удаление всех полипептидных остатков из тех продуктов, которые были получены в результате разрушения.
  4. Обратное преобразование РНК в ДНК.
  5. Чтение аминокислотных последовательностей.

Само секвенирование может реализовываться с помощью нескольких методов, в частности, двух самых распространенных.

Метод Эдмана

Один из первых разработанных. Суть этого метода состоит в том, что пептид (белок) обрабатывают определенными реагентами, в результате чего происходит отщепление аминокислоты, из которой состоит белок.

Метод Сэнгера

Наиболее современный метод. Основан на использовании синтетического олигонуклеотида (олигонуклеотиды состоят более чем из двух нуклеиновых кислот).

Используемый метод позволяет идентифицировать все, даже наиболее мелкие участки РНК, которая исследуется. Благодаря получению полной информации об аминокислотах исследователи имеют возможность восстанавливать наиболее важные операционные моменты биосинтеза.

Большое значение эта информация имеет при исследовании реакции бактерий на антибиотики.

Строение

На данный момент наука имеет убедительное количество проверенных опытным путем сведений о строении и эукариотов.

Это макромолекулярный комплекс, который состоит из двух субчастиц разной величины:

  • малая субчастица;
  • большая субчастица.

Малая рибосома состоит из одной рибосомной РНК и трех десятков разных белков. Основная функция малой субчастицы состоит в том, чтобы связывать нуклеопротеид с матричной РНК (мРНК).

В течение всего процесса инициации и элонгации (присоединение мономеров к цепи макромолекулы) малая субчастица удерживает мРНК. Кроме того, она обеспечивает прохождение матрицы через нуклеопротеоид.

Таким образом, малая субчастица выполняет генетическую функцию декодирования информации.

В большой субчастице содержится 3 рибосомных РНК и около 50 белковых соединений. Большая субчастица с матрицей не вступает в контакт, она ответственна за протекание химических процессов в нуклеопротеидах при образовании полипептидных связей в транслируемом полипептиде.

Процесс трансляции

Процесс синтезирования белка (как у бактерий, так и эукариотов) имеет следующий цикл:

  • инициация;
  • элонгация;
  • терминация.

Инициация

Инициация начинается с того, что к малой субчастице рибосомы присоединяется матричная РНК.

Если рибосомная макромолекула узнает тот трехбуквенный кодон, который есть на мРНК, то происходит присоединение антикодона тРНК.

Элонгация

Присоединений аминокислот, которые принесла тРНК и продвижение рибосомы вдоль матрицы с высвобождением молекулы тРНК.

Движение по мРНК осуществляется до тех пор, пока оно не достигает стоп-кодона, который имеется во всех матрицах.

Терминация

Новообразованный белок, который состоит из протранслированных аминокислот, отсоединяется.

В некоторых случаях завершение трансляции новообразованного белка сопровождается распадом (диссоциацией) рибосомы.

Отличия синтеза белка в клетках эукариотов

Несмотря на то, что рибосомы эукариотов состоят из тех же структурных частей, что и в клетках бактерий, синтез полипептидов эукариотов имеет свои особенности:

  1. Отличия в механизме инициации (узнавании кодонов и подборе антикодонов).
  2. Отличия на стадии терминации. У эукариотов в некоторых случаях после завершения синтеза белка и образования новой молекулы эта молекула не отсоединяется, а начинает инициацию заново.

Антибиотики

Воздействие на бактерию антибиотиками наиболее губительно сказывается на работе рибосом. Антигены, которые содержатся в антибиотиках, ингибируют все стадии трансляции белка, в результате чего белок не может нормально синтезироваться, в клетке прекращаются все обменные процессы, а также процессы, связанные с ростом и с размножением организма.

Митохондрии являются универсальным мембранными органоидами клеток. Митохондрии имеют 2 мембраны – наружную и внутреннюю. Между этими мембранами нахлдится межмембранное пространство. В некоторых участках мембраны образуют контактные сайты. В митохондрии находится митохондриальный матрикс. В нем локализуются молекулы митохондриальной ДНК, собственные рибосомы, РНК, белки, низкомолекулярные метаболиты. В наружной мембране содержится более 80% липидов и менее 20% белков, а во внутренней – наоборот. Среди белков наружной мембраны имеются порины, формирующие поры. Через них из гиалоплазмы поступают молекулы определенного размера. В результате этого наружная мембрана имеет неспецифическую проницаемость. В зоне контактных сайтов локализуются специальные рецепторы и канальные белки. Внутренняя мембрана образует кристы. На них со стороны митохондриального матрикса локализуются грибовидные тельца – белковые компоненты, которые осуществляют синтез АТФ. Симптомы большинства митохондриальных болезней проявляются с возрастом, что вероятно, обусловлено накоплением мутаций, осуществляемыми Н 2 О 2 и О 2 . Т.к. эти вещества генерируются в максимальных количествах при окислительном фосфолирировании, чаще поражаются органы, наиболее нуждающиеся в митохондриальной энергии (ЦНС, сердце, скелетные мышцы, почки, печень, островки Лангерганса). Жизненный цикл митохондрий около 10 суток, их разрушение происходит путем аутофагии, а гибнущие органеллы замещаются новыми, которые формируются путем пеершнуровки предшествующих. Репликация митохондриальной ДНК происходит в любые фазы клеточного цикла независимо от ядерной ДНК. Функции митохондрий:

    Дыхательный и энергетический центр клетки – в них усваивается кислород необходимый для третьего (аэробного) этапа диссимиляции.

    Синтез своих ДНК, РНК, части белков.

    Рибосомы.

Рибосомы – органоиды общего значения, не имеющие мембранного строения. Место синтеза белка. D=15-35 нм. Находятся в цитоплазме, пластидах, митохондриях. Большая часть рибосом образуется в ядрышке ядра – в виде 2 субъединиц, которые выходят из ядра и соединяются в рибосому, которая состоит из большой и малой субъединицы. В состав каждой субъединицы входят р-РНК и белок. Рибосомы, соединяясь с и-РНК при синтезе белка по 4-40, образуют полисомы (полирибосомы). Рибосомы связаны с гранулярной ЭПС, синтезируют обычно секретирующие белки, или остаются в пределах мембран внутри клетки. Функции рибосом – синтез белков. 18. Пластиды. Пластиды – Органоиды общего значения в растительных клетках, эвглены зеленой (простейшие). Различают: хлоропласты, хромопласты, лейкопласты. Хлоропласты – зеленые пластиды, окруженные двумя мембранами. Внутренний слой мембраны в полости хлоропласта образуют плоские мешочки – тилокоиды. Они дисководной формы, образуют стопку ≈ 50 штук, стопки называются гранулами. В хлоропласте 40-60 гранул. Пространство между тилакоидами заполнено стромой (матриксном) хлоропласта из белков, липидов, углеводов, ферментов, АТФ, ДНК, РНК, рибосом. Хлоропласты образуются из пропластид – небольших недифференцированных телец. Хлоропласты размножаются путем деления. Хлоропласты могут превращаться осенью в хромопласты и лейкопласты.

Функции хлоропластов:

    Фотосинтез

    Синтез собственных белков.

Лейкопласты – бесцветные пластиды в неокрашенных частях растений: клетках, эндосперме семян, клубнях, корнеплодах. Это двухмембранные органоиды, внутри 2-3 выроста. Форма округлая. Переходят в хлоропласты и хромопласты. Функция:

    Накопление питательных веществ – крахмала, жиров, белков.

Хромопласты – двухмембранные пластиды нитевой, пластинчатой или иной формы. Цвет желто-красно-коричнево-оранжевый за счет пигментов каротиноидов. Находятся в клетках плодов. Хромопласты – конечный этап в развитии пластид - в них превращаются хлоропласты и лейкопласты. Функция:

    В клетке: играют роль своеобразного светофильтра для хлоропластов в процессе фотосинтеза; местосинтеза и локализации растительных пигментов.

    Окраска венчиков цветов – привлекающие насекомых опылителей.

    Окраска плодов – привлечение животных – распространение семян.

    Клеточный центр.

Клеточный центр (центрисома) – органоид немебранного строения в клетках животных и низших растений. Находится вблизи ядра, состоит из 2 центриолей – телец цилиндрической формы длиной 500 нм., расположенных перпендикулярно друг другу. Стенки образованы 9 триплетами микротрубочек. Чентрисома окружена более светлой цитоплазмой – центросферой. Функция: Центр формирования микротрубочек веретена деления. При делении клетки центрисома делится на 2 части и одна центрисоль отходит к одному полюсу клетки, другая – к другому и образуют веретена деления, обеспечивая равномерное распределение хромосом между дочерними клетками.

    Органеллы специального значения.

Специальные органеллы – имеются лишь в некоторых клетках и обеспечивают выполнение специализированных функций. К ним относят реснички, жгутики, микроворсинки, акросомы. Специальные органеллы образуются в ходе развития клетки как производные органелл общего значения Реснички и жгутики – органеллы специального значения, участвующие в процессах движения – представляют собой выросты цитоплазмы, основу которых составляет каркас из микротрубочек, который носит название осевой нити, или аксонемы . Аксонема образована 9 периферическими парами микротрубочек и одной центрально расположенной парой. Центральная пара микротрубочек окружена центральной оболочкой, от которой к периферическим дублетам расходятся радиально спицы. Периферические дублеты связаны собой мостиками нексина, а от микротрубочки А к микротрубочке В соседнего дуплета отходят “ручки” из белка динеина, который обладает активность. АТФ-азы. В основании каждой реснички или жгутика лежит базальное тельце, по своему строению сходна с центриолью. На уровне апикального конца тельца заканчивается микротрубочка С триплета, а микротрубочки А и В продолжаются в соотверствуюцие микротрубочки аксонемы реснички или жгутика. При развитии реснички или жгутика базальное тельце играет роль матрицы, на которой происходит сборка компонентов аксонемы.

    Ядро клетки. Строение и функции.

Ядерный аппарат эукариотических клеток представлен ядром. У прокариот ядерный аппарат называют нуклеоидом. Ядро – часть клетки, в которой локализуются хромосомы и формируются макромолекулы, контролирующие синтез веществ (и-РНК, т-РНК, р-РНК). Расположено в центре клетки или смещено. В составе ядра выделяют: 1. Поверхностный аппарат ядра, или кариолемму. 2. Кариоплазму, кариолимфу, или ядерный сок. 3. Ядерный матрикс 4. Хроматин. Функции ядра: Хранение генетической информации Реализация генетической информации Воспроизведение и передача генетической информации Строение ядерной оболочки. Наружная мембрана : составляет единое целое мембранами гранулярной ЭПС – на ее поверхности имеются рибосомы, а перинуклеарное пространство соответствует полости цистерн гранулярной ЭПС. Внутренняя мембрана – гладкая, ее интегральные белки связаны с ламиной – слоем, состоящим из переплетенных промежуточных филаментов. Роль ламины:

    Поддержка формы ядра

    Упорядочивание укладки хроматина

    Структурная организация поровых комплексов

4. Формирование кариолеммы при делении клеток.

Ядерные поры . Поря, содержат 2 параллельных кольца (по одному с каждой поверхности кариолеммы), которые образованы 8 белковыми гранулами. От этих гранул к центру сходятся фибриллы, формирующие перегородку, в середине которой лежит центральная гранула. Совокупность структур, связанных с ядерной порой, называется комплексом ядерной поры. Функции комплекса ядерной поры:

    Обеспечение регуляции избирательного транспорта веществ между цитоплазмой и ядром

    Активный перенос в ядро белков, имеющих особую маркировку.

    Перенос в цитоплазму субъединиц рибосом; их транспорт сопровождается изменением конформации комплекса.

Хроматин. Различают 2 вида хроматина: Эухроматин соответствует сегментам хромосом, которые деспирализованы и открыты для транскрипции. Эти сегменты не окрашиваются и не видны в световой микроскоп. Гетерохроматин соответствует конденсированным, плотно скрученным сегментам хромосом. Он интенсивно окрашивается основными красителями, и в световой микроскоп имеет вид гранул. Тельце Барра – скопление гетерохроматина, соответствующее одной Х-хромосоме у особей женского пола, которое в интерфазе плотно скручено. Выявление тельца Барра используется как диагностический тест для определения генетического пола. Компактная упаковка ДНК в ядре обеспечивает:

    Упорядоченное расположение очень длинных молекул ДНК в небольшом объеме ядра.

    Функциональный контроль активности генов.

Уровни упаковки хроматина:

    Обеспечивает образование нуклеосомной нити, обусловленной намоткой двух нитей ДНК на блоки из 8 гистоновых молекул.

    Приводит к скручиванию нуклеосомной нити с образованием нуклеотиновой фибриллы.

    Хроматиновые фибриллы образуют петли, каждая из которых соответствует 1 или нескольким генам, которые формируют участки конденсированных хромосом, которые выявляются при делении клетки.

Реализация генетической информации в интерфазном ядре непрерывно протекает благодаря процессам транскрипции. При транскрипции ДНК образуется крупная РНК, которая связывается с ядерными белками с образованием рибонуклеоидов . Процессинг включает отщепление интронов и стыковку экзонов - сплайсинг. При этом молекула РНК превращается в мелкие и-РНК, отделяющиеся от связанных с ними белков при переносе в цитоплазму. Ядерный сок (кариолимфа). Кариолимфа близка по составу к гиалоплазме. Обеспечивает транспорт веществ и ядерных структур и взаимодействие между ними. Ядрышко. Ядрышко – самая плотная структура ядра, является производным хромосомы с наиболее высокой концентрацией и активностью синтеза РНК в интерфазе. Образуется на вторичной перетяжке ядрышкоовй хромосомы. Место образования субъединиц рибосом. В профазе ядрышко распадается, в телофазе вновь формируется Функция: Формирование субъединиц рибосом из РНК и собственного белка, которые через поры выходят из ядра и собираются в цитоплазме в рибосому. 20. Обмен веществ и превращение энергии в клетке. Энергетический обмен в клетке. Основой всех проявлений жизнедеятельности клеток является обмен веществ с окружающей средой. Благодаря биохимическим реакциям, все процессы клеток являются строго упорядоченными. Клетка – высокоорганизованная структура, в которой экономично расходуются материалы и энергия, процессы идут с высоким КПД (КПД митохондрий 45-60%, хлоропластов – 25%).

АТФ + Н 2 О = АДФ + Н 3 РО 4

Обмен веществ состоит из ассимиляции и диссимиляции. Ассимиляция (анаболизм) – пластический обмен, при котором происходит синтез всех органических веществ. Все биосинтезы идут с поглощением энергии, которая запасается в виде АТФ при диссимиляции (катаболизме) – энергетическом обмене. Этапы энергетического обмена: Подготовительный – происходит расщепление сложных органических веществ до более простых под действием пищеварительных ферментов. Высвобожденная энергия рассеивается в виде тепла.

    В анаэробных условиях (без О 2) у анаэробов субстрат расщепляется с образованием конечных продуктов еще богатых энергией.

    Гликолиз – расщепление глюкозы ферментами клетки в отсутствии кислорода. В результате 40% энергии глюкозы запасется в 2 молекулах АТФ, 60% утрачивается в виде теплоты. Гликолиз осуществляется в гиалплазме клетки и не связан с мембранами.

    В аэробных условиях (с О 2) – субстрат без остатка расщепляется до бедных энергией неорганических веществ с высвобождением большого количества энергии. Протекает в 2 этапа:

А. Аналогично гликолизу, но только до пирувата С 3 Н 4 О 3 (субстратное фосфолирирование): С 6 Н 12 О 6 = 2С 3 Н 4 О 3 + 2АТФ + 2НАДН + Н + В. Пируват и НАДН 2 поступают в митохондрии, где пируват окисляется до ацилКоА.

ФАД – флавинадениндинуклеотид. Вся энергия глюкозы оказывается сосредоточенной в переносчиках НАДН +Н + и ФАДН 2 . Они переносят по 2Н + цепь переноса электронов и затем снова могут присоединять Н + . Атомы Н переносятся через внутреннюю мембрану митохондрий и на ее наружней поверхности разделяются на Н + и электрон. Реакции образования АТФ:

    Н поступает на внутреннюю поверхность митохондрий, образуют кристы:

С. Н + и О 2 - создают разноименно заряженное электрическое поле, когда Δφ = 200мВ начинает действовать протонный канал. Он возникает в АТФ-синтеазе, которая встроена во внутреннюю мембрану митохондрий.

    Через канал Н + устремляются внутрь митохондрий, создавая высокий уровень энергии, которая идет на синтез АТФ из АДФ и фосфата.

Итог: при расщеплении 1 молекулы глюкозы образуется 38 молекул АТФ, с запасом энергии 1520 кДж. Образовавшиеся АТФ выходят из митохондрий. Значение АТФ в энергетическом обмене:

    Образовавшаяся молекула АТФ выходит из митохондрий и участвует во всех процессах, требующих энергию.

      В процессах синтеза веществ.

      Участвует в процессах движения.

      В процессе деления клетки.

      Транспорт веществ.

При расщеплении АТФ отдает энергию (1 фосфатная связь заключает 40 кДж). Образовавшаяся АДФ и фосфат возвращаются в митохондрии. Автотрофные и гетеротрофные организмы. По питанию организмы делятся на автотрофные и гетеротрофные. Автотрофы ассимилируют свои органические вещества из неорганических (Н 2 О, СО 2 , СН 4) используя: энергию солнца – фотоавтотрофы (зеленые растения, цианобактерии), или энергию химических реакций –хемоавтотрофы (хемосинтезирующие бактерии). Гетеротрофы – используют органические вещества, поступающие с пищей, расщепляются до мономеров, для процессов ассимиляции используется энергия, высвобожденная при диссимиляции органических веществ. Пластический обмен. Фотосинтез. Фотосинтез: Фотосинтез – процесс образования органических веществ в хлоропластах из неорганических веществ под действием света. Фотосинтез состоит из световой и темновой фазы. Реакции на свету протекают в гранах (тилакоидах), реакции, не требующих света, темновые – в строме хлоропластов. Световые реакции: А. Свет возбуждает молекулы хлорофилла мембранах тилакоидов, электроны сходят с орбит и переносятся за пределы мембраны тилакоидов, создавая заряженное электрическое поле. В. Место вышедших электронов, занимают электроны, занимают электроны образовавшиеся в результате разложения воды под светом (фотолиза):

H 2 O = OH - +H + ; OH - - e - = OH

С. ОН объединяются в воду и кислород, который выделяется в атмосферу.

    Протоны Н + не проникают через мембрану тилакоида и накапливаются внутри, образуя положительно заряженное электрическое поле, что приводит к Δφ по обе стороны мембраны. Пари достижения критической разности потенциалов Н + устремляются по протонному каналу в ферменте АТФ-синтеазе, встроенный в мембрану тилакоида, наружу. На выходе создается высокий уровень энергии, который идет на синтез АТФ из АДФ с присоединением фосфата. Образовавшиеся молекулы переходят в строму, где участвуют в реакциях фиксации углерода.

    Н + вышедшие на поверхность мембраны тилакоида, соединяются с электронами, образуя атомарный водород, который идет на восстановление переносчика НАДФ + :

2е - + Н + + НАДФ + = НАДФН

Активированный световой энергией электрон хлорофилла используется для присоединения водорода к НАДФН, переходит в строму хлоропласта, участвуя в реакциях фиксации углерода. Темновые реакции: Темновая фаза фотосинтеза представляет собой ряд последовательных реакций. В результате этих реакций из СО 2 и Н 2 О образуются углеводы. СО 2 поступает в лист из окружающей среды, Н 2 образуется в световой фазе. Источником энергии служит АТФ, которая синтезируется в световую фазу. Эти вещества транспортируются в хлоропласты. Темновые реакции идут в строме хлоропластов, куда поступают АТФ, НАДФН, от тилакоидов гран и СО 2 из воздуха. Кроме того, там находятся пентозы С 5 , которые образуются в цикле фиксации СО 2 (цикле Кальвина). Цикл Кальвина:

      К пентозе С 5 присоединяется СО 2 с образованием нестойкой гексозы С 6 , которая расщепляется на 2 триозы (2С 3).

      Каждая из триоз 2С 3 принимает по одной фосфатной группе от 2 АТФ, что обогащает молекулы триоз энергией.

      Каждая из триоз 2С 3 принимает по одному атому Н от 2 НАДН, после чего триозы объединяются:

      Другие С 3 объединяются, образуя пентозы: 5С 3 → 3С 5 , которые заново включаются к цикл фиксации СО 2 .

Суммарное уравнение фотосинтеза:

6СО 2 + 6Н 2 О → С 6 Н 12 О 6 + 6О 2

21. Хемосинтез. Тип обмена, с помощью которого бактерии мобилизуют энергию был открыт русским ученым микробиологом С.Н. Виноградским. Бактерии обладают специальным ферментным аппаратом, позволяющим преобразовывать энергию химических реакций. В природе органическое вещество создает не только зеленые растения, но и бактерии, не содержащие хлорофилла. Органические вещества создаются путем хемосинтеза. Хемосинтез – синтез органических веществ с использованием энергии, освобождающейся при химических реакциях (окисление неорганических соединений). Энергия, получаемая при окислении, запасается в организме в форме АТФ. Виды бактерий:

    В водоемах, содержащих H 2 S, живут серобактерии. Они окисляют H 2 S.

    Нитробактерии окисляют NH 3 до HNO 2:

    Процесс нитрификации происходит в почве в огромных масштабах, служит источником нитратов для растений.

    Железобактерии – бактерии, превращающие закислое железо в кислое:

4FeCO 3 + O 2 + 6H 2 O = 4Fe(OH) 3 + 4CO 2 + E (324кДж)

Значение: Накопление нитратов; питание растений; круговорот веществ в природе; накапливаются железные руды – результат действия бактерий.