Роль инфекций. История развития учения об инфекционных болезнях. Примерные тестовые задания

Учение об инфекционных болезнях уходит в глубь веков. Представление о заразности таких болезней, как чума, оспа, холера и многие другие, зародилось еще у древних народов; задолго до нашей эры уже применялись некоторые простейшие меры предосторожности в отношении заразных больных. Однако эти отрывочные наблюдения и смелые догадки были весьма далеки от подлинно научных знаний.

Уже в Древней Греции некоторые философы, например Фукидид, высказывали мысль о живых возбудителях («контагиях») инфекционных болезней, но эти ученые не имели возможности подтвердить свои предположения какими-либо достоверными фактами.

Выдающийся врач древнего мира Гиппократ (около 460- 377 гг. до н. э.) объяснял происхождение эпидемий действием «миазм» - заразных испарений, которые будто бы могут вызвать ряд болезней.

Передовые умы человечества даже в условиях средневековой схоластики справедливо отстаивали идею о живой природе возбудителей заразных болезней; например, итальянский врач Фракасторо (1478-1553) развил стройное учение о контагиях болезней и о способах их передачи в своем классическом труде «О контагиях и контагиозных болезнях» (1546).

Голландский естествоиспытатель Антоний ван Левенгук (1632-1723) сделал в конце XVII века весьма важное открытие, обнаружив под микроскопом (который был им лично изготовлен и давал увеличение до 160 раз) различные микроорганизмы в зубном налете, в застоявшейся воде и настое из растений. Свои наблюдения Левенгук описал в книге «Тайны природы, открытые Антонием Левенгуком». Но даже и после этого открытия идея о микробах как возбудителях инфекционных болезней долгое время не получала еще необходимого научного обоснования, хотя опустошительные эпидемии неоднократно развивались в различных странах Европы, унося тысячи человеческих жизней.

На протяжении многих десятилетий (в XVII и XVIII столетиях) наблюдения над эпидемиями инфекционных болезней, поражающими большое количество людей, убеждали в заразности этих заболеваний.

Исключительно важное практическое значение имели работы английского ученого Эдуарда Дженнера (1749-1823), разработавшего высокоэффективный метод прививок против натуральной оспы.

Выдающийся отечественный врач-эпидемиолог Д. С. Самойлович (1744-1805) доказал заразность чумы при близком соприкосновении с больным и разработал простейшие способы дезинфекции при этом заболевании.

Великие открытия французского ученого Луи Пастера (1822-1895) убедительно доказали роль микроорганизмов в процессах брожения и гниения, в развитии инфекционных болезней.

Работы Пастера объяснили действительное происхождение инфекционных болезней человека, они явились экспериментальной основой асептики и антисептики, блестяще разработанных в хирургии Н. И. Пироговым, Листером , а также их многочисленными последователями и учениками.


Огромной заслугой Пастера явилось открытие принципа получения вакцин для предохранительных прививок против инфекционных болезней: ослабление вирулентных свойств возбудителей путем особого подбора соответствующих условий для их культивирования. Пастером были получены вакцины для прививок против сибирской язвы и бешенства.

Немецкий ученый Леффлер доказал в 1897 г. принадлежность возбудителя ящура к группе фильтрующихся вирусов.

Необходимо отметить, что вплоть до середины прошлого века многие инфекционные болезни, носившие название «лихорадок» и «горячек», совершенно не дифференцировали. Лишь в 1813 г. французский врач Бретанно высказал предположение о самостоятельности заболевания брюшного тифа, а в 1829 г. Шарль Луи дал весьма детальное описание клиники этой болезни.

В 1856 г. из группы «горячечных болезней» были выделены брюшной и сыпной тифы с четкой характеристикой этих совершенно самостоятельных заболеваний. С 1865 г. стали признавать отдельной формой инфекционного заболевания и возвратный тиф.

Мировая наука по достоинству оценивает заслуги известного русского клинициста-педиатра Н. Ф. Филатова (1847- 1902), внесшего существенный вклад в изучение детских инфекционных болезней, а также

Д. К. Заболотного (1866- 1929), который провел ряд важных наблюдений в области эпидемиологии особо опасных болезней (чума, холера).

В работах нашего соотечественника Н. Ф. Гамалеи (1859- 1949) нашли отражение многие вопросы инфекции и иммунитета.

Благодаря работам И. И. Мечникова (1845-1916) и ряда других исследователей с 80-х годов прошлого века стали получать разрешение вопросы иммунитета (невосприимчивости) при инфекционных болезнях, была показана исключительно важная роль клеточной (фагоцитоз) и гуморальной (антитела) защиты организма.

Помимо чисто клинического исследования инфекционных больных, для диагностики отдельных заболеваний с конца XIX века стали широко применять лабораторные методы.

Работы ряда ученых (И. И. Мечников, В. И. Исаев, Ф. Я. Чистович, Видаль, Уленгут) позволили еще в конце прошлого столетия использовать серологические исследования (агглютинацию, лизис, преципитацию) для лабораторной диагностики инфекционных болезней.

X. И. Гельману и О. Кальнингу принадлежит честь разработки метода аллергической диагностики сапа (1892). Распознавание малярии было значительно облегчено благодаря методу дифференциальной окраски ядра и протоплазмы малярийного плазмодия в мазках крови, разработанному Д. Л. Романовским (1892).

Смысл слова «инфекция» различен. Под инфекцией понимают заразное начало, т.е. возбудителя в одном случае, а в другом случае это слово употребляется как синоним понятия «заражение, или заразная болезнь». Чаще всего слово «инфекция» употребляется для обозначения инфекционной болезни. Инфекционные болезни имеют следующие отличительные особенности:

1) причина - живой возбудитель;

2) наличие инкубационного периода, который зависит от вида микроба, дозы и др. Это период времени от проникновения возбудителя в организм хозяина, его размножение и накопление до предела, обуславливающего болезнетворное действие его на организм (длится от нескольких часов до нескольких месяцев);

3) заразительность, т.е. способность возбудителя передаваться от больного животного здоровому (есть и исключения - столбняк, злокачественный отек);

4) специфические реакции организма;

5) невосприимчивость после переболевания.

Инфекция (позднелатинское infektio - заражение, от латинского inficio - вношу что-либо вредное, заражаю) - состояние зараженности организма; эволюционно сложившийся комплекс биологических реакций, возникающих при взаимодействии организма животного и возбудителя инфекции. Динамика этого взаимодействия называется инфекционным процессом.

Инфекционный процесс - это комплекс взаимных приспособительных реакций на внедрение и размножение патогенного микроорганизма в макроорганизме, направленный на восстановление нарушенного гомеостаза и биологического равновесия с окружающей средой.

Современное определение инфекционного процесса включает взаимодействие трех основных факторов

1) возбудителя,

2) макроорганизма

3) окружающей среды,

Каждый фактор может оказывать существенное влияние на результат инфекционного процесса.

Чтобы вызвать заболевание, микроорганизмы должны быть патогенными (болезнетворными).

Патогенность микроорганизмов - это генетически обусловленный признак, который передается по наследству. Для того чтобы вызвать инфекционную болезнь, патогенные микробы должны проникать в организм в определенной инфицирующей дозе (ИД). В естественных условиях для возникновения инфекции патогенные микробы должны проникать через определенные ткани и органы организма. Патогенность микробов зависит от многих факторов и подвержена большим колебаниям в различных условиях. Патогенность микроорганизмов может снижаться или, наоборот, увеличиваться. Патогенность как биологический признак бактерий реализуется через их три свойства :

· инфекциозность,

· инвазивность и

· токсигенность.

Под инфекциозностью (или инфективностью) понимают способность возбудителей проникать в организм и вызывать заболевание, а также способность микробов передаваться с помощью одного из механизмов передачи, сохраняя в этой фазе свои патогенные свойства и преодолевая поверхностные барьеры (кожу и слизистые). Она обусловлена наличием у возбудителей факторов, способствующих его прикреплению к клеткам организма и их колонизации.

Под инвазивностью понимают способность возбудителей преодолевать защитные механизмы организма, размножаться, проникать в его клетки и распространяться в нем.

Токсигенность бактерий обусловлена выработкой ими экзотоксинов. Токсичность обусловлена наличием эндотоксинов. Экзотоксины и эндотоксины обладают своеобразным действием и вызывают глубокие нарушения жизнедеятельности организма.

Инфекциозные, инвазивные (агрессивные) и токсигенные (токсические) свойства относительно не связаны друг с другом, они по-разному проявляются у разных микроорганизмов.

Инфицирующая доза - минимальное количество жизнеспособных возбудителей, необходимых для развития инфекционной болезни. От величины инфицирующей дозы микроба может зависеть тяжесть течения инфекционного процесса, а в случае условно-патогенных бактерий - возможность его развития.

Степень патогенности или болезнетворности микроорганизмов называется вирулентностью.

Величина инфицирующей дозы в большой мере зависит от вирулентных свойств возбудителя. Между этими двумя характеристиками существует обратная зависимость: чем выше вирулентность, тем ниже инфицирующая доза, и наоборот. Известно, что для такого высоковирулентного возбудителя, как чумная палочка (Yersinia pestis), инфицирующая доза может колебаться от одной до нескольких микробных клеток; для Shigella dysenteriae (палочка Григоръева-Шига) - около 100 микробных клеток.

В отличие от этого, инфицирующая доза низковирулентных штаммов может быть равна 10 5 -10 6 микробных клеток.

Количественными характеристиками вирулентности являются:

1) DLM (минимальная летальная доза) – доза, вызывающая за фиксированный период времени гибель единичных, наиболее чувствительных подопытных животных; принимается за нижний предел

2) LD 50 – это количество бактерий (доза), вызывающее за фиксированный период времени гибель 50 % животных в эксперименте;

3) DCL (смертельная доза) вызывает за фиксированный период времени

100 %-ную гибель животных в эксперименте.

По степени патогенности они делятся на:

Высокопатогенные (высоковирулентные);

Низкопатогенные (низковирулентные).

Высоковирулентные микроорганизмы вызывают заболевание в нормальном организме, низковирулентные - только в иммуносупрессированном организме (оппортунистические инфекции).

У патогенных микроорганизмов вирулентность обусловлена факторами:

1) адгезия – способность бактерий прикрепляться к эпителиальным клеткам. Факторами адгезии являются реснички адгезии, адгезивные белки, липополисахариды у грамотрицательных бактерий, тейхоевые кислоты у грамположительных бактерий, у вирусов – специфические структуры белковой или полисахаридной природы; Эти структуры, ответственные за прилипание к клеткам хозяина, называются «адгезинами». При отсутствии адгезинов инфекционный процесс не развивается;

2) колонизация – способность размножаться на поверхности клеток, что ведет к накоплению бактерий;

4) пенетрация – способность проникать в клетки;

5) инвазия – способность проникать в подлежащие ткани. Эта способность связана с продукцией таких ферментов, как

  • нейраминидаза - фермент, который расщепляет биополимеры, которые входят в состав поверхностных рецепторов клеток слизистых оболочек. Это делает оболочки доступными для воздействия на них микроорганизмов;

· гиалуронидаза - действует на межклеточное и межтканевое пространство. Это способствует проникновению микробов в ткани организма;

· дезоксирибонуклеаза (ДНКаза) - фермент, который деполимеризирует ДНК, и др.

6) агрессия – способность противостоять факторам неспецифической и иммунной защиты организма.

К факторам агрессии относят:

· вещества разной природы, входящие в состав поверхностных структур клетки: капсулы, поверхностные белки и т. д. Многие из них подавляют миграцию лейкоцитов, препятствуя фагоцитозу;капсулообразование - это способность микроорганизмов образовывать на поверхности капсулу, которая защищает бактерии от клеток фагоцитов организма хозяина (пневмококки, чума, стрептококки). Если капсул нет, то образуются другие структуры: например, у стафилококка - белок А, с помощью этого белка стафилококк взаимодействует с иммуноглобулинами. Такие комплексы препятствуют фагоцитозу. Или же микроорганизмы вырабатывают определенные ферменты: например, плазмокоагулаза приводит к свертыванию белка, который окружает микроорганизм и защищает его от фагоцитоза;

· ферменты – протеазы, коагулазу, фибринолизин, лецитиназу;

· токсины, которые делят на экзо– и эндотоксины.

Экзотоксины - это вещества белковой природы, выделяемые во внешнюю среду живыми патогенными бактериями.

Экзотоксины высокотоксичны, обладают выраженной специфичностью действия и иммуногенностью (в ответ на их введение образуются специфические нейтрализующие антитела).

По типу действия экзотоксины делятся на:

А. Цитотоксины - блокируют синтез белка в клетке (дифтерия, шигеллы);

Б. Мембранотоксины - действуют на мембраны клеток (лейкоцидин стафилококка действует на мембраны клеток фагоцитов или стрептококковый гемолизин действует на мембрану эритроцитов). Наиболее сильные экзотоксины вырабатывают возбудители столбняка дифтерии, ботулизма. Характерной особенностью экзотоксинов является их способность избирательно поражать определенные органы и ткани организма. Например, экзотоксин столбняка поражает двигательные нейроны спинного мозга, а дифтерийный экзотоксин поражает сердечную мышцу и надпочечники.

Для профилактики и лечения токсинемических инфекций применяются анатоксины (обезвреженные экзотоксины микроорганизмов) и антитоксические сыворотки.

Рис. 2. Механизм действия бактериальных токсинов. А. Повреждение клеточных мембран альфа-токсином S. aureus. В. Ингибирование белкового синтеза клетки шига-токсином. С. Примеры бактериальных токсинов, активирующих пути вторичных мессенджеров (функциональные блокаторы).

Эндотоксины - токсические субстанции, входящие в структуру бактерий (обычно в клеточную стенку) и высвобождающиеся из них после лизиса бактерий.

Эндотоксины не обладают таким выраженным специфическим действием, как экзотоксины, а также менее ядовиты. Не переходят в анатоксины. Эндотоксины являются суперантигенами, они могут активизировать фагоцитоз, аллергические реакции. Эти токсины вызывают общее недомогание организма, их действие не отличается специфичностью.

Независимо от того, от какого микроба получен эндотоксин, клиническая картина однотипна: это, как правило, лихорадка и тяжелое общее состояние.

Выброс эндотоксинов в организм может привести к развитию инфекционно-токсического шока. Он выражается в потере капиллярами крови, нарушении работы центров кровообращения и, как правило, приводит к коллапсу и смерти.

Различают несколько форм инфекции :

· Выраженной формой инфекции является инфекционная болезнь с определенной клинической картиной (явная инфекция).

· При отсутствии клинических проявлений инфекции ее называют скрытой (бессимптомной, латентной, инапарантной).

· Своеобразная форма инфекции - несвязанное с предшествующим переболеванием микробоносительство.

Возникновение и развитие инфекции зависит от наличия специфического возбудителя (патогенного организма), возможности его проникновения в организм восприимчивого животного, условий внутренней и внешней среды, определяющих характер взаимодействия микро - и макроорганизма.

Каждый вид патогенных микробов вызывает определенную инфекцию (специфичность действия ). Проявление инфекции зависит от степени патогенности конкретного штамма возбудителя инфекции, т.е. от его вирулентности, которая выражается токсигенностью и инвазивностью.

В зависимости от характера возбудителя различают

· бактериальную,

· вирусную,

· грибковую

· другие инфекции.

Входные ворота инфекции – место проникновения возбудителя в организм человека через определенные ткани, лишенные физиологической защиты против конкретного вида возбудителя.

Ими могут быть кожа, конъюнктива, слизистые оболочки пищеварительного тракта, дыхательных путей, мочеполового аппарата. Некоторые микробы проявляют патогенное действие лишь при проникновении через строго определенные ворота инфекции. Например, вирус бешенства вызывает болезнь лишь при внедрении через повреждения кожи и слизистых оболочек. Многие микробы приспособились к разнообразным путям внедрения в организм.

Очаг инфекции (очаговая инфекция) – размножение возбудителя в месте внедрения

В зависимости от механизма передачи возбудителя различают

· алиментарные,

· респираторные (аэрогенные, в т.ч. пылевые и воздушно-капельные),

· раневые,

· контактные инфекции.

При распространении микробов в организме развивается генерализованная инфекция .

Состояние, при котором микробы из первичного очага проникают в кровяное русло, но не размножаются в крови, а лишь транспортируются в различные органы, называется бактериемией . При ряде болезней (сибирская язва, пастереллезы и др.) развивается септицемия : микробы размножаются в крови и проникают во все органы и ткани, вызывая там воспалительные и дистрофические процессы.

Инфекция может быть

· спонтанной (естественной) и

· экспериментальной (искусственной).

Спонтанная инфекция возникает в естественных условиях при реализации механизма передачи, свойственного данному патогенному микробу, или при активизации условно патогенных микроорганизмов, обитавших в организме животного (эндогенная инфекция или аутоинфекция ). Если специфический возбудитель проникает в организм из окружающей среды, говорят об экзогенной инфекции .

Если после перенесения инфекции и освобождения макроорганизма от ее возбудителя происходит повторное заболевание вследствие заражения тем же патогенным микробом, говорят о реинфекци и.

Отмечают и суперинфекцию -следствие нового (повторного) заражения, наступившего на фоне уже развивавшейся болезни, вызванной тем же патогенным микробом.

Возврат болезни, повторное появление ее симптомов после наступившего клинического выздоровления называется рецидивом . Он наступает при ослаблении сопротивляемости животного и активизации сохранившихся в организме возбудителей перенесенной болезни. Рецидивы свойственны болезням, при которых формируется недостаточно прочный иммунитет.

Смешанные инфекции (микстинфекции, миксты ) развиваются в результате заражения несколькими видами микроорганизмов; подобные состояния характеризует качественно иное течение (обычно более тяжёлое) по сравнению с моноинфекцией, а патогенный эффект возбудителей не имеет простого суммарного характера. Микробные взаимоотношения при смешанных (или микст-) инфекциях вариабельны:

Если микроорганизмы активизируют или отягощают течение болезни, их определяют как активаторы, или синергисты (например, вирусы гриппа и стрептококки группы Б);

Если микроорганизмы взаимно подавляют патогенное действие, их обозначают как антагонисты (например, кишечная палочка подавляет активность патогенных сальмонелл, шигелл, стрептококков и стафилококков);

Индифферентные микроорганизмы не влияют на активность других возбудителей.

Манифестные инфекции могут протекать типично, атипично или хронически.

Типичная инфекция . После попадания в организм инфекционный агент размножается и вызывает развитие характерных патологических процессов и клинических проявлений.

Атипичная инфекция . Возбудитель размножается в организме, но не вызывает развития типичных патологических процессов, а клинические проявления носят невыраженный, стёртый характер. Атипичность инфекционного процесса может быть вызвана пониженной вирулентностью возбудителя, активным противодействием защитных факторов его патогенным потенциям, влиянием проводимой антимикробной терапии и совокупностью указанных факторов.

Хроническая инфекция обычно развивается после инфицирования микроорганизмами, способными к длительному персистированию. В ряде случаев под влиянием антимикробной терапии либо под действием защитных механизмов бактерии преобразуются в L-формы. При этом они лишаются клеточной стенки, а вместе с ней и структур, распознаваемых AT и служащих мишенями для многих антибиотиков. Другие бактерии способны длительно циркулировать в организме, «уходя» от действия указанных факторов за счёт антигенной мимикрии или изменения антигенной структуры. Подобные ситуации известны также как персистирующие инфекции [от лат. persisto, persistens, выживать, выдерживать]. По окончании химиотерапии L-формы могут возвращаться к исходному (вирулентному) типу, а виды, способные к длительному персистированию, начинают размножаться, что и вызывает вторичное обострение, рецидив болезни.

Медленные инфекции . Само название отражает медленную (в течение многих месяцев и лет) динамику инфекционного заболевания. Возбудитель (обычно вирус) проникает в организм и латентно присутствует в клетках. Под влиянием различных факторов инфекционный агент начинает размножаться (при этом скорость репродукции остаётся невысокой), заболевание принимает клинически выраженную форму, тяжесть которой постепенно усиливается, приводя к гибели пациента.

В подавляющем большинстве случаев патогенные микроорганизмы попадают в неблагоприятные условия различных областей организма, где погибают либо подвергаются действию защитных механизмов или элиминируются чисто механически. В некоторых случаях возбудитель задерживается в организме, но подвергается такому «сдерживающему» давлению, что не проявляет патогенных свойств и не вызывает развития клинических проявлений (абортивные, скрытые, «дремлющие» инфекции ).

Абортивная инфекция [от лат. aborto, не вынашивать, в данном контексте - не реализовывать патогенный потенциал] - одна из наиболее распространённых форм бессимптомных поражений. Такие процессы могут возникать при видовой или внутривидовой, естественной либо искусственной невосприимчивости (поэтому человек не болеет многими болезнями животных). Механизмы невосприимчивости эффективно блокируют жизнедеятельность микроорганизмов, возбудитель не размножается в организме, инфекционный цикл возбудителя прерывается, он погибает и удаляется из макроорганизма.

Латентная, или скрытая , инфекция [от лат. latentis, спрятанный] - ограниченный процесс с длительной и циклической циркуляцией возбудителя, аналогичной наблюдаемой при явных формах инфекционного процесса. Возбудитель размножается в организме; вызывает развитие защитных реакций, выводится из организма, но никаких клинических проявлений не наблюдают. Подобные состояния также известны как инаппарантные инфекции (от англ. inapparent, неявный, неразличимый). Так, нередко в латентной форме протекают вирусные гепатиты, полиомиелит, герпетические инфекции и т.д. Лица с латентными инфекционными поражениями представляют эпидемическую опасность для окружающих.

Дремлющие инфекции могут быть разновидностью латентных инфекций или состояниями после перенесённого клинически выраженного заболевания. Обычно при этом устанавливается клинически не проявляемый баланс между патогенными потенциями возбудителя и защитными системами организма. Однако под влиянием различных факторов, понижающих резистентность (стрессы, переохлаждения, нарушения питания и т.д.), микроорганизмы приобретают возможность оказывать патогенное действие. Таким образом, лица, переносящие дремлющие инфекции, - резервуар и источник патогена.

Микробоносительство . Как следствие латентной инфекции или после перенесённого заболевания возбудитель «задерживается» в организме, но подвергается такому «сдерживающему давлению», что не проявляет патогенных свойств и не вызывает развития клинических проявлений. Такое состояние называется микробоносительство. Подобные субъекты выделяют патогенные микроорганизмы в окружающую среду и представляют большую опасность для окружающих лиц. Выделяют острое (до 3 мес), затяжное (до 6 мес) и хроническое (более б мес) микробоносительство. Носители играют большую роль в эпидемиологии многих кишечных инфекций - брюшного тифа, дизентерии, холеры и др.

Инфекция (infectio – заражение) – процесс проникновения микроорганизма в макроорганизм и его размножение в нем.

Инфекционный процесс – процесс взаимодействия микроорганизма и организма человека.

Инфекционный процесс имеет различные проявления: от бессимптомного носительства до инфекционного заболевания (с выздоровлением или летальным исходом).

Инфекционная болезнь - это крайняя форма инфекционного процесса.

Для инфекционной болезни характерно:

1) наличие определенного живого возбудителя ;

2) заразность , т.е. возбудители могут передаваться от больного человека здоровым, что приводит к широкому распространению заболевания;

3) наличие определенного инкубационного периода и характерная последовательная смена периодов в течение болезни (инкубационный, продромальный, манифестный (разгар болезни), рековалесценции (выздоровление));

4) развитие характерных для данного заболевания клинических симптомов ;

5) наличие иммунного ответа (более или менее продолжительный иммунитет после перенесения заболевания, развитие аллергических реакций при наличии возбудителя в организме и др.)

Названия инфекционных болезней формируются от названия возбудителя (вида, рода, семейства) с добавлением суффиксов "оз" или "аз" (сальмонеллез, риккетсиоз, амебиаз и пр.).

Развитие инфекционного процесса зависит :

1) от свойств возбудителя ;

2) от состояния макроорганизма ;

3) от условий окружающей среды , которые могут влиять как на состояние возбудителя, так и на состояние макроорганизма.

Свойства возбудителей.

Возбудителями являются вирусы, бактерии, грибы, простейшие, гельминты (их проникновение – инвазия).

Микроорганизмы, способные вызывать инфекционные болезни, называются патогенными , т.е. болезнетворными (pathos – страдание, genos – рождение).

Имеются также условно-патогенные микроорганизмы, которые вызывают заболевания при резком снижении местного и общего иммунитета.

Возбудители инфекционных заболеваний обладают свойствами патогенности и вирулентности .

Патогенность и вирулентность.

Патогенность – это способность микроорганизмов проникать в макроорганизм (инфективность), приживаться в организме, размножаться и вызывать комплекс патологических изменений (нарушений) у чувствительных к ним организмов (патогенность – способность вызывать инфекционный процесс). Патогенность – это видовой, генетически обусловленный признак или генотипический признак.

Степень патогенности определяется понятием вирулентность. Вирулентность – количественное выражение или патогенности. Вирулентность является фенотипическим признаком. Это свойство штамма, которое проявляется в определенных условиях (при изменчивости микроорганизмов, изменении восприимчивости макроорганизма).

Количественные показатели вирулентности :

1) DLM (Dosis letalis minima) – минимальная летальная доза – минимальное количество микробных клеток, которое вызывает гибель 95% восприимчивых животных при данных конкретных условиях опыта (вид животного, вес, возраст, способ заражения, время гибели).

2) LD 50 – то количество, которое вызывает гибель 50% экспериментальных животных.

Поскольку вирулентность – это фенотипический признак, то она изменяется под влиянием естественных причин. Ее можно также искусственно изменить (повысить или понизить). Повышение проводят путем многократного пассирования через организм восприимчивых животных. Понижение - в результате воздействия неблагоприятных факторов: а) высокая температура; б) антимикробные и дезинфицирующие вещества; в) выращивание на неблагоприятных питательных средах; г) защитные силы организма – пассирование через организм мало восприимчивых или невосприимчивых животных. Микроорганизмы с ослабленной вирулентностью используются для получения живых вакцин.

Патогенные микроорганизмы обладают также специфичностью, органотропностью и токсичностью.

Специфичность – способность вызывать определенную инфекционную болезнь. Холерный вибрион вызывает холеру, микобактерии туберкулеза – туберкулез и пр.

Органотропность – способность поражать определенные органы или ткани (возбудитель дизентерии – слизистую оболочку толстого кишечника, вирус гриппа – слизистую оболочку верхних дыхательных путей, вирус бешенства – нервные клетки аммонова рога). Встречаются микроорганизмы, способные поражать любую ткань, любой орган (стафилококки).

Токсичность – способность образовывать токсические вещества. Токсические и вирулентные свойства тесно связаны между собой.

Факторы вирулентности.

Признаки, которые определяют патогенность и вирулентность, называются факторами вирулентности. К ним относятся определенные морфологические (наличие определенных структур – капсул, клеточной стенки), физиологические и биохимические признаки (выработка ферментов, метаболитов, токсинов, оказывающих неблагоприятное влияние на макроорганизм) и др. По наличию факторов вирулентности патогенные микроорганизмы можно отличить от непатогенных.

К факторам вирулентности относятся:

1) адгезины (обеспечивают адгезию) – специфические химические группировки на поверхности микробов, которые как "ключ к замку" соответствуют рецепторам чувствительных клеток и отвечают за специфическое прилипание возбудителя к клеткам макроорганизма;

2) капсула – защита против фагоцитоза и антител; бактерии, окруженные капсулой, более устойчивы к действию защитных сил макроорганизма и вызывают более тяжелое течение инфекции (возбудители сибирской язвы, чумы, пневмококки);

3) поверхностонорасположенные вещества капсулы или клеточной стенки различной природы (поверхностные антигены): протеин А стафилококка, протеин М стрептококка, Vi-антиген брюшнотифозных палочек, липопротеиды грам «-» бактерий; они выполняют функции подавления иммунитета и неспецифических защитных факторов;

4) ферменты агрессии: протеазы , разрушающие антитела; коагулаза , свертывающая плазму крови; фибринолизин , растворяющий сгустки фибрина; лецитиназа , разрушающая лецетин мембран; коллагеназа , разрушающая коллаген; гиалуронидаза , разрушающая гиалуроновую кислоту межклеточного вещества соединительной ткани; нейраминидаза , разрушающая нейраминовую кислоту. Гиалуронидаза , расщепляя гиалуроновую кислоту, повышает проницаемость слизистых оболочек и соединительной ткани;

токсины –микробные яды - мощные факторы агрессии.

Факторы вирулентности обеспечивают:

1) адгезию – прикрепление или прилипание микробных клеток к поверхности чувствительных клеток макроорганизма (к поверхности эпителия);

2) колонизацию – размножение на поверхности чувствительных клеток;

3) пенетрацию – способность некоторых возбудителей проникать (пенетрировать) внутрь клеток - эпительальных, лейкоцитов, лимфоцитов (все вирусы, некоторые виды бактерий: шигеллы, эшерихии); клетки при этом погибают, и может нарушаться целостность эпителиального покрова;

4) инвазию – способность проникать через слизистые и соединительнотканные барьеры в подлежащие ткани (благодаря выработке ферментов гиалуронидазы, нейраминидазы);

5) агрессию - способность возбудителей подавлять неспецифическую и иммунную защиту организма хозяина и вызывать развитие повреждений.

Токсины.

Токсины – яды микробного, растительного или животного происхождения. Они обладают высоким молекулярным весом и вызывают образование антител.

Токсины делят на 2 группы: эндотоксины и экзотоксины.

Экзотоксины выделяются в окружающую среду в процессе жизнедеятельности микроорганизма . Эндотоксины прочно связаны с бактериальной клеткой и выделяются в окружающую среду после гибели клетки .

Свойства эндо и экзотоксинов.

Экзотоксины

Эндотоксины

Липополисахариды

Термолабильны (инактивируются при 58-60С)

Термостабильны (выдерживают 80 - 100С)

Высокотоксичны

Менее токсичны

Специфичны

Неспецифичны (общее действие)

Высокая антигенная активность (вызывают образование антител – антитоксинов )

Слабые антигены

Под действием формалина переходят в анатоксины (утрата ядовитых свойств, сохранение иммуногенности)

Частично обезвреживаются формалином

Образуются в основном грам «+» бактериями

Образуются, в основном, грам «-» бактериями

Экзотоксины образуют возбудители так называемых токсинемических инфекций, к которым относятся д ифтерия, столбняк, газовая гангрена, ботулизм, некоторые формы стафилококковых и стрептококковых инфекций.

Некоторые бактерии одновременно образуют как экзо-,так и эндотоксины (кишечная палочка, холерный вибрион).

Получение экзотоксинов.

1) выращивание токсигенной (образующей экзотоксин) культуры в жидкой питательной среде;

2)фильтрование через бактериальные фильтры (отделение экзотоксина от бактериальных клеток); можно использовать другие способы очистки.

Экзотоксины используют затем для получения анатоксинов.

Получение анатоксинов.

1) к раствору экзотоксина (фильтрату бульонной культуры токсигенных бактерий) добавляют 0,4% формалин и выдерживают в термостате при 39-40С 3-4 недели; происходит потеря токсичности, но антигенные и иммуногенные свойства сохраняются;

2) добавляют консервант и адъювант.

Анатоксины – это молекулярные вакцины. Они используются для специфической профилактики токсинемических инфекций , а также для получения лечебно-профилактических антитоксических сывороток, также используемых при токсинемических инфекциях.

Получение эндотоксинов.

Используются различные методы разрушения микробной клетки , а затем проводят очистку, т.е. отделение эндотоксина от других компонентов клетки.

Так как эндотоксины – это липополисахариды, их можно извлечь из микробной клетки путем ее разрушения ТХУ (трихлоруксусная кислота) с последующим диализом для очистки от белков.

8.1. Инфекция. Формы инфекционного процесса

Понятия «инфекция» и «инфекционная болезнь» не являются синонимами.

Понимая под инфекцией взаимодействие патогенного (болезнетворного) микроорганизма и восприимчивого (чувствительного) хозяина в определенных условиях внешней среды, следует заметить, что инфекционная болезнь - это крайняя степень проявления инфекционного процесса, когда образуется патологический очаг и появляется специфическая клиническая симптоматика.

Классифицируют различные формы инфекционного процесса (инфекции) в зависимости от природы патогена, происхождения, условий возникновения инфекции, характера и длительности ее течения и т.д.

В зависимости от природы патогена, принадлежности к определенному таксону существует классификация инфекций по этиологическому принципу: бактериальные (дизентерия, сальмонеллез, дифтерия, туберкулез, гонорея и т.д.), вирусные (грипп, ВИЧинфекция, оспа, энцефалит, бешенство и т.д.), грибковые (кандидоз, аспергиллез, трихофития и др.), протозойные (малярия, токсоплазмоз, лямблиоз), прионные (куру, болезнь Крейтцфельда-Якоба, скрепи).

Если геном возбудителя интегрируется (встраивается) в геном хромосомы хозяина, то возникший инфекционный процесс может передаваться по наследству через генетический материал из поколения в поколения хозяина. Это интегративная форма инфекции. Примером интегративной формы инфекции являются инфекции

вирусной этиологии (лизогения в микробном мире, концерогенез - раковые линии мышей). Большинство инфекций, которыми болеет человек, по наследству не передаются (туберкулез, холера, грипп и т.д.) и называются неинтегративными. Нельзя путать интегративную форму инфекции с врожденной, когда возбудитель передается от матери плоду через плаценту (сифилис, ВИЧинфекция и т.д.), или новорожденный во время родов инфицируется при прохождении через родовые пути матери (бленнорея).

По происхождению инфекции делят на экзогенные и эндогенные.

Экзогенная инфекция возникает при попадании возбудителя в организм извне. Для экзогенной инфекции обязательно наличие трех элементов эпидемического процесса: источник инфекции, механизм передачи патогена, восприимчивый организм. Например, для сифилиса: источник инфекции - больной человек, механизм передачи патогена половой, восприимчивый организм - человек. Эндогенная (оппортунистическая) инфекция вызывается представителями нормальной микрофлоры при снижении защитных сил организма (иммунодефицитные состояния). Возбудители эндогенной инфекции относятся к условно-патогенным видам микроорганизмов. Пример эндогенной инфекции - фурункул носа стафилококковой этиологии (Staphylococcus epidermidis). Инфекция возникла при переохлаждении организма и развитии местного иммунодефицита слизистой оболочки носа. Эндогенная инфекция может развиться и при перемещении микроорганизмов из одного биотопа человека в другой за счет искусственного переноса руками, инструментами либо естественного перехода микроорганизма - его транслокации (миграции). Пример такой формы - эшерихиозный цистит, возбудитель Escherichia coli, которая попала на слизистую оболочку мочеполовой системы из кишечника.

По локализации патогена в организме различают местную и генерализованную формы инфекции. Местная или очаговая инфекция имеет место, когда возбудитель локализуется в определенном органе либо ткани и не распространяется по организму. Например, при ангине возбудитель (чаще всего Streptococcus pyogenes) находится на слизистой оболочке миндалин; при фурункулезе возбудитель Staphylococcus aureus - в волосяном фолликуле.

При генерализованной инфекции патоген распространяется по организму, преодолевая различные защитные барьеры: лимфоид-

ную ткань, гематоэнцефалический барьер, фасции мышечной ткани, соединительную ткань и т.д. Кровь является одним из частых путей распространения патогена - гематогенный путь. Если возбудитель, распространяясь по крови, не размножается в ней, то такое явление называют бактериемией или вирусемией (в зависимости от принадлежности патогена к той или другой таксономической группе). В случае, когда бактерии размножаются в крови, развивается одна из тяжелых форм генерализованной инфекции - сепсис. Сепсис может перейти в септикопиемию, когда патоген размножается во внутренних органах, вызывая в них образование гнойных очагов воспаления. При высокой концентрации бактерий и их токсинов в крови может развиться токсико-септический шок за счет массивного поступления токсинов. Вследствие генерализации инфекции поражаются различные органы и ткани организма (менингококковый менингит, туберкулез позвоночника).

Инфекционный процесс классифицируется в зависимости от числа проникших в организм видов патогена и динамики их действия. Моноинфекция вызывается патогеном одного вида (туберкулез, дифтерия). Смешанная (микст) инфекция - одновременное заражение двумя видами возбудителей и более и развитие сразу нескольких заболеваний (ВИЧ-инфекция и гепатит В при заражении через шприц у наркоманов; сифилис, гонорея и хламидиоз при половом заражении). Реинфекция - повторное заражение тем же видом возбудителя после выздоровления. Реинфекция возможна при заболеваниях, после которых не остается стойкий иммунитет: после гонореи, сифилиса, дизентерии. Если повторное заражение происходит тем же возбудителем до выздоровления, то возникает суперинфекция (сифилис). Вторичная инфекция возникает на фоне развившегося первичного заболевания и вызывается другим видом возбудителя. Вторичная инфекция может быть экзогенной или эндогенной. Чаще вторичная инфекция развивается как эндогенная, когда вследствие ослабления организма первичным заболеванием представители нормальной микрофлоры тела человека вызывают вторичное заболевание как осложнение первичного, например, при гриппе развивается стафилококковая пневмония, при СПИДе - пневмоцистная пневмония.

По длительности течения различают острые и хронические инфекции. Острые инфекции протекают непродолжительное время, их срок исчисляется днями, неделями (грипп, корь, холера, чума).

Особенности эпидемиологии инфекционного процесса позволяют классифицировать несколько форм инфекции. Эпидемической называется инфекция, когда ею охвачено население больших территорий (одной или нескольких стран), например грипп, холера.

Эндемическая инфекция локализуется в определенной географической местности, где возбудитель циркулирует между определенными видами животных в данной географической местности (чума, бруцеллез, туляремия).

В зависимости от источников заражения человека различают антропонозные, зоонозные и сапронозные инфекции. При антропонозных инфекциях единственным источником заражения является человек (ВИЧ-инфекция, сифилис). При зоонозных инфекциях основным источником заражения являются животные (бешенство, сибирская язва, бруцеллез). Возбудителями сапронозных инфекций являются сапрофиты, обитающие во внешней среде (легеонеллезы, листериоз). Следовательно, источниками заражения сапронозами являются объекты внешней среды: почва (столбняк, газовая гангрена), вода (лептоспирозы).

В настоящее время большое распространение получила госпитальная (внутрибольничная) инфекция, которая возникает в лечебно-профилактических учреждениях (стационарах, родильных домах и т.д.). Источником возникновения госпитальной инфекции часто является медицинский персонал: бактерионосители стафилококков, энтеробактерий и других условно-патогенных или патогенных микроорганизмов.

Типичное инфекционное заболевание чаще всего протекает в манифестной форме и характеризуется определенными клиническими

проявлениями (симптомокомплексом) и циклическим течением. Например, при типичном течении брюшного тифа наблюдается тифозный статус, развивается розеолезная сыпь на 8-10-й день болезни и т.д. Болезнь протекает стадийно и продолжается 3-4 нед.

Возможно атипичное (стертое) течение болезни без характерного симптомокомплекса. При стертом течении брюшного тифа сыпь появляется рано (на 4-6-й день), скудная; тифозный статус не выражен. В ряде случаев болезнь может протекать вообще без проявления каких-либо симптомов, и результат развившегося патологического процесса может проявиться лишь в виде смертельно опасных осложнений (легочное кровотечение при бессимптомно протекающем туберкулезе легких, перитонит как следствие перфорации кишечника брюшнотифозными язвами, порок сердца как следствие ревматического эндокардита).

Инфекционный процесс может протекать в форме бессимптомной инфекции: латентной (скрытой) или бактерионосительства (вирусоносительства). При латентной форме инфекции возбудитель длительное время находится в организме (персистирует), но не проявляет своего патогенного действия. Например, туберкулезная палочка может персистировать многие годы в ткани легкого здорового человека, вирус герпеса пожизненно персистирует в чувствительных ганглиях тройничного нерва, возбудитель бруцеллеза персистирует в мезентериальных лимфатических узлах. При латентной инфекции возбудитель не выделяется во внешнюю среду, латентная инфекция может переходить в манифестную форму (болезнь) при снижении иммунитета.

Бактерионосительство - длительное или кратковременное пребывание возбудителя в организме здорового человека. В отличие от латентной инфекции, бактерионосители выделяют возбудителя в окружающую среду и являются источниками распространения инфекции (брюшной тиф, дифтерия, стафилококковая инфекция). Медленная инфекция характеризуется персистенцией патогена, при которой имеет место многомесячный или многолетний инкубационный период, после которого медленно, но неуклонно развиваются симптомы заболевания, всегда заканчивающегося летально (ВИЧ-инфекция, бешенство, проказа).

В развитии инфекционной болезни выделяют 4 основных периода: инкубационный, продромальный, разгар болезни и реконвалесцентный (выздоровление).

Инкубационный период - период адгезии возбудителя на чувствительные клетки организма в месте входных ворот. Это могут быть миндалины, верхние дыхательные пути, слизистая оболочка желудочно-кишечного, репродуктивного тракта и др. В окружающую среду возбудитель не выделяется. Длительность периода от нескольких часов (грипп), дней (чума, туляремия, дифтерия) до нескольких месяцев (бешенство) и даже лет (СПИД, проказа, губчатая энцефалопатия).

В продромальный период имеет место колонизация чувствительных клеток, участков организма возбудителем. Осуществляется расселение микроорганизмов в биотопе хозяина и начинают появляться неспецифические (общие) симптомы болезни (повышается температура, возникают головная боль, потоотделение, слабость и др.). В этот период возбудитель также, как правило, не выделяется в окружающую среду.

Последующее интенсивное размножение возбудителя в организме хозяина знаменует разгар болезни с появлением специфической симптоматики (высыпания на коже при тифах, параличи нижних конечностей при полиомиелите, пленчатые налеты на слизистых оболочках носа, зева, гортани при дифтерии и др.). В этот период больной заразен, так как возбудитель выделяется во внешнюю среду. Наконец, после прекращения размножения возбудителя и по мере выведения его из организма наступает период реконвалесценции (выздоровления). К этому моменту начинается восстановление нарушенных функций. Как правило, прекращается выделение микроорганизмов, но в некоторых случаях возможно формирование реконвалесцентного бактерионосительства с длительным пребыванием возбудителя в организме хозяина, перенесшего инфекцию.

Особое место при характеристике инфекции имеют пути ее передачи, что важно для эпидемиологических целей. Существуют три основных варианта передачи возбудителя человеку: горизонтальный, вертикальный и артифициальный (искусственный).

Горизонтальный вариант включает воздушно-капельную передачу возбудителя от больного здоровому (грипп, дифтерия); фекально-оральный (холера, брюшной тиф), контактный (сифилис, гонорея) и трансмиссивный (чума, энцефалиты) пути.

Для вертикального варианта типичен трансплацентарный путь передачи возбудителя от матери плоду (сифилис, краснуха) или в родах от матери новорожденному (бленнорея).

Артафициальный (рукотворный, искусственный) вариант предусматривает передачу возбудителя при инструментальном обследовании больного, введении инъекций, при оперативных вмешательствах (гепатиты, СПИД).

Различают 4 уровня инфекционного процесса: популяционный, организменный, клеточный и молекулярный.

Популяционный уровень определяет взаимодействие возбудителя с восприимчивыми особями популяции. Для организменного уровня важен комплекс (система) реакций восприимчивого хозяина на инфекцию. Клеточный или тканево-органный уровень - это выбор возбудителем соответствующих клеток-мишеней макроорганизма. На молекулярном уровне рассматривается конкурентное взаимодействие биомолекул патогена и хозяина в условиях инфекции.

8.2. Движущие силы инфекционного процесса

Исходя из определения инфекционного процесса, выявляют, по крайней мере, 3 основных участника инфекции: возбудитель, хозяин и факторы внешней среды.

Возбудитель болезни - микробная клетка - характеризуется количественными и качественными характеристиками: патогенностью (видовой признак) и вирулентностью (индивидуальная характеристика штамма).

Платформа, на которой развертывается инфекция, - это организм человека-хозяина, который должен быть восприимчив к инфекту (видовой признак) и быть чувствительным к нему (индивидуальная характеристика), т.е. иметь инфекционную чувствительность. При этом физиологические характеристики хозяина, состояние его естественной резистентности играют при этом далеко не последнюю роль.

И наконец, третий участник инфекции - условия внешней среды, в которой происходит инфицирование организма возбудителем. Различные физические, химические, биологические и социальные факторы среды имеют существенное значение для формирования и развития инфекционного процесса. При гибели патогена либо хозяина инфекционный процесс прерывается. В условиях же взаимной адаптации патогена и хозяина (персистенции патогена) имеет место продолжение инфекционного процесса в форме рези-

дентного бактерионосительства, латентной инфекции или хронического заболевания. Факторы внешней среды, хотя и в различной степени, участвуют в формировании инфекционного процесса, определяя его развитие и исход.

8.3. Роль возбудителя в инфекционном процессе и его основные биологические характеристики

Возбудитель как участник инфекционного процесса характеризуется двумя основными качествами: патогенностью и вирулентностью.

Патогенность - видовой признак: способность определенного вида микроорганизмов вызывать соответствующий инфекционный процесс у одного или нескольких видов организма хозяина. Например, патогенные виды Vibrio cholerae, S. Typhi, N. gonorrhoeae способны вызывать соответствующую инфекцию у человека, но не у других видов.

Но этот диапазон (спектр) патогенности у разных микробов различный. Если названные микроорганизмы (печальная «привилегия» рода человеческого) патогенны только для человека, то число восприимчивых хозяев для других микроорганизмов значительно больше и не ограничивается только человеком. Для Mycobacterium tuberculosis составляет 9 видов, Y. рestis - 11 видов, Br. аbortus -

Патогенные виды микробов реализуют свою способность вызывать инфекционный процесс у большинства особей популяции восприимчивого вида макроорганизма.

Если же способность микроба вызывать инфекцию у восприимчивого вида макроорганизма в значительной степени определяется состоянием иммунитета особей популяции и, как правило, инфекция развивается в условиях иммунодефицита, то такие виды микробов называются условно-патогенными, например Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae.

Вирулентность - индивидуальный, штаммовый признак: степень (количественная мера) реализации патогенности вида каждым конкретным штаммом по отношению к конкретному индивидууму - хозяину. Если штамм Vibrio cholerae выделен от больного А, погибшего от холеры, значит, он оказался по отношению к этому индивидууму высоковирулентным. Степень вирулентности конкретного штамма внутри популяции патогенного вида микроорганизмов можно оценивать по клиническому течению инфекционного процесса у человека, от которого выделен данный штамм; на модели in vivo путем воспроизведения экспериментальной инфекции на животных; на модели in vitro путем качественного и количественного изучения факторов вирулентности конкретного штамма (клинико-лабораторные исследования).

На модели экспериментальной инфекции проводят количественную оценку вирулентности штамма, используя условно при-

нятые единицы измерения вирулентности: DLM и LD 50 . DLM (от лат. Dosis letalis minima) - наименьшее количество микробных клеток, способное вызвать гибель 95% животных восприимчивого вида определенной массы, пола и возраста при определенном способе заражения и в течение заданного времени. LD 50 - количество бактерий, вызывающее гибель 50% животных в эксперименте. В ряде случаев с экспериментальной целью определяют DCL (от лат. Dosis certa letalis) - смертельную дозу, вызывающую 100% гибель инфицированных животных.

Вирулентность возбудителя можно регулировать в сторону как ее снижения, так и повышения. В свое время французские исследователи Кальмет и Жерен культивировали возбудитель туберкулеза (бычьего типа) на картофельно-глицериновых средах с добавлением желчи (неблагоприятный фактор для возбудителя) в течение 13 лет. В результате им удалось осуществить около 230 посевов возбудителя, потерявшего вирулентность, и на основе авирулентного штамма создать вакцину БЦЖ (бациллы Кальмета-Жерена) для профилактики туберкулеза. В ряде случаев вирулентность микробов снижается под воздействием различных физико-химических факторов, лекарств и т.д. Снижение вирулентности штаммов называют аттенуацией (ослаблением).

С другой стороны, известно, что путем пассажа (проведения) через организм восприимчивых животных удается повысить вирулентность возбудителя, что нередко бывает необходимо при проведении экспериментальных работ.

К условиям, регулирующим вирулентность возбудителя, относят химический состав бактерийной клетки, особенности ее метаболизма, структуру генома и среду обитания (экологию).

8.3.1. Факторы вирулентности

Классификация факторов вирулентности зависит от их структуры, происхождения, механизма действия и назначения.

По структуре и происхождению факторы вирулентности можно классифицировать на две основные группы: структурные компоненты бактериальной клетки и секретируемые факторы.

8.3.1.1. Структурные компоненты бактериальной клетки

К ним относятся капсула, пили, пептидогликан клеточной стенки, белки наружной мембраны и липополисахарид грамотри-

цательных бактерий, которые подробно изложены в материалах диска.

8.3.1.2. Секретируемые факторы

Помимо структур бактериальной клетки, способствующими проявлению ее вирулентных качеств, известна группа микробных секретируемых факторов, участвующих в инфекционном процессе: бактериоцины, экзотоксины, ферменты «защиты и агрессии», секретируемые факторы персистенции.

Бактериоцины - белки, медиаторы межмикробного взаимодействия, секретируются бактериальной клеткой в качестве антагонистически активных веществ. Бактериоцины выделяются в условиях близкородственного антагонизма внутри вида, рода бактерий. Бактериоцины обеспечивают колонизацию вирулентным штаммом определенного биотопа, подавляя нормальную микрофлору: колицины Shigella flexneri подавляют Escherichia coli, стафилококкцины S. аureus подавляют S. еpidermidis и т.д. Колициногенные штаммы шигелл чаще вызывают затяжные и более тяжелые формы заболевания, чем неколициногенные. Бактериоциногенные штаммы стафилококков значительно чаще выделяются от больных из патологических очагов, чем с кожи и слизистых оболочек здоровых людей. При хронических формах стрептококковой инфекции (ревматизм, хронический тонзиллит) бактериоциногенные штаммы обнаруживаются в 2 раза чаще, чем у здоровых людей.

Экзотоксины - вещества белковой природы, секретируемые вирулентными штаммами микроорганизмов и оказывающие токсическое действие на клетки и ткани организма хозяина.

К факторам вирулентности относятся и ферменты, продуцируемые бактериальной клеткой. Ферменты вирулентности образно называют ферментами «защиты и агрессии». Ферменты защиты обеспечивают устойчивость патогена к иммунитету хозяина: фермент коагулаза свертывает плазму крови, вследствие чего вокруг бактериальной клетки образуется защитная капсула; протеазы иммуноглобулинов разрушают антитела. Ферменты агрессии обеспечивают распространение патогена по организму, они разрушают структуры клеток и тканей организма: гиалуронидаза разрушает соединительную ткань (S. аureus, S. рyogenes), нейраминидаза расщепляет сиаловые кислоты оболочек клеток (вирус гриппа), фибринолизин растворяет сгустки фибрина (S. рyogenes), ДНКаза

разрушает нуклеиновые кислоты (S. aureus), эластаза расщепляет лизоцим клеток организма (Pseudomonas).

Ферменты метаболизма бактерий, вызывающие образование токсичных веществ при расщеплении субстратов организма, также рассматривают в качестве ферментов вирулентности: микробная уреаза при гидролизе мочевины образует токсичные вещества (Helicobacter pylori), декарбоксилаза при разрушении белка способствует накоплению биогенных аминов (Salmonella Enteritidis). Вирулентность бактерий обеспечивается ферментами супероксиддисмутазой и каталазой, которые инактивируют высокоактивные кислородные радикалы при фагоцитозе (Leg. pneumophila, M. tuberculosis).

Секретируемые факторы персистенции бактерий подавляют специфические и неспецифические механизмы защиты хозяина, обеспечивая бактериям выживание при инфекции. По химической природе это в основном бактерийные протеазы, расщепляющие специфический субстрат хозяина, создающий ему защиту от патогена. Они обеспечивают антилизоцимную, антиинтерфероновую, антикомплементарную, антигистоновую, антилактоферриновую и антигемоглобиновую активность. Подробно изложено в материалах диска.

В реализации вирулентности возбудителя важна доставка вирулентных протеинов на поверхность бактериальной клетки в место контакта ее с поверхностью эукариотической клетки и/или введения протеинов в цитозоль клетки хозяина. В процессе эволюции у бактерий выработано несколько типов секреторных систем, которые подробно описаны в разделе 3.1.5. Термин «секреция» используется для описания активного транспорта протеинов из цитоплазмы через внутреннюю и наружную мембраны в супернатант (окружающую среду) бактериальной культуры или на поверхность бактериальной клетки. Секреция отличается от экспорта, который заключается в транспортировке протеинов из цитоплазмы в периплазматическое пространство. Напомним, что I тип секреторной системы является sec-независимым путем (не находится под контролем sec-гена, отвечающего за секрецию). Этим путем транспортируются α-гемолизин E. coli, внеклеточная аденилатциклаза B. pertussis, протеазы P. aeruginosa. Молекулы, транспортируемые I типом секреторной системы, требуют для транспортировки 3-4 вспомогательные молекулы, участвующие в образовании трансмембранного канала, через который и происходит выход протеинов.

II тип секреции - основной для экстраклеточных расщепляющих энзимов грамотрицательных бактерий. Эта система использует традиционные sec-зависимые пути для выведения экспортируемых молекул через внутреннюю мембрану в периплазматическое пространство. II тип секреторной системы участвует в экспорте огромного количества разнообразных молекул, включая вирулентные факторы: пили у P. aeruginosa (4 типа) и родственные им, энзим-pullulanase y Klebsiella, пектические энзимы и целлюлазы y Erwinia, эластазы, экзотоксин А, фосфолипазы С и другие протеины y Pseudomonas aeruginosa, амилазы и протеазы у Aeromonas hydrophila и т.д.

III тип секреторной системы - большая экспортная система, независимая от sec-системы, которая играет существенную роль в секреции вирулентных факторов у возбудителей болезней человека и растений. III тип секреторной системы отвечает за секрецию наружных протеинов Yersinia spp., факторов инвазии и вирулентности сальмонелл и шигелл, молекул сигнальной трансдукции энтеропатогенной кишечной палочки и вирулентных факторов некоторых возбудителей заболеваний растений, а также вовлечен в биосинтез поверхностных органелл - флагеллярных белков.

В отличие от I типа секреторного пути, являющегося истинной секреторной системой, в котором секреторные энзимы приобретают активность в экстраклеточном пространстве, тип III - это механизм для транслокации протеинов в цитозоль эукариотической клетки, ибо он обеспечивает сборку на поверхности бактериальной клетки супермолекулярных структур, участвующих в транспорте протеинов в эукариотическую клетку. Аппарат III типа секреторной системы включает около 20 протеинов, большинство которых располагается во внутренней мембране, и цитоплазматическую мембранно-связанную АТРазу (АТФазу).

V тип секреторной системы включает группу так называемых аутотранспортеров - семейство секреторных протеинов, осуществляющих свой собственный транспорт из бактерий: гонококковую IgA-протеазу и IgA-протеазу H. influenzaece.

8.3.2. Патогенетические факторы возбудителя при инфекции

Классификация факторов патогенности по назначению и механизму действия включает патогенетически значимые продукты

бактерийной клетки, определяющие этапность развития инфекционного процесса и его исход. Эти факторы объединяют в 4 группы: колонизации, инвазии, токсигенности и персистенции.

8.3.2.1. Факторы колонизации патогена

Колонизация - расселение микроорганизмов в определенном биотопе хозяина. Этот этап инфицирования организма начинается с адгезии - прикрепления возбудителя к клеткам организма у входных ворот инфекции. За прикрепление микроба отвечают специальные структуры - адгезины. У грамотрицательных бактерий в этот процесс включаются пили (ворсинки), белки наружной мембраны, а у грамположительных микроорганизмов - тейхоевые кислоты, поверхностные белки. Адгезия специфична у каждого возбудителя с учетом его тропности к тканям, клеткам хозяина, где и осуществляется рецепторлигандное прикрепление возбудителя. Последующее закрепление возбудителя на эукариотических клетках организма вызывает расселение микроорганизмов в инфицированном биотопе хозяина. Этому способствуют участие бактериальных протеаз, блокирующих секреторную защиту организма IgA, продукция бактериоцинов, антиоксидантов, продукция сидерофоров, конкурирующих с лактоферрином за ионы Fe. Таким образом, адгезия и последующая колонизация - начальные (ранние) стадии патогенеза инфекционного процесса.

8.3.2.2. Факторы инвазии микроорганизмов

Инвазия - проникновение возбудителя внутрь клеток организма (пенетрация), преодоление естественных барьеров организма (кожа, слизистые оболочки, лимфатическая система и др.). Этим процессом управляют инвазины - молекулы бактерий, способствующие проникновению патогена в клетку. В этот период усиливается действие токсичных продуктов - уреаза осуществляет гидролиз мочевины с образованием в организме аммиака, токсичных биогенных аминов. Микроорганизмы продуцируют гемолизин, разрушающий эритроциты, лейкоцидин, разрушающий лейкоциты, спридинг-факторы - ферменты агрессии, способствующие генерализации инфекции за счет распространения возбудителя в организме. Включаются в работу такие ферменты агрессии, как лецитовителлаза, расщепляющая липопротеид мембран клеток хозяина, фибринолизин, устраняющий сгусток фибрина для дальнейшего распространения микроба по организму; гиалуронидаза,

расщепляющая гиалуроновую кислоту - вещество соединительной ткани; нейраминидаза - фермент распространения патогена, IgA-протеаза, обеспечивающая устойчивость возбудителя к перевариванию фагоцитами и действию антител и др. Процесс инвазии у некоторых грамотрицательных бактерий обеспечивается III типом секреторной системы, которая отвечает за секрецию факторов инвазии, в частности, у сальмонелл и шигелл, молекул сигнальной трансдукции энтеропатогенной кишечной палочки. В процессе инвазии в эпителиальные клетки возбудитель (S. Typhimurium) вступает в интимные отношения с клетками и использует физиологические механизмы обеспечения их жизнедеятельности для обслуживания собственных нужд, вызывая массивную реаранжировку цитоскелета клетки хозяина и активацию вторичных мессенжеров - транзитное повышение уровня инозитолтрифосфата и выброс Ca 2+ .

В защите от фагоцитоза принимают участие как поверхностные структуры бактериальной клетки, так и продуцирумые ею вещества. Антифагоцитарной активностью обладают капсулы (S. pneumoniae, N. meningitidis), поверхностные белки: А белок у S. aureus, M-протеин у S. pyogenes. Некоторые бактерии, например возбудитель коклюша, продуцируют внеклеточную аденилатциклазу, ингибирующую хемотаксис, таким образом позволяя бактерии избежать захвата фагоцитами. Ферменты супероксиддисмутаза и каталаза инактивируют высокореактивные кислородные радикалы при фагоцитозе (Y. pestis, L. pneumophila, S. Typhi). Отмечено участие секреторной системы III типа у некоторых бактерий в реорганизации цитоскелета фагоцита, предотвращающее образование фаголизосомы.

8.3.2.3. Факторы токсигенности бактерий

Токсигенность - продукция бактериями токсичных веществ, повреждающих клетки и ткани организма хозяина.

Наличие токсина у бактерий является патогенетически значимым в ходе развития инфекционного процесса. Токсичный компонент присутствует практически при любой инфекции и проявляет свое действие, хотя и в разной степени.

Токсины, секретируемые возбудителем в среду, обнаруживаются в фазе роста и накапливаются в цитоплазме. Это белки - экзотоксины. Эндотоксины входят в состав клеточной стенки и высвобождаются лишь при гибели микробной клетки.

К эндотоксинам относят ЛПС клеточной стенки грамотрицательных бактерий, пептидогликан, тейхоевые и липотейхоевые кислоты, гликолипиды микобактерий. Хорошо изучены эндотоксины энтеробактерий (эшерихии, шигеллы, сальмонеллы, бруцеллы). Некоторые бактерии одновременно образуют как экзо-, так и эндотоксины (холерный вибрион, некоторые патогенные кишечные палочки и др.).

Сравнительная характеристика бактериальных экзотоксинов и эндотоксина ЛПС клеточной стенки грамотрицательных бактерий представлена в табл. 8.1.

Таблица 8.1. Сравнительная характеристика токсинов бактерий

Экзотоксины секретируются живой бактериальной клеткой, являются белками, полностью инактивируются под действием высокой температуры (90-100 °С). Они обезвреживаются формалином в концентрации 0,3-0,4% при 37 °С в течение 3-4 нед, при этом сохраняют свою антигенную специфичность и иммуногенность, т.е. переходят в вакцину-анатоксин (столбнячный, дифтерийный, ботулиновый, стафилококковый и др.).

Экзотоксины обладают специфичностью действия на клетки и ткани организма, определяя клиническую картину заболевания.

Специфичность экзотоксина определяется механизмом его действия на определенные мишени (табл. 8.2). Способность микробов к продукции экзотоксинов обусловлена в основном конвертирующими бактериофагами.

Таблица 8.2. Механизмы действия экзотоксинов

Информация об эндотоксинах заложена в хромосомных генах бактерий, как и в любом другом клеточном компоненте.

Эндотоксины, в отличие от экзотоксинов, обладают меньшей специфичностью действия. Эндотоксины всех грамотрицательных бактерий (E. coli, S. Typhi, N. meningitidis, Brucella abortus и др.) угнетают фагоцитоз, вызывают падение сердечной деятельности, гипотонию, повышение температуры, гипогликемию. Большое количество поступившего в кровь эндотоксина приводит к токсикосептическому шоку.

Как и вирулентность, сила действия токсинов измеряется величиной летальных доз DLM, LD 50 , DCL, определяемая на животных.

Токсины, повреждающие ЦПМ клеток организма, способствуют лизису клеток: эритроцитов (гемолизины стафилококков, стрептококков и др.), лейкоцитов (лейкоцидин стафилококков).

Разнообразна группа токсинов, нарушающих функцию ферментов клетки. Экзотоксин C. diphtheriae, являясь цитотоксином, блокирует синтез белка на рибосоме клеток миокарда, надпочечников, нервных ганглиев, эпителиоцитов слизистой оболочки зева. Развивается некроз клеток и тканей, воспаление: дифтеритическая пленка, миокардит, полиневрит. Энтеротоксины холерного вибриона, энтеротоксигенных штаммов E. coli, S. aureus и др. активируют аденилатциклазу в эпителиоцитах слизистой оболочки тонкой кишки, что приводит к повышению проницаемости стенки кишечника и развитию диарейного синдрома. Нейротоксины палочек столбняка и ботулизма блокируют передачу нервных импульсов в клетках спинного и головного мозга.

Особая группа токсинов стафилококков и стрептококков (эксфолиатины, эритрогенины) нарушает межклеточные взаимодействия, что приводит к поражению кожи (пузырчатка новорожденных, скарлатинозная сыпь) и других органов.

Эритрогенный токсин является суперантигеном, вызывает прлиферацию Т-клеток, активируя тем самым каскад компонентов эффекторного звена иммунной системы, выброс медиаторов с цитотоксическими свойствами - интерлейкинов, факторов некроза опухоли, γ-интерферона. Инфильтрация лимфоцитов и локальное действие цитокинов играют важную роль в патогенезе инвазивной стрептококковой инфекции при целлюлитах, некротических фасцитах, септических поражениях кожи, поражениях внутренних органов.

8.3.2.4. Факторы персистенции патогенов

Персистенция возбудителя - форма симбиоза, способствующая длительному переживанию микроорганизмов в инфицированном организме хозяина (от лат. рersistere - оставаться, упорствовать).

Переход бактерий из одной среды существования в другую (внешняя среда - клетка хозяина) - вынужденный ход микроорганизмов, позволяющий в конечном счете обеспечить им выживание как вида, поэтому персистенция бактерий в организме рассматривается как стратегия выживания вида. Смена экологической ниши бактериальной клеткой и ее переход в организм хозяина сопровождаются неизменным появлением новых биологических характеристик у бактерий, облегчающих адаптацию патогена к новым условиям среды обитания.

Выживание бактерий в тканях хозяина определяется динамическим процессом равновесия между разрушением бактерий защитными факторами организма и накоплением (размножением) бактерий, которые угнетают или избегают защитные механизмы макроорганизма.

При блокировании бактериями защитных механизмов хозяина, т.е. освоении ими экологической ниши, определенную роль играют структурные особенности патогена.

В отличие от вирусов или риккетсий, бактерии имеют свои особенности при персистировании, связанные со своеобразием строения бактериальной клетки. Наличие пептидогликана, который присутствует только у прокариот и отсутствует в эукариотических клетках, делает его отличной иммунологической мишенью в организме хозяина, быстро определяющем чужеродную субстанцию. Пептидогликан - маркер чужеродности бактерий в условиях инфицированного хозяина. Поэтому любые адаптационные процессы бактериальной клетки, направленные на защиту (или изоляцию) пептидогликановой структуры клеточной стенки, можно рассматривать в качестве механизмов персистенции бактерий.

В процессе взаимодействия обоих участников инфекции у возбудителя эволюционно закрепилось 4 способа защиты пептидогликана от факторов иммунитета: экранирование клеточной стенки бактерий; продукция секретируемых факторов, инактивирующих защиту хозяина; антигенная мимикрия; образование форм с отсутствием (дефектом) клеточной стенки бактерий (L-формы, микоплазмы).

Персистенция микроорганизмов - базовая основа формирования бактерионосительства.

В патогенетическом плане бактерионосительство - одна из форм инфекционного процесса, при которой наступает динамическое равновесие между микро- и макроорганизмом на фоне отсутствия патологических изменений, но с развитием иммуноморфологических реакций и антительного ответа.

прометированного статуса (иммунный дисбаланс, толерантность, дефицит местного иммунитета). В итоге создаются условия для персистенции (выживания) возбудителя, что и приводит к бактерионосительству. (Подробно механизм развития персистенции и формирования бактерионосительства изложены в материалах диска.)

8.3.3. Генетика вирулентности бактерий

Рассматривать жизнь возбудителя в инфицированном организме, вероятно, следует как серию шагов генной активации в ответ на дискретный комплекс окружающих условий. Эта генная регуляция вирулентности бактерий является экологически зависимой, обеспечивающей пластичность микроорганизмов, их адаптивные потенции.

Известно, что бактерии обладают одним большим эволюционным механизмом, благодаря которому идет формирование патогенных представителей. Гены вирулентности чаще всего обнаруживаются в больших сложных блоках, обозначенных как хромосомные вставки или патогенные острова (см. подробнее раздел 5.1.5). Эти острова и островки связаны между собой общими последовательностями, что указывает на приобретение ДНК-сегмента с помощью таких событий, как «незаконные» рекомбинации, имеющие сходство с транспозицией или вставкой фага. Эти ДНК-блоки наиболее часто встраиваются в горячие точки хромосомы - наиболее восприимчивые участки к вторжению чужеродных ДНК или места встраивания фага. Например, большие сегменты ДНК, кодирующие различные вирулентные факторы, встроены в одно и то же место хромосомы как у уропатогенной, так и у энтеропатогенной E. coli - возбудителей двух различных заболеваний, причем последовательности, расположенные внутри патогенного островка, не обнаруживают гомологии с теми, что имеют место у непатогенных клонов, подобных E. coli K-12, но последовательности, непосредственно прилегающие к патогенному островку, демонстрируют общность у патогенных и непатогенных штаммов.

Регионы хромосомных ДНК, кодирующих несколько кластрированных генов вирулентности, общие среди микроорганизмов от возбудителей растений до Helicobacter pylori и Yersinia pestis. В то же время, несмотря на определенную консервативность (в частности,

хромосом E. coli, S. Typhimurium), бактериальные хромосомы не являются константными, а постоянно изменяются. Фенотипические изменения способны модифицировать патогенность внутри различных клональных вариантов одного вида. Например, хромосома S. Typhi, которая вызывает заболевание только у человека, подлежит большой геномной реаранжировке в ходе своей эволюции по сравнению с нетифоидными сальмонеллами, а именно инверсиям, транспозициям и вставкам через события гомологических рекомбинаций. Естественно, некоторые из этих событий могут изменять вирулентность S. Typhi и повышать ее специфические адаптационные способности к организму человека. Регуляцию и экспрессию хромосомных вирулентных факторов могут изменять и такие эпизоды, как перетасовка хромосомных генов.

Считают, что патогенные микроорганизмы эволюционируют не за счет медленной адаптивной эволюции предсуществующих генов, а через сумму скачков, как правило, овладевая генетическими сегментами (которые кодируют множественные вирулентные факторы) не только родственных, но и неродственных организмов, и включают даже эукариотические последовательности (приобретение тирозиновой фосфатазы Yersinia). В последующем приобретенная генетическая информация интегрируется в хромосому или стабильную плазмиду. Соответствующая селекция вирулентных факторов обеспечивает сохранность таких последовательностей у возбудителей, а распространение этой генетической информации через мобильные генетические элементы (многие вирулентные гены кодируются на мобильных генетических элементах ДНК) дает гарантию возможности получения любыми микроорганизмами селективных преимуществ. Информация, которая не является необходимой, в основном теряется, так как отсутствует селективное условие для ее сохранения.

Экспрессия факторов вирулентности тесно связана с различными сигналами окружающей среды, в том числе с температурой, концентрацией ионов, осмомолярностью, уровнем железа, рН, наличием источника углерода, уровнем кислорода и рядом других, пока не установленных. Возбудитель способен использовать как один сигнал, так и их комплекс, чтобы «почувствовать», какое микроокружение он оккупирует внутри хозяина или даже внутри специализированного компартмента единственной клетки хозяина. Поэтому на каждом шаге инфекционного цикла (в ходе

достижения бактериями своих биологических задач) в ответ на калейдоскоп защитных ответов хозяина происходят динамическое включение и выключение различных генов - согласованный и взаимообусловленный процесс.

Например, экспрессия одного из антифагоцитарных факторов возбудителя чумы, фракции F 1 , экспрессируется максимально при 35-37 °С, когда возбудитель находится в организме человека, и падает при 28 °С при нахождении его в организме блохи. Инвазивные гены обычно включаются на ранней стадии инфекции, но репрессируются, когда бактерия оказывается внутри клетки хозяина. Дезорганизация экспрессии патогенных факторов во времени может разрушить процесс инвазии бактерий.

Таким образом, регуляция патогенности - это комплексное событие. Все вирулентные факторы могут контролироваться одновременно несколькими регуляторными системами, которые измеряют различные параметры окружающей среды, и в то же время несколько регуляторных систем могут регулировать один вирулентный фактор. Кроме того, регуляторные факторы обычно регулируют сами себя, что создает иерархию в регуляции и тонком контроле за экспрессией вирулентных факторов. В результате уровень вирулентности определяется средней величиной всех сигналов (окружения и регуляции).

8.4. Роль макроорганизма в инфекционном процессе

Организм хозяина - это платформа, на которой развертывается инфекционный процесс со всеми его проявлениями, и если микроб определяет специфичность инфекции, то особенности ее течения и формы проявления определяются состоянием макроорганизма.

Как и у микроба, здесь следует различать два основных признака: видовой и индивидуальный. Видовой признак - это восприимчивость хозяина к инфекту.

Восприимчивость - видовой признак, характеризующий способность определенного вида организмов (хозяев) участвовать в инфекционном процессе при взаимодействии с патогеном.

Организм человека восприимчив к холерному вибриону, но летучие мыши имеют врожденную устойчивость к этому возбудите-

лю. Для возбудителя туляремии организм зайцев, мышей, хомячков - подходящая ниша, где бактерии размножаются и вызывают инфекцию, но кошки, лисицы, хорьки генетически устойчивы к этому патогену. Ряд заболеваний характерен только для организма человека - сифилис, гонорея, дифтерия, так как подобрать других кандидатов для воспроизведения экспериментальной инфекции практически не удается за счет природной устойчивости животных к этим патогенам.

Что касается индивидуального признака, характеризующего меру восприимчивости организма к инфекции, то его определяют как инфекционную чувствительность.

Инфекционная чувствительность - это индивидуальная восприимчивость организма хозяина к патогену, вызывающему болезнь. Часто вместо термина «инфекционная чувствительность» используют термин с противоположным значением - «естественная резистентность», что делает эти понятия синонимами. Но и в том и в другом случае речь идет о врожденном (естественном) иммунитете, который, кроме своей неспецифичности в отношении к инфекту, всегда стойкий и передается по наследству, так как генетически запрограммирован.

Этот естественный иммунитет или естественная резистентность к патогену направлены на поддержание гомеостаза организма. Это неспецифическое распознавание чужеродной для хозяина информации (патогенов) осуществляется по единой программе, активность системы постоянная и не зависит от специфичности чужеродного агента. Он имеет как клеточную (клетки покровов и внутренних барьеров, фагоцитирующие клетки, естественные киллеры), так и гуморальную (лизоцим, комплемент, β-лизины, белки острой фазы и др.) основу. Среди факторов, определяющих естественную резистентность организма к инфекции выделяют: возраст хозяина, эндокринологический и иммунный статус, состояние физической активности, центральной нервной системы, эндогенные биологические ритмы, входные ворота инфекции и др.

Возраст существенно определяет уровень неспецифической защиты организма. У новорожденных в течение первого месяца жизни значительно снижена бактерицидная активность сыворотки крови. У детей чаще развиваются генерализованные формы инфекции, сепсис, тяжелее протекают многие инфекционные заболевания: сальмонеллезы, дизентерия, туберкулез и др. Только

у новорожденных имеет место колиэнтерит, так как их организм еще не вырабатывает секреторные IgA - основной фактор защиты слизистой оболочки тонкой кишки. Снижен уровень естественной резистентности у лиц пожилого возраста. В связи с нарушением функции лизосом у пожилых снижена активность внутриклеточного уничтожения патогена, поэтому они чаще болеют рецидивным сыпным тифом (болезнь Брилла) и чаще страдают от брюшнотифозного бактерионосительства.

Известен ряд болезней - коклюш, корь, дифтерия, которые типичны для детей. Лица пожилого возраста чаще погибают от пневмонии. Туберкулезная инфекция охватывает людей зрелого возраста.

Есть незначительные различия в уровне показателей естественной резистентности у лиц женского и мужского пола. У женщин выше, чем у мужчин, уровень бактерицидной активности сыворотки. Известно, что они более устойчивы к менингококковой и пневмококковой инфекции. Однако отдать предпочтение какомулибо полу в плане резистентности организма к инфекции затруднительно.

Эндокринологический статус человека имеет важное значение в регуляции уровня естественной резистентности. Гормон задней доли гипофиза окситоцин стимулирует активность фагоцитов, Т- и В-лимфоцитов. Глюкокортикоиды снижают уровень естественной резистентности, а минералкортикоиды повышают его. Больные сахарным диабетом чувствительны ко многим инфекциям, особенно к туберкулезу, фурункулезу стафилококковой этиологии. Снижение функции паращитовидных желез часто приводит к развитию кандидоза. Гормоны щитовидной железы стимулируют большинство факторов естественной резистентности. Их успешно используют для лечения сепсиса, вирусных гепатитов, менингококковой инфекции.

Иммунный статус человека определяет его индивидуальную чувствительность к отдельным инфекциям. Лица со II группой крови чаще болеют пневмонией и сепсисом стафилококковой этиологии, натуральной оспой, гриппом. У них ниже уровень интерферона в клетках и крови по сравнению с лицами с другой группой крови. Лица с I группой крови чаще подвержены чуме и проказе. Наличие в HLA -системе (комплекс гистосовместимости) антигена А9 способствует устойчивости этих лиц к острым респираторным

заболеваниям. Лица, у которых в HLA -системе есть антигены А10, В18, DR, болеют ими чаще.

Состояние физической активности человека регулирует уровень его естественной резистентности. Спортсмены-профессионалы, члены сборных команд высокочувствительны к инфекциям, так как интенсивные тренировки и участие в ответственных спортивных соревнованиях истощают резервы организма, снижают его естественную резистентность: уровень бактерицидной активности сыворотки, фагоцитарный потенциал нейтрофилов у классных спортсменов на фоне их высокой спортивной формы оказывается сниженным более чем в 2 раза по сравнению с лицами, занимающимися обычной физкультурой. В то же время занятия физкультурой и повышение двигательного режима являются средством усиления естественной резистентности организма к инфекции, что находит объяснение в нормализации уровня комплемента и лизоцима, в повышении способности крови к самоочищению.

Центральная нервная система принимает активное участие в регуляции уровня естественной резистентности организма к инфекции. Грызуны во время зимней спячки устойчивы к возбудителю чумы, но по мере просыпания весной погибают от чумной инфекции. Кролики во время медикаментозного сна резистентны к вирусу осповакцины, от которого они погибают во время бодрствования. В условиях стресса резко снижается естественная резистентность организма. У мышей после иммобилизационного стресса развивалась смертельная форма гриппозного энцефалита, тогда как в нормальных условиях мыши были резистентны к вирусу гриппа. Интересно, что на поверхности лимфоцитов и макрофагов имеются рецепторы к медиаторам нервной системы: β-адренорецепторы, холинорецепторы и др.

Эндогенные биологические ритмы. У человека с момента его рождения все процессы в организме протекают с определенной цикличностью. Выявлена определенная цикличность в динамике показателей естественной резистентности к инфекции (установлены месячные и суточные биоритмы).

Определены хронобиограммы иммунологических показателей здорового человека, что отражает различные временные интервалы максимальных значений факторов гуморальной и клеточной природы естественной резистентности. Это оказалось важным для

выбора времени оптимального введения лекарств больным при инфекционной патологии.

Значение для развития инфекции имеют и ее входные ворота. Входные ворота инфекции - место проникновения возбудителя в организм человека - во многом определяет возможность развития инфекционного процесса. Вирус гриппа, попав в кожу или на слизистую оболочку желудочно-кишечного тракта, не в состоянии вызвать заболевание. Грипп возникнет только при условии колонизации возбудителем слизистой оболочки верхних дыхательных путей. Существует понятие «колонизационная резистентность», которая определяет защитные возможности организма у входных ворот инфекции. В связи с этим инфекции разделяют на воздушно-капельные (грипп, менингококковая инфекция, дифтерия), кишечные (холера, дизентерия, гепатит А), инфекции наружных покровов (столбняк, газовая гангрена, бешенство), трансмиссивные (чума, малярия, туляремия).

8.4.1. Анатомо-физиологические барьеры организма при инфекции

Естественная резистентность организма включает ряд анатомофизиологических барьеров, препятствующих как проникновению патогена в организм, так и его распространению по организму. Среди основных анатомо-физиологических барьеров естественной защиты организма при инфекции выделяют: кожу и слизистые оболочки (наружный барьер), нормальную микрофлору; лимфатические узлы, клетки ретикулоэндотелиальной системы, воспаление; кровь - клеточные и гуморальные факторы; гематоэнцефалический барьер. (Подробно этот раздел изложен в материалах диска.)

Кожа не только является механическим барьером для патогена, но и обладает бактерицидным свойством за счет секретов сальных и потовых желез. Чистота кожи повышает ее бактерицидность. Известен показатель бактерицидной активности кожи, который определяется по отношению к индикаторным тест-штаммам E. coli. Этот показатель входит в число стандартных тестов оценки резистентности организма космонавтов перед полетом в космос. Повреждение кожи является условием для развития раневых инфекций: газовой гангрены, столбняка, бешенства.

Слизистые оболочки обеспечивают защиту не только как механический барьер за счет слизи, целостности эпителиального покрова, функции ворсинок. Эпителиоциты слизистых оболочек и железы разных биотопов выделяют на поверхность бактерицидные секреты: слюну, слезную жидкость, желудочный сок, сок тонкой кишки, вагинальный секрет, лизоцим и т.д. При нарушении барьерной функции слизистые оболочки становятся входными воротами инфекции для многих патогенов: возбудителей кишечных инфекций и инфекций дыхательных путей, возбудителей заболеваний, передающихся половым путем и др.

Важная роль в защите биотопов организма от патогена отводится нормальной (резидентной или индигенной) микрофлоре. Основными представителями нормальной микрофлоры толстой кишки являются кишечная палочка и бифидобактерии, в носоглотке - коринеформные бактерии и непатогенные нейссерии, на коже - эпидермальные стафилококки.

Микрофлора слизистой оболочки желудочно-кишечного тракта у детей существенно отличается от таковой у взрослых и меняется в зависимости от возраста ребенка, условий его существования, характера питания и т.д. Так, у детей до прорезывания зубов в микрофлоре рта преобладают аэробные бактерии. После прорезывания зубов микрофлора рта ребенка аналогична микрофлоре взрослых, что связано и с изменением характера питания.

Огромное количество микроорганизмов содержится в полости кишечника. Исследование кишечной флоры у детей показало, что микробы в мекониуме появляются со второй половины первых суток жизни. Вначале появляются кокки, затем в кишечнике определяются грамположительные палочки со спорами. В небольшом количестве в мекониуме обнаруживаются также кишечные палочки, вульгарный протей. С 3-го дня, когда появляются бифидобактерии, споровые палочки исчезают.

Основой кишечной микрофлоры у детей, находящихся на грудном вскармливании, являются бифидобактерии, которые составляют около 90% всех микробов кишечника. Встречаются кишечные палочки, энтерококки, ацидофильная палочка и аэрогенные бактерии. У детей, находящихся на искусственном вскармливании, превалируют кишечные палочки, а количество бифидобактерий снижается. Защитная роль нормальной микрофлоры состоит в выделении антагонистически активных веществ (антибиотиков,

бактериоцинов, микроцинов), подавляющих патоген, его способности колонизировать кожу, слизистые оболочки. Нормальная микрофлора образует пленку в биотопе. Кроме защитного антагонизма, известны детоксицирующая, иммуностимулирующая и витаминообразующая функции нормальной микрофлоры, ее участие в пищеварении. Подавление нормальной микрофлоры вследствие заболевания или широкого применения антибиотиков приводит к формированию дисбактериоза, который может стать причиной развития различных форм патологии, в том числе и микробного генеза. Для профилактики и лечения дисбактериоза используются эубиотики - препараты, содержащие живые антагонистически активные штаммы, - представители нормальной микрофлоры организма (колибактерин, бифидумбактерин, лактобактерин).

Второй защитный барьер организма включает функцию лимфатических узлов, клеток ретикулоэндотелиальной системы, развитие воспаления. Лимфатические узлы выполняют барьерфиксирующую функцию, могут длительно задерживать патоген, не допуская его проникновение в кровь, например фиксация гемолитического стрептококка в лимфоидной ткани миндалин, задержка бруцелл, возбудителя чумы, стафилококка, туберкулезных палочек в регионарных лимфатических узлах. За счет лимфатических узлов предотвращается развитие генерализованной формы инфекции. При подавлении барьерной функции лимфатических узлов могут развиться бактериемия (брюшной тиф, бруцеллез) и сепсис (чума, стафилококковая и стрептококковая инфекции).

Печень, селезенка, эндотелий кровеносных сосудов за счет клеток ретикулоэндотелиальной системы являются своеобразными фильтрами, в которых застревают патогены и таким образом не допускается генерализация инфекции (брюшной тиф). Воспаление в своей основе является защитной реакцией организма, так как в результате воспалительной реакции вокруг патогена концентрируются специализированные клетки, которые должны либо уничтожить возбудителя, либо ограничить его распространение, например при гнойном мастите стафилококковой этиологии в ткани молочной железы образуется локальный гнойный очаг (абсцесс), предотвращающий генерализацию стафилококковой инфекции.

Одним из методов лечения хронических инфекций является назначение препаратов, усиливающих воспалительную реакцию организма как защитную (хроническая гонорея, хроническая дизен-

терия). Но иногда воспаление может выполнять противоположную патогенетическую функцию, т.е. способствовать развитию патологического процесса, нарушению структуры и функции органа (ткани): воспаление легких (пневмония), воспаление почек (нефрит). В таком случае назначают противовоспалительную терапию.

Третья достаточно мощная преграда на пути распространения патогена по организму - это кровь. Бактерицидная активность крови, т.е. ее способность к самоочищению, обеспечивается комплексом гуморальных и клеточных факторов естественной резистентности организма. Если кровь перестает выполнять свою бактерицидную функцию, то возбудитель беспрепятственно пребывает и размножается в крови, а через кровь проникает и локализуется в разных органах и тканях. В таких случаях развиваются тяжелые, генерализованные формы инфекции, сепсис и септикопиемия, которые создают реальную угрозу жизни организма-хозяина (чумной сепсис, сибиреязвенный сепсис, стафилококковая септикопиемия).

Четвертый барьер организма - гематоэнцефалический, который защищает ткань мозга (головного, спинного) от поражения патогеном. В защитные структуры гематоэнцефалического барьера входят оболочки мозга, стенки кровеносных сосудов, питающих мозговую ткань. Проникновение возбудителя в мозговую ткань приводит к развитию менингоэнцефалитов (менингококк, риккетсии Провачека, вирусы бешенства и энцефалитов). Ткани головного мозга защищены нейросекретируемыми гормонами задней доли гипофиза - окситоцином и вазопрессином, которые наряду с антимикробной активностью подавляют и персистентный потенциал многих патогенов, что используется в клинической практике для борьбы с инфекцией.

8.4.2. Факторы естественной резистентности организма

Раздел изложен в материалах диска.

8.5. Роль внешней среды в инфекционном процессе

Внешняя среда является обязательным участником в инфекционном процессе, его третьей движущей силой. Факторы внешней среды (физические, химические, биологические и социальные)

могут существенно влиять на развитие, течение и исход инфекционного процесса.

Важным физическим фактором является температура. Классические опыты Уолкера и Боринга на модели экспериментальной вирусной инфекции показали, что повышение температуры тела организма приводит к активации факторов естественной резистентности, в частности усилению продукции интерферона. При высокой температуре усиливаются механизмы противовирусной защиты. Поэтому при лечении больных вирусными инфекциями не оправдано снижение высокой температуры, если нет для этого жизненно важных показаний. С другой стороны, снижение в холодное время года температуры тела человека (простудный фактор) приводит к ослаблению естественной резистентности. В связи с действием разных температур существует сезонность ряда инфекционных заболеваний. Повышение заболеваемости воздушнокапельными инфекциями (острой респираторной вирусной инфекции - ОРВИ, грипп) имеет место в холодное время года (зимой) под действием простудного фактора, кишечными инфекциями - в летне-осенний период, когда в условиях высокой температуры возбудители кишечных инфекций (дизентерия, холера, гепатит А, брюшной тиф) интенсивно размножаются во внешней среде, а также распространяются с пищевыми продуктами и водой.

Особенности питания, наличие витаминов в пище могут существенно влиять на естественную резистентность. В весенний период в связи с авитаминозом обостряются хронические инфекционные заболевания (туберкулез, ревматизм и др.). Витамин В 12 и другие производные бензимидазола (дибазол), являясь стимуляторами синтеза белка в организме, повышают его естественную резистентность. Поэтому эти препараты используют для профилактики инфекционных болезней.

Солнце управляет жизненными процессами на нашей планете. Выявлена зависимость между активностью Солнца, его геомагнитной активностью, инфекционной заболеваемостью и смертностью среди людей. Выявлена цикличность патологических процессов и показателей естественной резистентности. Установлена связь между активностью Солнца и экспрессией факторов вирулентности микроорганизмов.

Социальный фактор является мощным фактором внешней среды, влияющим на устойчивость организма к инфекции. Антибиотико-

терапия, вакцинопрофилактика позволяют достаточно эффективно управлять инфекционным процессом. Благодаря глобальным противоэпидемическим мероприятиям человечество избавилось от натуральной оспы, успешно ведет борьбу с полиомиелитом. Но есть болезни, созданные человеком (men made diseases): туберкулез, вирусные гепатиты, ВИЧ-инфекция, болезни, передающиеся половым путем.

Социальные болезни - следствие пороков человеческого общества: наркомании, проституции и т.п. Техногенное загрязнение внешней среды способствует развитию инфекционных заболеваний. Высокое содержание в воздухе, воде солей тяжелых металлов, сероводородсодержащих соединений, радиоактивных элементов приводит к формированию иммунодефицитов в организме, а с другой стороны, в ряде случаев стимулируют экспрессию факторов вирулентности патогена. Так, природный сероводородсодержащий газ Оренбургского, Астраханского, Карачаганакского природных месторождений резко усиливал персистентный потенциал стафилококков, делая население этих газоносных провинций заложниками формирования резидентного стафилококкового бактерионосительства.

Таким образом, формы, течение и исход инфекционного процесса зависят как от вирулентности штамма патогенного микроорганизма, так и от состояния естественной резистентности и иммунитета организма хозяина, где регулирующую функцию выполняют факторы внешней среды.

Задания для самоподготовки (самоконтроля)

А. Назовите форму инфекционного процесса, при которой возбудитель длительное время находится в организме, не проявляя патогенных свойств и не выделяясь в окружающую среду:

1. Бактерионосительство.

2. Латентная инфекция.

3. Медленная инфекция.

4. Острая инфекция.

Б. Назовите факторы, способствующие колонизации бактерий в макроорганизме:

1. Бактериоцины.

2. Адгезины.

3. Эндотоксин.

4. IgA-протеаза.

В. Назовите факторы, способствующие инвазии бактерий:

1. Гиалуронидаза.

2. Эффекторные белки секреторной системы III типа.

3. Эндотоксин.

Г. В защите от фагоцитоза, помимо поверхностных структур бактериальной клетки, участвуют секретируемые этой клеткой вещества. Отметьте ферменты, принимающие участие в подавлении фагоцитоза бактерий:

1. Внеклеточная аденилатциклаза.

2. IgA-протеаза.

3. Каталаза.

4. Супероксиддисмутаза.

Д. Отметьте положения, характерные для экзотоксина:

1. Является слабым антигеном.

2. Обладает специфичностью действия.

3. Термостабилен.

4. Стимулирует образование в организме нейтрализующих ан-

Е. У пациента, болеющего гриппом, развилась пневмония, вызванная S. pneumoniae. Назовите форму инфекционного процесса, к которой относится вызванная S. pneumoniae пневмония.

Ж. Одним из методов лабораторной диагностики инфекционных болезней является метод гемокультуры, при котором возбудителя выделяют из крови больного. Назовите состояния инфекционного процесса, при которых возбудитель можно выделить из крови.

Глава 1

Основные сведения об инфекционных болезнях

Инфекционные болезни сопровождают человека с момента его становления как вида. По мере возникновения общества и развития социального образа жизни человека многие инфекции получили массовое распространение.

Сведения о заразных болезнях можно найти в древнейших памятниках письменности: в индийских ведах, иероглифическом письме Древнего Китая и Древнего Египта, Библии, а затем и в русских летописях, где они описаны под названием поветрий, повальных, моровых болезней. Опустошительные эпидемии и пандемии инфекционных болезней были свойственны всем историческим периодам жизни человека. Так, в средние века от чумы («черной смерти») вымерла треть населения Европы, а всего на земном шаре в XIV в. от этого заболевания погибли более 50 млн человек. В XVII-XVIII вв. ежегодно только в европейских странах натуральной оспой болели около 10 млн человек.

Эпидемии сыпного тифа были постоянными спутниками всех прошлых войн. От этого заболевания погибло больше людей, чем от всех видов оружия, вместе взятых. Пандемия гриппа во время первой мировой войны («испанка») поразила 500 млн человек, 20 млн из них умерли.

Широчайшее распространение инфекционных болезней во все времена не только приводило к гибели многие миллионы людей, но и было основной причиной малой продолжительности жизни человека, которая в прошлом не превышала 20-30 лет, а в некоторых районах Африки и сейчас составляет 35-40 лет.

Долгое время о природе заразных болезней практически ничего не было известно. Их связывали с особыми «миазмами» – ядовитыми испарениями воздуха. Представление о «миазмах» как о причине повальных болезней сменилось учением о «контагиях» (Фракасторо, XVI в.). Учение о контагиозных болезнях, передающихся от больного человека здоровому, получило дальнейшее развитие в трудах Д.С.Самойловича (1784), который полагал, что возбудителями инфекционных болезней, в частности чумы, являются мельчайшие живые существа.

Однако подлинно научную основу учение об инфекционных болезнях получило лишь в первой половине XIX в., со времени бурного расцвета бактериологии, и особенно в XX в., в период становления иммунологии (Л.Пастер, Р.Кох, И.И.Мечников, П.Эрлих, Г.Н.Минх, Г.Н.Габричевский, Д.И.Ивановский, Д.К.Заболотный, Л.А.Зильбер и др.).

Большую роль в развитии учения об инфекциях сыграла созданная в 1896 г. первая в России кафедра инфекционных болезней Медико-хирургической (ныне Военно-медицинской) академии. Труды С.П.Боткина, Е.И.Марциновского, И.Я.Чистовича, Н.К.Розенберга, Н.И.Рогозы и многих других клиницистов явились значительным вкладом в учение о клинике и патогенезе инфекционных болезней.

Существенное значение в развитии инфектологии и основ ее преподавания имели кафедры инфекционных болезней, научно-исследовательские институты, Академия медицинских наук и ее подразделения.

Представители московской, петербургской, киевской и других школ инфекционистов (Г.П.Руднев, А.Ф.Билибин, К.В.Бунин, В.И.Покровский, Е.П.Шувалова, И.Л.Богданов, И.К.Мусабаев и др.), их ученики и последователи осуществляют большую и плодотворную работу по изучению инфекционных болезней и совместно со специалистами различного профиля разрабатывают комплексные программы борьбы с этими заболеваниями.

В изучение вопросов инфекционной патологии детского возраста и преподавание их в медицинских вузах существенный вклад внесли М.Г.Данилевич; А. И. Доброхотова, Н.И.Нисевич, С.Д.Носов, Г.А.Тимофеева. Больших успехов в развитии патогенетического, клинического и профилактического направлений, изучении и преподавании инфекционной патологии, особенно кишечных инфекций, вирусного гепатита, респираторных и риккетсиозных заболеваний, добились ученые, работавшие в I Ленинградском (ныне Санкт-Петербургский) медицинском институте им. акад. И.П.Павлова (С.С.Златогоров, Г.А.Ивашенцов, М.Д.Тушинский, К.Т.Глухов, Н.В.Чернов, Б.Л.Итциксон) и выполнявшие в разные годы обязанности заведующего кафедрой инфекционных болезней этого института. В последующие годы на изучение именно этих инфекций в плане развития идей проф. Г.А.Ивашенцова и проф. К.Т.Глухова направлены усилия коллектива кафедры.

Инфекционные болезни – обширная группа заболеваний человека, вызванных патогенными вирусами, бактериями (в том числе риккетсиями и хламидиями) и простейшими. Сущность инфекционных болезней состоит в том, что они развиваются вследствие взаимодействия двух самостоятельных биосистем – макроорганизма и микроорганизма, каждый из которых обладает собственной биологической активностью.

Инфекция – сложный комплекс взаимодействия возбудителя и макроорганизма в определенных условиях внешней и социальной среды, включающий динамически развивающиеся патологические, защитно-приспособительные, компенсаторные реакции (объединяющиеся под названием «инфекционный процесс»),

Инфекционный процесс может проявляться на всех уровнях организации биологической системы (организма человека) – субмолекулярном, субклеточном, клеточном, тканевом, органном, организменном и составляет сущность инфекционной болезни. Собственно инфекционная болезнь – это частное проявление инфекционного процесса, крайняя степень его развития.

Из сказанного ясно, что взаимодействие возбудителя и макроорганизма не обязательно и далеко не всегда приводит к заболеванию. Инфицированность еще не означает развития болезни. С другой стороны, инфекционная болезнь является лишь фазой «экологического конфликта» – одной из форм инфекционного процесса.

Формы взаимодействия инфекционного агента с организмом человека могут быть различными и зависят от условий инфицирования, биологических свойств возбудителя и особенностей макроорганизма (восприимчивость, степень неспецифической и специфической реактивности). Описано несколько форм указанного взаимодействия, не все из них изучены в достаточной мере, относительно некоторых в литературе еще не сформировалось окончательное мнение.

Наиболее изучены клинически проявляющиеся (манифестные) острые и хронические формы. При этом различают типично и атипично протекающие инфекции и молниеносные (фульминантные), в большинстве случаев заканчивающиеся летально. Манифестная инфекция может протекать в легкой, средней тяжести и тяжелой формах.

Общими свойствами острой формы манифестной инфекции являются непродолжительность пребывания возбудителя в организме больного и формирование той или иной степени невосприимчивости к повторному заражению соответствующим микроорганизмом. Эпидемиологическое значение острой формы манифестной инфекции очень велико, что связано с большой интенсивностью выделения больными микроорганизмов возбудителей в окружающую среду и, следовательно, с высокой заразностью больных. Некоторые инфекционные болезни протекают всегда только в острой форме (скарлатина, чума, оспа), другие – в острой и хронической (бруцеллез, вирусный гепатит, дизентерия).

Как с теоретической, так и с практической точек зрения особое место занимает хроническая форма инфекции. Она характеризуется длительным пребыванием возбудителя в организме, ремиссиями, рецидивами и обострениями патологического процесса, благоприятным прогнозом в случае своевременной и рациональной терапии и может закончиться, как и острая форма, полным выздоровлением.

Повторное заболевание, развивающееся в результате нового заражения тем же возбудителем, именуют реинфекцией. Если она наступает до ликвидации первичной болезни, говорят о суперинфекции.

Субклиническая форма инфекции имеет очень важное эпидемиологическое значение. С одной стороны, больные с субклинически протекающей инфекцией являются резервуаром и источником возбудителя и при сохраненной трудоспособности, мобильности и социальной активности могут существенно осложнять эпидемиологическую обстановку. С другой стороны, большая частота субклинических форм многих инфекций (менингококковая инфекция, дизентерия, дифтерия, грипп, полиомиелит) способствует формированию массивной иммунной прослойки среди населения, что в определенной мере ограничивает распространение этих инфекций.

Латентная форма инфекции представляет собой длительное бессимптомное взаимодействие организма с инфекционным агентом; при этом возбудитель находится либо в дефектной форме, либо в особой стадии своего существования. Например, при латентной вирусной инфекции вирус определяется в виде дефектных интерферирующих частиц, бактерии – в виде L-форм. Описаны и латентные формы, вызванные простейшими (малярия).

Крайне своеобразной формой взаимодействия вирусов и организма человека является медленная (slow) инфекция. Определяющими чертами медленной инфекции являются продолжительный (многомесячный, многолетний) инкубационный период, ациклическое неуклонно прогрессирующее течение с развитием патологических изменений преимущественно в одном органе или в одной системе (главным образом в нервной), всегда смертельный исход заболевания. К медленным относят инфекции, вызванные некоторыми вирионами (обычными вирусами): СПИД, врожденная краснуха, прогрессирующий краснушный панэнцефалит, подострый коревой склерозирующий панэнцефалит и др., и инфекции, вызванные так называемыми прионами (необычными вирусами, или инфекционными безнуклеиновыми белками): антропонозы куру, болезнь Крейтцфельда– Якоба, синдром Герстманна-Страусслера, амиотрофический лейкоспонгиоз и зоонозы овец и коз, трансмиссивная энцефалопатия норок и др.

Инфекционные болезни, вызванные одним видом микроорганизмов, получили название моноинфекций; вызванные одновременно несколькими видами (микробные ассоциации) – смешанных, или микстинфекций. Вариантом смешанной инфекции является вторичная инфекция, когда к уже развивающейся инфекционной болезни присоединяется новая. Как правило, вторичная инфекция возникает при нарушении нормального симбиоза аутофлоры и макроорганизма, вследствие чего происходит активизация условно-патогенных видов микроорганизмов (стафилококки, протей, кишечные палочки и др.). В настоящее время инфекции, при которых происходит сочетанное (одновременное или последовательное) воздействие нескольких патогенных агентов на организм, предложено обозначать общим термином «ассоциированные инфекции». Известно, что воздействие на организм человека двух и более возбудителей является сложным и неоднозначным процессом и никогда не исчерпывается простым суммированием эффектов отдельных представителей микробных ассоциаций. Таким образом, ассоциированную (смешанную) инфекцию следует рассматривать как особую форму инфекционного процесса, частота которой повсеместно нарастает.

Компонентом ассоциированной инфекции является эндогенная, или аутоинфекция, вызываемая собственной условно-патогенной флорой организма. Эндогенная инфекция может приобретать значение первичной, самостоятельной формы заболевания. Нередко в основе аутоинфекции лежит дисбактериоз, возникающий (наряду с другими причинами) вследствие длительной антибиотикотерапии. С наибольшей частотой аутоинфекция развивается в миндалинах, толстой кишке, бронхах, легких, мочевыводящей системе, на кожных покровах. Эпидемиологическую опасность могут представлять больные со стафилококковыми и другими поражениями кожи и верхних дыхательных путей, так как, рассеивая возбудителей в окружающей среде, они могут инфицировать предметы и людей.

Как уже указывалось, основными факторами инфекционного процесса являются возбудитель, макроорганизм и окружающая среда.

Возбудитель. Он определяет возникновение инфекционного процесса, его специфичность, а также оказывает влияние на его течение и исход. К важнейшим свойствам микроорганизмов, способных вызывать инфекционный процесс, относят патогенность, вирулентность, адгезивность, инвазивность, токсигенность.

Патогенность, или болезнетворность, является видовым признаком и представляет собой потенциальную, закрепленную генетически способность микроорганизма данного вида вызывать заболевание. Наличие или отсутствие этого признака позволяет подразделять микроорганизмы на патогенные, условно-патогенные и непатогенные (сапрофиты). Вирулентность – степень патогенности. Это свойство является индивидуальным признаком каждого штамма патогенного микроорганизма. В эксперименте она измеряется минимальной смертельной дозой (DLМ). Высоковирулентные микроорганизмы даже в очень малых дозах могут вызывать летальную инфекцию. Вирулентность не является абсолютно стабильным свойством. Она может существенно колебаться у различных штаммов одного вида и даже у одного и того же штамма, например, в ходе инфекционного процесса и в условиях антибактериальной терапии.

Токсигенность микроорганизмов обусловлена способностью синтезировать и выделять токсины. Различают два вида токсинов: белковые (экзотоксины) и небелковые (эндотоксины). Экзотоксины продуцируются в основном грамположительными микроорганизмами, например возбудителями дифтерии, столбняка, ботулизма, газовой гангрены, и выделяются живыми микроорганизмами во внешнюю среду. Они обладают ферментативными свойствами, отличаются высокой специфичностью действия, избирательно поражают отдельные органы и ткани, что находит отражение в клинических симптомах заболевания. Например, экзотоксин возбудителя столбняка избирательно воздействует на моторные центры спинного и продолговатого мозга, экзотоксин шигелл Григорьева-Шига – на эпителиальные клетки кишечника. Эндотоксины тесно связаны с микробной клеткой и освобождаются только при ее разрушении. Содержатся они преимущественно в грамотрицательных микроорганизмах. По химической природе относятся к глюцидо-липидно-протеиновым комплексам или к липополисахаридным соединениям и обладают значительно меньшей специфичностью и избирательностью действия.

В настоящее время к факторам патогенности микроорганизмов относят также «антигенную мимикрию», т.е. наличие у возбудителей перекрестно реагирующих антигенов (ПРА) с антигенами человека. Она встречается у возбудителей кишечных инфекций, чумы, гриппа. Наличие этого свойства у возбудителя приводит к снижению иммунного ответа макроорганизма на его внедрение и, следовательно, к неблагоприятному течению заболевания.

Факторы вирулентности представляют собой биологически активные вещества с разнообразными функциями. Кроме уже упомянутых микробных ферментов, к ним относятся капсулярные факторы (полипептид D-глутаминовой кислоты капсулы возбудителя сибирской язвы, типоспецифические капсульные полисахариды пневмококков, М-протеин гемолитических стрептококков группы А, А-протеин стафилококков, корд-фактор возбудителя туберкулеза, NW-антигены и фракции F-1 чумных микробов, К-, Q-, Vi антигены, энтеробактерии и др.), подавляющие защитные механизмы макроорганизма, и экскретируемые продукты.

В процессе эволюции патогенные микроорганизмы выработали способность проникать в организм хозяина через определенные ткани. Место их проникновения получило название входных ворот инфекции. Входными воротами для одних микроорганизмов являются кожные покровы (при малярии, сыпном тифе, роже, фелинозе, кожном лейшманиозе), для других – слизистые оболочки дыхательных путей (при гриппе, кори, скарлатине), пищеварительного тракта (при дизентерии, брюшном тифе) или половых органов (при гонорее, сифилисе). Некоторые микроорганизмы могут проникать в организм различными путями (возбудители вирусного гепатита, СП ИД а, чумы).

Нередко от места входных ворот зависит клиническая картина инфекционного заболевания. Так, если чумной микроорганизм проникает через кожу, развивается бубонная или кожно-бубонная форма, через дыхательные органы – легочная.

Микроорганизм при внедрении в макроорганизм может оставаться в месте входных ворот, и тогда на макроорганизм действуют преимущественно продуцируемые токсины. В этих случаях возникает токсинемия, наблюдаемая, например, при дифтерии, скарлатине, столбняке, газовой гангрене, ботулизме и других инфекциях. Места проникновения и пути распространения возбудителей, особенности их действия на ткани, органы и макроорганизм в целом и ответные его реакции составляют основу патогенеза инфекционного процесса и заболевания.

Важной характеристикой возбудителя инфекции является его тропность к определенным системам, тканям и даже клеткам. Например, возбудитель гриппа тропен главным образом к эпителию дыхательных путей, эпидемического паротита – к железистой ткани, бешенства – к нервным клеткам аммонова рога, оспы – к клеткам эктодермального происхождения (кожа и слизистые оболочки), дизентерии – к энтероцитам, сыпного тифа – к эндотелиоцитам, СПИДа – к Т-лимфоцитам.

Свойства микроорганизмов, влияющие на ход инфекционного процесса, нельзя рассматривать в отрыве от свойств макроорганизма. Доказательством этого является, например, антигенность возбудителя – свойство вызывать в макроорганизме специфический иммунологический ответ.

Макроорганизм. Важнейшей движущей силой инфекционного процесса наряду с микроорганизмом-возбудителем является макроорганизм. Факторы организма, защищающие его от агрессии микроорганизма и препятствующие размножению и жизнедеятельности возбудителей, можно разделить на две большие группы – неспецифические и специфические, которые в сумме составляют комплекс полученных по наследству или индивидуально приобретенных механизмов.

Спектр неспецифических защитных механизмов весьма широк. К ним относятся: 1) непроницаемость кожи для большинства микроорганизмов, обеспеченная не только ее механическими барьерными функциями, но и бактерицидными свойствами кожных секретов; 2) высокая кислотность и ферментативная активность желудочного содержимого, губительно действующие на попавшие в желудок микроорганизмы; 3) нормальная микрофлора организма, препятствующая колонизации слизистых оболочек патогенными микробами; 4) двигательная активность ресничек респираторного эпителия, механически удаляющих возбудителей из дыхательных путей; 5) наличие в крови и других жидких средах организма (слюна, отделяемое из носа и глотки, слезы, сперма и др.) таких ферментных систем, как лизоцим, пропердин и др.

Неспецифическими ингибиторами микроорганизмов являются также система комплемента, интерфероны, лимфокины, многочисленные бактерицидные субстанции тканей, гидролазы и др. Важную роль в сопротивляемости инфекциям играют сбалансированное питание и витаминная обеспеченность организма человека. Существенное неблагоприятное влияние на неспецифическую резистентность к инфекциям оказывают переутомление, физические и психические травмы, хроническая алкогольная интоксикация, наркомания и т.д.

Исключительное значение в защите организма от патогенных микроорганизмов имеют фагоциты и система комплемента. По сути своей они относятся к неспецифическим факторам защиты, но занимают среди них особое место из-за своей причастности к системе иммунитета. В частности, циркулирующие в крови гранулоциты и особенно тканевые макрофаги (две популяции фагоцитирующих клеток) принимают участие в подготовке микробных антигенов и их переработке в иммуногенную форму. Они же участвуют в обеспечении кооперации Т– и В-лимфоцитов, которая необходима для инициации иммунного ответа. Иными словами, они, будучи неспецифическими факторами сопротивляемости инфекциям, безусловно, участвуют в специфических реакциях на антигенный стимул.

Вышеизложенное относится к системе комплемента: синтез компонентов этой системы происходит вне зависимости от наличия специфических антигенов, но во время антителогенеза один из компонентов комплемента присоединяется к молекулам антител, и только в его присутствии происходит лизис клеток, содержащих антигены, против которых эти антитела выработаны.

Неспецифическая защита организма в значительной мере контролируется генетическими механизмами. Так, доказано, что отсутствием в организме генетически детерминированного синтеза нормального полипептида цепи?-гемоглобина обусловливается устойчивость человека к возбудителю малярии. Имеются также убедительные данные, свидетельствующие об определенной роли генетических факторов в устойчивости и восприимчивости человека к туберкулезу, кори, полиомиелиту, натуральной оспе и другим инфекционным заболеваниям.

Особое место в защите человека от инфекций занимает также генетически контролируемый механизм, вследствие которого исключается возможность размножения того или иного возбудителя в организме любого представителя данного вида в связи с неспособностью утилизации его метаболитов. Примером может служить невосприимчивость человека к собачьей чуме, животных – к брюшному тифу.

Формирование иммунитета является важнейшим, часто решающим событием в защите макроорганизма от инфекционных агентов. Глубокая вовлеченность иммунной системы в инфекционный процесс существенно отражается на важнейших проявлениях и особенностях инфекционных болезней, отличающих их от всех других форм патологии человека.

Защита от инфекций – лишь одна, хотя и принципиально важная для существования вида, функция иммунитета. В настоящее время роль иммунитета рассматривается необозримо более широко и включает также функцию обеспечения стабильности антигенной структуры организма, которая достигается благодаря способности лимфоидных клеток узнавать постоянно возникающее в организме чужое и элиминировать его. Это означает, что в конечном счете иммунитет является одним из главнейших механизмов поддержания гомеостаза организма человека.

У человека описано 6 форм специфических реакций, из которых складывается иммунологическая реактивность (или иммунный ответ, что одно и то же): 1) выработка антител; 2) гиперчувствительность немедленного типа; 3) гиперчувствительность замедленного типа; 4) иммунологическая память; 5) иммунологическая толерантность; 6) идиотип-антиидиотипическое взаимодействие.

В обеспечении иммунного ответа главное участие принимают взаимодействующие системы клеток: Т-лимфоциты (55-60 % всех лимфоцитов периферической крови), В-лимфоциты (25-30 %) и макрофаги.

Определяющая роль в иммунитете принадлежит Т-системе иммунитета. Среди Т-клеток различают 3 количественно и функционально обособленные субпопуляции: Т-эффекторы (осуществляют реакции клеточного иммунитета), Т-хелперы, или помощники (включают В-лимфоциты в антителопродукцию), и Т-супрессоры (регулируют деятельность Т– и В-эффекторов путем торможения их активности). Среди В-клеток различают субпопуляции, синтезирующие иммуноглобулины различных классов (IgG, IgМ, IgА и др.). Взаимоотношения осуществляются с помощью прямых контактов и многочисленных гуморальных медиаторов.

Функция макрофагов в иммунном ответе состоит в захвате, переработке и накоплении антигена, его распознавании и передаче информации на Т– и В-лимфоциты.

Роль Т– и В-лимфоцитов при инфекциях многообразна. От их количественных и качественных изменений могут зависеть направленность и исход инфекционного процесса. Кроме того, в некоторых случаях они могут быть эффекторами иммунопатологических процессов (аутоиммунные реакции, аллергия), т.е. повреждений тканей организма, обусловленных иммунными механизмами.

Универсальным ответом системы иммунитета на внедрение инфекционных антигенов является антителообразование, которое осуществляется потомками В-лимфоцитов – плазматическими клетками. Под действием антигенов микроорганизмов непосредственно (Т-независимые антигены) или после кооперативных взаимоотношений Т– и В-лимфоцитов (Т-зависимые антигены) В-лимфоциты трансформируются в плазматические клетки, способные к активному синтезу и секреции антител. Продуцируемые антитела отличаются специфичностью, которая состоит в том, что антитела к одному виду микроорганизмов не взаимодействуют с другими микроорганизмами, если те и другие возбудители не имеют общих антигенных детерминант.

Носителями активности антител являются иммуноглобулины пяти классов: IgА, IgМ, IgG, IgD, IgЕ, из них первые три выполняют наибольшую роль. Иммуноглобулины разных классов имеют особенности. Антитела, относящиеся к IgМ, появляются в самой ранней стадии первичной реакции организма на внедрение антигена (ранние антитела) и наиболее активны в отношении многих бактерий; в частности, в составе иммуноглобулинов класса М содержится основная часть антител против энтеротоксинов грамотрицательных бактерий. Иммуноглобулины класса М составляют 5-10 % от общего количества иммуноглобулинов человека; они особенно активны в реакциях агглютинации и лизиса. Антитела класса IgG (70-80 %) образуются на 2-й неделе от начала первичного антигенного воздействия. При повторной инфекции (повторном антигенном воздействии того же вида) антитела вырабатываются значительно раньше (в силу иммунологической памяти в отношении соответствующего антигена), что может служить указанием на вторичное инфицирование. Антитела этого класса проявляют наибольшую активность в реакциях преципитации и связывания комплемента. Во фракции IgА (около 15 % всех иммуноглобулинов) также найдены антитела против некоторых бактерий, вирусов, токсинов, но их основная роль заключается в формировании местного иммунитета. Если IgМ и IgG определяются в основном в сыворотке крови (сывороточные иммуноглобулины, сывороточные антитела), то IgА в значительно большей, чем в сыворотке, концентрации содержится в секретах респираторного, желудочно-кишечного, полового трактов, в молозиве и др. (секреторные антитела). Их роль особенно важна при кишечных инфекциях, гриппе и ОРЗ, при которых они местно нейтрализуют вирусы, бактерии, токсины. Значение антител классов IgD и IgЕ окончательно не выяснено. Предполагают, что они являются сывороточными и также могут выполнять защитные функции. Антитела класса IgЕ участвуют и в аллергических реакциях.

При многих инфекционных болезнях большое значение имеет формирование специфического клеточного иммунитета, вследствие которого данный возбудитель не может размножаться в клетках иммунизированного организма.

Регуляция иммунного ответа осуществляется на трех уровнях – внутриклеточном, межклеточном и организменном. Активность иммунного ответа организма и особенности реакций на один и тот же антиген разных индивидуумов определяются его генотипом. В настоящее время известно, что сила иммунного ответа на конкретные антигены кодируется соответствующими генами, получившими название генов иммунореактивности, – Ir-генами.

Окружающая среда. Третий фактор инфекционного процесса – условия внешней среды – оказывает влияние как на возбудителей инфекций, так и на реактивность макроорганизма.

Окружающая среда (физические, химические, биологические факторы), как правило, губительно влияет на большинство микроорганизмов. Главными среди факторов окружающей среды являются температура, высушивание, радиация, дезинфицирующие средства, антагонизм других микроорганизмов.

На реактивность макроорганизма также влияют многочисленные факторы окружающей среды. Так, низкая температура и высокая влажность воздуха снижают устойчивость человека ко многим инфекциям, а более всего – к гриппу и ОРЗ, низкая кислотность желудочного содержимого делает человека менее защищенным от заражения кишечными инфекциями и т.д. В человеческой популяции чрезвычайно важными являются социальные факторы среды. Следует иметь в виду и тот факт, что из года в год нарастает неблагоприятное воздействие повсеместно ухудшающейся экологической обстановки в стране, особенно вредных факторов промышленного и сельскохозяйственного производства и еще больше – факторов городской среды (урбанизация).

Как уже указывалось, инфекционные болезни отличаются от неинфекционных такими фундаментальными особенностями, как контагиозность (заразность), специфичность этиологического агента и формирование в процессе заболевания иммунитета. Закономерности иммуногенеза при инфекционных болезнях обусловливают еще одно кардинальное их отличие – цикличность течения, которая выражается в наличии последовательно сменяющихся периодов.

Периоды инфекционного заболевания. С момента проникновения возбудителя в организм до клинического проявления симптомов заболевания проходит определенное время, получившее название инкубационного (скрытого) периода. Длительность его различна. При одних заболеваниях (грипп, ботулизм) он исчисляется часами, при других (бешенство, вирусный гепатит В) – неделями и даже месяцами, при медленных инфекциях – месяцами и годами. Для большинства инфекционных болезней длительность инкубационного периода составляет 1-3 нед.

Продолжительность инкубационного периода обусловлена несколькими факторами. До некоторой степени она связана с вирулентностью и инфицирующей дозой возбудителя. Инкубационный период тем короче, чем выше вирулентность и больше доза возбудителя. Для распространения микроорганизма, его размножения, выработки им токсичных веществ необходимо определенное время. Однако главная роль принадлежит реактивности макроорганизма, от которой зависят не только возможность возникновения инфекционной болезни, но также интенсивность и темпы ее развития.

С начала инкубационного периода в организме меняются физиологические функции. Достигнув определенного уровня, они выражаются в виде клинических симптомов. С появлением первых клинических признаков болезни начинается продромальный период, или период предвестников заболевания. Симптомы его (недомогание, головная боль, разбитость, расстройства сна, снижение аппетита, иногда небольшое повышение температуры тела) свойственны многим инфекционным заболеваниям, в связи с чем установление диагноза в этот период вызывает большие трудности. Исключение составляет корь: обнаружение в продромальном периоде патогномоничного симптома (пятна Бельского – Филатова – Коплика) позволяет установить точный и окончательный нозологический диагноз.

Длительность периода нарастания симптомов обычно не превышает 2-4 дней. Период разгара имеет различную продолжительность – от нескольких дней (при кори, гриппе) до нескольких недель (при брюшном тифе, вирусных гепатитах, бруцеллезе). В период разгара наиболее ярко проявляются характерные для данной инфекционной формы симптомы.

Разгар болезни сменяется периодом угасания клинических проявлений, на смену которому приходит период выздоровления (реконвалесценция). Длительность периода реконвалесценции широко варьирует и находится в зависимости от формы болезни, тяжести течения, эффективности терапии и многих других причин. Выздоровление может быть полным, когда все нарушенные в результате заболевания функции восстанавливаются, или неполным, если сохраняются остаточные (резидуальные) явления.

Осложнения инфекционного процесса. В любой период болезни возможны осложнения – специфические и неспецифические. К специфическим относят осложнения, вызванные возбудителем данного заболевания и являющиеся следствием необычной выраженности типичной клинической картины и морфофункциональных проявлений инфекции (перфорация язвы кишечника при брюшном тифе, печеночная кома при вирусном гепатите) или атипичной локализации тканевых повреждений (сальмонеллезный эндокардит). Осложнения, вызванные микроорганизмами другого вида, являются не специфическими для данного заболевания.

Исключительное значение в клинике инфекционных болезней имеют опасные для жизни осложнения, требующие неотложного вмешательства, интенсивного наблюдения и интенсивной терапии. К ним относятся печеночная кома (вирусный гепатит), острая почечная недостаточность (малярия, лептоспироз, геморрагическая лихорадка с почечным синдромом, менингококковая инфекция), отек легких (грипп), отек головного мозга (фульминантный гепатит, менингиты), а также шок. В инфекционной практике встречаются следующие виды шока: циркуляторный (инфекционно-токсический, токсико-инфекционный), гиповолемический, геморрагический, анафилактический.

Классификация инфекционных болезней. Классификация инфекционных болезней – важнейшая часть учения об инфекциях, во многом определяющая общие представления о направлениях и мерах борьбы с обширной группой патологии человека – инфекционными заболеваниями. Предложено много классификаций инфекционных болезней, основанных на различных принципах.

В основу экологической классификации, особенно важной с практической точки зрения при планировании и выполнении противоэпидемических мероприятий, положен принцип специфической, главной для возбудителя среды обитания, без которой он не может существовать (поддерживать себя) как биологический вид. Различают три главные среды обитания возбудителей заболеваний человека (они же – резервуары возбудителей): 1) организм человека (популяция людей); 1) организм животных; 3) абиотическая (неживая) среда – почва, водоемы, некоторые растения и пр. Соответственно все инфекции можно разделить на три группы: 1) антропонозы (ОРЗ, брюшной тиф, корь, дифтерия); 2) зоонозы (сальмонеллезы, бешенство, клещевой энцефалит); 3) сапронозы (легионеллез, мелиоидоз, холера, НАГ-инфекция, клостридиозы). Эксперты ФАО/ВОЗ (1969) рекомендуют в рамках сапронозов выделять еще и сапрозоонозы, возбудители которых имеют две среды обитания – организм животных и внешнюю среду, а их периодическая смена и обеспечивает нормальную жизнедеятельность этих возбудителей как биологического вида. Некоторые авторы предпочитают называть сапрозоонозы зоофильными сапронозами. К этой группе инфекций в настоящее время относят сибирскую язву, синегнойную инфекцию, лептоспироз, иерсиниоз, псевдотуберкулез, листериоз и др.

Для клинической практики наиболее удобной была и остается классификация инфекционных болезней Л.В.Громашевского (1941). Ее создание – выдающееся событие в отечественной и мировой науке, в ней автору удалось теоретически обобщить достижения эпидемиологии и инфектологии, общей патологии и нозологии.

Критериями классификации Л.В.Громашевского служат механизм передачи возбудителя и его локализация в организме хозяина (что удачно перекликается с патогенезом и, следовательно, клинической картиной заболевания). По этим признакам инфекционные болезни можно разделить на 4 группы: 1) кишечные инфекции (с фекально-оральным механизмом передачи); 2) инфекции дыхательных путей (с аэрозольным механизмом передачи); 3) кровяные, или трансмиссивные, инфекции (с трансмиссивным механизмом передачи с помощью переносчиков-членистоногих); 4) инфекции наружных покровов (с контактным механизмом передачи). Такое деление инфекций почти идеально подходит к антропонозам. Однако в отношении зоонозов и сапронозов классификация Л.В.Громашевского теряет свою безупречность с точки зрения принципа, положенного в ее основу. Для зоонозов характерно, как правило, несколько механизмов передачи, причем главный из них выделить не всегда просто. То же наблюдается и у некоторых антропонозов, например у вирусных гепатитов. Локализация возбудителей зоонозов может быть множественной. У сапронозов вообще может не быть закономерного механизма передачи возбудителя.

В настоящее время для зоонозов предложены свои эколого-эпидемиологические классификации, в частности наиболее приемлемая для врачей-клиницистов (при сборе эпидемиологического анамнеза в первую очередь): 1) болезни домашних (сельскохозяйственные, пушные, содержащиеся дома) и синантропных (грызуны) животных; 2) болезни диких животных (природно-очаговые).

В классификации Л.В.Громашевского отсутствует также указание на наличие у некоторых возбудителей антропонозов и зоонозов наряду с горизонтальными механизмами передачи вертикального механизма (от матери к плоду). Этот механизм создатель классификации трактовал как «трансмиссивный без специфического переносчика».

Таким образом, классификация Л.В.Громашевского уже не вмещает всех новых достижений эпидемиологии, учения о патогенезе инфекций и в целом инфектологии. Однако она имеет непреходящие достоинства и остается самым удобным педагогическим «инструментом», с помощью которого появляется возможность сформировать ассоциативное мышление у врача, особенно молодого, только приступающего к изучению инфекционной патологии.

Из книги Упражнения йоги для глаз автора Йог Раманантата

автора Елена Владимировна Доброва

Из книги Спецдиета против аллергии и псориаза автора Елена Владимировна Доброва

Из книги Незаменимая книга для диабетика. Всё, что нужно знать о сахарном диабете автора Ирина Станиславовна Пигулевская

Из книги Диабет. Есть – чтобы жить автора Татьяна Леонтьевна Рыжова

Из книги 100 рецептов при диабете. Вкусно, полезно, душевно, целебно автора Ирина Вечерская

Из книги Симфония для позвоночника. Профилактика и лечение заболеваний позвоночника и суставов автора Ирина Анатольевна Котешева

Из книги Сахароснижающие растения. Нет – диабету и лишнему весу автора Сергей Павлович Кашин

Из книги Худеем без соли. Сбалансированная бессолевая диета автора Хизер К. Джонс

Инфекция – это совокупность биологических реакций, которыми макроорганизм отвечает на внедрение возбудителя.

Диапазон проявлений инфекций может быть различным. Крайними формами проявления инфекций являются:

1) бактерионосительство, персистенция, живая вакцинация;

2) инфекционная болезнь; имеются клинические проявления инфекции, эти реакции могут привести к летальному исходу.

Инфекционный процесс – ответная реакция коллектива популяции на внедрение и циркуляцию в ней микробных агентов.

Инфекционные болезни имеют ряд характерных особенностей, отличающих их от других болезней:

1) инфекционные болезни имеют своего возбудителя – микроорганизм;

2) инфекционные болезни контагиозны, т. е. способны передаваться от больного к здоровому;

3) инфекционные болезни оставляют после себя более или менее выраженную невосприимчивость или повышенную чувствительность к данному заболеванию;

4) для инфекционных болезней характерен ряд общих признаков: лихорадка, симптомы общей интоксикации, вялость, адинамия;

5) инфекционные болезни имеют четко выраженную стадийность, этапность.

Для возникновения инфекционного заболевания необходимо сочетание следующих факторов:

1) наличия микробного агента;

2) восприимчивости макроорганизма;

3) наличия среды, в которой происходит это взаимодействие.

Микробный агент – это патогенные и условно-патогенные микроорганизмы.

Существенное значение для возникновения инфекционного заболевания имеет инфицирующая доза возбудителя – минимальное количество микробных клеток, способных вызвать инфекционный процесс. Инфицирующие дозы зависят от видовой принадлежности возбудителя, его вирулентности и состояния неспецифической и иммунной защиты.

Ткани, лишенные физиологической защиты против конкретного вида микроорганизма, служат местом его проникновения в макроорганизм, или входными воротами инфекции. Входные ворота определяют локализацию возбудителя в организме, патогенетические и клинические особенности заболевания.

Внешняя среда может оказывать влияние как на макроорганизм, так и на микробов-возбудителей. Это природно-климатические, социально-экономические, культурно-бытовые условия.

Для ряда инфекций характерны эпидемии и пандемии.

Эпидемия – это широкое распространение инфекции в популяции с охватом больших территорий, характеризующееся массовостью заболеваний.

Пандемия – распространение инфекции практически на всю территорию земного шара с очень высоким процентом случаев заболеваний.

Эндемичные заболевания (с природной очаговостью) – это заболевания, для которых отмечены территориальные ареалы с повышенной заболеваемостью данной инфекцией.

2. Формы инфекции и периоды инфекционных болезней

Классификация инфекций

1. По этиологии:

1) бактериальные;

2) вирусные;

3) протозойные;

4) микозы;

5) микст-инфекции.

2. По количеству возбудителей:

1) моноинфекции;

2) полиинфекции.

3. По тяжести течения:

1) легкие;

2) тяжелые;

3) средней тяжести.

4. По длительности:

1) острые;

2) подострые;

3) хронические;

4) латентные.

5. По путям передачи:

1) горизонтальные:

а) воздушно-капельный путь;

б) фекально-оральный;

в) контактный;

г) трансмиссивный;

д) половой;

2) вертикальные:

а) от матери к плоду (трансплацентарный);

б) от матери к новорожденному в родовом акте;

3) артифициальные (искусственные) – при инъекциях, обследованиях, операциях и т. д.

В зависимости от локализации возбудителя различают:

1) очаговую инфекцию, при которой микроорганизмы локализуются в местном очаге и не распространяются по всему организму;

2) генерализованную инфекцию, при которой возбудитель распространяется по организму лимфогенным и гематогенным путем. При этом развивается бактериемия или вирусемия. Наиболее тяжелая форма – сепсис.

Выделяют также:

1) экзогенные инфекции; возникают в результате заражения человека патогенными микроорганизмами, поступающими из окружающей среды с пищей, водой, воздухом, почвой, выделениями больного человека, реконвалесцента и микробоносителя;

2) эндогенные инфекции; вызываются представителями нормальной микрофлоры – условно-патогенными микроорганизмами самого индивидуума.

Разновидность эндогенных инфекций – аутоинфекции, они возникают в результате самозаражения путем переноса возбудителя из одного биотопа в другой.

Выделяют следующие периоды инфекционных болезней:

1) инкубационный; от момента проникновения возбудителя в организм до появления первых признаков заболевания. Продолжительность – от нескольких часов до нескольких недель. Больной не заразен;

2) продромальный; характеризуется появлением первых неясных общих симптомов. Возбудитель интенсивно размножается, колонизирует ткань, начинает продуцировать ферменты и токсины. Продолжительность – от нескольких часов до нескольких дней;

3) разгар болезни; характеризуется появлением специфических симптомов. Возбудитель продолжает интенсивно размножаться, накапливаться, выделяет в кровь токсины и ферменты. Происходит выделение возбудителя из организма, поэтому больной представляет опасность для окружающих. В начале данного периода в крови обнаруживаются специфические антитела;

4) исход. Могут быть разные варианты:

а) летальный исход;

б) выздоровление (клиническое и микробиологическое). Клиническое выздоровление: симптомы заболевания угасли, но возбудитель еще находится в организме. Этот вариант опасен формированием носительства и рецидивом заболевания. Микробиологическое – полное выздоровление; в) хроническое носительство.

Реинфекцией называют заболевание, возникающее после перенесенной инфекции в случае повторного заражения тем же возбудителем.

Суперинфекция возникает, когда на фоне течения одного инфекционного заболевания происходит заражение еще одним возбудителем.

3. Возбудители инфекций и их свойства

Среди бактерий по способности вызывать заболевание выделяют:

1) патогенные;

2) условно-патогенные;

Патогенные виды потенциально способны вызывать инфекционное заболевание.

Патогенность – это способность микроорганизмов, попадая в организм, вызывать в его тканях и органах патологические изменения. Это качественный видовой признак, детерминированный генами патогенности – вирулонами. Они могут локализоваться в хромосомах, плазмидах, транспозонах.

Условно-патогенные бактерии могут вызывать инфекционное заболевание при снижении защитных сил организма.

Сапрофитные бактерии никогда не вызывают заболевания, так как они не способны размножаться в тканях макроорганизма.

Реализация патогенности идет через вирулентность – это способность микроорганизма проникать в макроорганизм, размножаться в нем и подавлять его защитные свойства.

Это штаммовый признак, он поддается количественной характеристике. Вирулентность – фенотипическое проявление патогенности.

Количественными характеристиками вирулентности являются:

1) DLM (минимальная летальная доза) – это количество бактерий, при введении которых соответствующим путем в организм лабораторных животных получают 95–98 % гибели животных в эксперименте;

2) LD 50 – это количество бактерий, вызывающее гибель 50 % животных в эксперименте;

3) DCL (смертельная доза) вызывает 100 %-ную гибель животных в эксперименте.

К факторам вирулентности относят:

1) адгезию – способность бактерий прикрепляться к эпителиальным клеткам. Факторами адгезии являются реснички адгезии, адгезивные белки, липополисахариды у грамотрицательных бактерий, тейхоевые кислоты у грамположительных бактерий, у вирусов – специфические структуры белковой или полисахаридной природы;

2) колонизацию – способность размножаться на поверхности клеток, что ведет к накоплению бактерий;

3) пенетрацию – способность проникать в клетки;

4) инвазию – способность проникать в подлежащие ткани. Эта способность связана с продукцией таких ферментов, как гиалуронидаза и нейраминидаза;

5) агрессию – способность противостоять факторам неспецифической и иммунной защиты организма.

К факторам агрессии относят:

1) вещества разной природы, входящие в состав поверхностных структур клетки: капсулы, поверхностные белки и т. д. Многие из них подавляют миграцию лейкоцитов, препятствуя фагоцитозу;

2) ферменты – протеазы, коагулазу, фибринолизин, лецитиназу;

3) токсины, которые делят на экзо– и эндотоксины.

Экзотоксины – высокоядовитые белки. Они термолабильны, являются сильными антигенами, на которые в организме вырабатываются антитела, вступающие в реакции токсинонейтрализации. Этот признак кодируется плазмидами или генами профагов.

Эндотоксины – сложные комплексы липополисахаридной природы. Они термостабильны, являются слабыми антигенами, обладают общетоксическим действием. Кодируются хромосомными генами.