Какой спектр света вреден для глаз. Что такое синий свет? Осторожно! Синий свет

В настоящее время доказано повреждающее воздействие синего света на фоторецепторы и пигментный эпителий сетчатки


Солнечный свет — источник жизни на Земле, свет от Солнца доходит до нас за 8,3 мин. Хотя лишь 40% энергии солнечных лучей, попадающих на верхнюю границу атмосферы, преодолевают ее толщу, но и эта энергия не менее чем в 10 раз превышает ту, которая содержится во всех разведанных запасах подземного топлива. Солнце решающим образом повлияло на образование всех тел Солнечной системы и создало условия, которые привели к возникновению и развитию жизни на Земле. Однако длительное воздействие некоторых наиболее высокоэнергетичных диапазонов солнечного излучения представляет реальную опасность для многих живых организмов, в том числе и человека. На страницах журнала мы неоднократно рассказывали о том, с каким риском для глаз связано длительное воздействие ультрафиолетового света, однако, как показывают данные научных исследований, синий свет видимого диапазона также представляет определенную опасность.

Ультрафиолетовый и синий диапазоны солнечного излучения

Ультрафиолетовое излучение - это невидимое глазом электромагнитное излучение, занимающее часть спектральной области между видимым и рентгеновским излучениями в пределах длин волн 100-380 нм. Вся область ультрафиолетового излучения условно делится на ближнюю (200-380 нм) и далекую, или вакуумную (100-200 нм). Ближний УФ-диапазон, в свою очередь, подразделяется на три составляющих - UVA, UVB и UVC, отличающихся по своему воздействию на организм человека. UVC является наиболее коротковолновым и высокоэнергетичным ультрафиолетовым излучением с диапазоном длин волн 200-280 нм. UVB-излучение включает длины волн от 280 до 315 нм и является излучением средней энергии, представляющим опасность для органов зрения человека. Именно UVB способствует возникновению загара, фотокератита, в экстремальных случаях и заболеваний кожи. UVB практически полностью поглощается роговицей, но часть UVB-диапазона (300-315 нм) может проникать в глаза. UVA - это наиболее длинноволновая и наименее энергетичная составляющая ультрафиолета с диапазоном длин волн 315-380 нм. Роговица поглощает некоторое количество UVА, однако большая часть поглощается хрусталиком.

В отличие от ультрафиолета синий свет является видимым. Именно синие световые волны придают окраску небу (или любому другому предмету). Синий свет начинает видимый диапазон солнечного излучения - к нему относятся световые волны с длиной от 380 до 500 нм, которые имеют наиболее высокую энергию. Название «синий свет» в сущности является упрощенным, поскольку оно охватывает световые волны начиная от фиолетового диапазона (от 380 до 420 нм) и собственно синего (от 420 до 500 нм). Так как синие волны имеют наименьшую длину, они, согласно законам релеевского светорассеяния, наиболее интенсивно рассеиваются, поэтому значительная часть раздражающего блеска солнечного излучения обусловлена синим светом. Пока человек не достигает весьма почтенного возраста, синий свет не поглощается такими естественными физиологическими фильтрами, как слезная пленка, роговица, хрусталик и стекловидное тело глаза.


Прохождение света через различные структуры глаза

Наивысшая проницаемость коротковолнового видимого синего света обнаруживается в молодом возрасте и медленно сдвигается в более длинноволновый видимый диапазон по мере увеличения срока жизни человека.



Светопроницаемость структур глаза в зависимости от возраста

Вредное воздействие синего света на сетчатку

Вредное воздействие синего света на сетчатку было впервые доказано в разнообразных исследованиях на животных. Воздействуя на обезьян большими дозами синего света, исследователи Харверт и Перлинг (Harwerth & Pereling) установили в 1971 году, что это приводит к продолжительной утрате спектральной чувствительности в синем диапазоне, возникающей из-за повреждений сетчатки. В 1980-е годы эти результаты были подтверждены другими учеными, которые обнаружили, что воздействие синим светом приводит к образованию фотохимических повреждений сетчатки, в особенности ее пигментного эпителия и фоторецепторов. В 1988 году в опытах на приматах Янг (Young) установил взаимосвязь между спектральным составом излучения и риском возникновения повреждений сетчатки. Он продемонстрировал, что достигающие сетчатки различные компоненты спектра излучения опасны в разной степени, а риск поражения экспоненциально возрастает с увеличением энергии фотонов. При воздействии на глаза светом диапазона от ближней инфракрасной области и до середины видимого спектра повреждающие эффекты незначительны и слабо зависят от продолжительности облучения. В то же время было обнаружено резкое увеличение повреждающего воздействия при достижении длины светового излучения 510 нм.



Спектр светового повреждения сетчатки

Согласно результатам этого исследования при равных условиях эксперимента синий свет в 15 раз более опасен для сетчатки, чем весь оставшийся диапазон видимого спектра.
Эти данные были подтверждены другими экспериментальными исследованиями, в том числе исследованием профессора Реме, который показал, что при облучении глаз крыс зеленым светом не обнаружено апоптоза или других вызванных светом повреждений, в то время как наблюдается массовая апоптическая гибель клеток после облучения синим светом. В исследованиях было показано, что изменение тканей после длительного воздействия ярким светом было таким же, какое связывают с симптомами возрастной дегенерации макулы.

Кумулятивное воздействие синего света

Уже давно было установлено, что старение сетчатки непосредственно зависит от продолжительности воздействия солнечного излучения. В настоящее время, хотя и нет абсолютно четких клинических доказательств, все большее число специалистов и экспертов убеждены, что кумулятивное воздействие синего света является фактором риска развития возрастной дегенерации макулы (ВДМ). Для установления четкой корреляции были проведены широкомасштабные эпидемиологические исследования. В 2004 году в США были опубликованы результаты исследования «The Beaver Dam Study», в котором участвовали 6 тыс. человек, а наблюдения проводились на протяжении 5-10 лет. Результаты исследования показали, что у людей, которые летом подвергаются воздействию солнечного света более 2 ч в день, риск развития ВДМ в 2 раза выше, чем у тех, кто проводит летом на солнце менее 2 ч. Однако не было выявлено однозначной взаимосвязи между длительностью солнечного облучения и частотой обнаружения ВДМ, что может свидетельствовать о кумулятивном характере повреждающего воздействия света, ответственного за риск ВДМ. Было указано, что кумулятивное воздействие солнечного света связано с риском возникновения ВДМ, что является скорее результатом воздействия видимого, а не ультрафиолетового света. Предыдущие исследования не обнаружили взаимосвязи между кумулятивным воздействием UBA- или UVB-диапазонов, но была установлена взаимосвязь между ВДМ и воздействием на глаза синего света. В настоящее время доказано повреждающее воздействие синего света на фоторецепторы и пигментный эпителий сетчатки. Синий свет вызывает фотохимическую реакцию, продуцирующую свободные радикалы, которые оказывают повреждающее воздействие на фоторецепторы - колбочки и палочки. Образующиеся вследствие фотохимической реакции продукты метаболизма не могут быть нормально утилизированы эпителием сетчатки, они накапливаются и вызывают ее дегенерацию.

Меланин - пигмент, обуславливающий цвет глаз, поглощает лучи света, защищая сетчатку и препятствуя ее повреждению. Люди со светлой кожей и голубыми или светлоокрашенными глазами потенциально более подвержены развитию ВДМ, так как у них меньшая концентрация меланина. Голубые глаза пропускают во внутренние структуры в 100 раз больше света, чем глаза темной окраски.

Для профилактики развития ВДМ следует применять очки с линзами, отрезающими синюю область видимого спектра. При одинаковых условиях воздействия синий свет в 15 раз более опасен для сетчатки, чем остальной свет видимого диапазона.

Как защитить глаза от синего света

Ультрафиолетовое излучение невидимо для наших глаз, поэтому мы пользуемся специальными приборами - УФ-тестерами или спектрофотометрами для оценки защитных свойств очковых линз в ультрафиолетовой области. В отличие от ультрафиолетового синий свет мы видим хорошо, поэтому во многих случаях можем оценить, насколько наши линзы отфильтровывают синий свет.
Очки, получившие название блю-блокеры (blue-blockers), появились в 1980-е годы, когда результаты вредного воздействия излучения синего диапазона видимого спектра еще не были так очевидны. Желтый цвет прошедшего через линзу света свидетельствует о поглощении линзой сине-фиолетовой группы, поэтому блю-блокеры, как правило, имеют желтый оттенок в своей окраске. Они могут быть желтыми, темно-желтыми, оранжевыми, зелеными, янтарными, коричневыми. Помимо защиты глаз блю-блокеры значительно улучшают контрастность изображения. Очки отфильтровывают синий свет, в результате чего исчезает хроматическая аберрация света на сетчатке, что увеличивает и разрешающую способность глаза. Блю-блокеры могут быть окрашенными в темные тона и поглощать до 90-92% света, а могут быть светлыми, если поглощают только фиолетово-синий диапазон видимого спектра. В том случае, когда линзы блю-блокеров поглощают более 80-85% лучей всех фиолетово-синих фрагментов видимого спектра, они могут изменить цвет наблюдаемых синих и зеленых предметов. Поэтому для обеспечения цветоразличения предметов всегда необходимо оставлять пропускание хотя бы малой части синих фрагментов света.

В настоящее время в ассортименте многих компаний представлены линзы, отрезающие синий диапазон видимого спектра. Так, концерн « » производит линзы «SunContrast», которые обеспечивают увеличение контрастности и четкости, то есть разрешающей способности изображения за счет поглощения синей составляющей света. Линзы «SunContrast» с различными коэффициентами поглощения выпускаются шести цветов, среди которых оранжевый (40%), светло-коричневый (65%), коричневый (75 и 85%), зеленый (85%) и специально созданный для водителей вариант «SunContrast Drive» с коэффициентом светопоглощения 75%.

На международной оптической выставке «MIDO-2007» концерн « » представил линзы специального назначения «Airwear Melanin», которые избирательно отфильтровывают синий свет. Эти линзы выполнены из окрашенного в массе поликарбоната и содержат синтетический аналог природного пигмента меланина. Они отфильтровывают 100% ультрафиолетового и 98% коротковолнового синего диапазона солнечного излучения. Линзы «Airwear Melanin» защищают глаза и тонкую, чувствительную кожу вокруг них, при этом они обеспечивают естественную цветопередачу (на российском рынке новинка доступна с 2008 года).

Все полимерные материалы для очковых линз корпорации «HOYA», а именно PNX 1.53, EYAS 1.60, EYNOA 1.67, EYRY 1.70, отсекают не только ультрафиолетовое излучение, но и часть видимого спектра до 390-395 нм, являясь коротковолновыми фильтрами. Кроме того, корпорация «HOYA» производит по заказу широкий ассортимент линз «Special Sphere», повышающих контрастность изображения. К этой категории продукции относятся линзы «Office Brown» и «Office Green» - соответственно светло-коричневого и светло-зеленого цветов, рекомендуемые для работы с компьютером и в офисе в условиях искусственного освещения. Также в эту группу продукции входят линзы оранжевого и желтого цветов «Drive» и «Save Life», рекомендуемые для водителей, линзы коричневого цвета «Speed» для занятий спортом на открытом воздухе, серо-зеленые солнцезащитные линзы «Pilot» для занятий экстремальными видами спорта и темно-коричневые солнцезащитные линзы «Snow» для занятий зимними видами спорта.

В нашей стране в 1980-е годы были внедрены очки для оленеводов, представлявшие собой окрашенные линзы-фильтры. Из отечественных разработок можно отметить релаксационные комбинированные очки, разработанные компанией ООО «Алис-96» (патент РФ № 35068, приоритет от 27.08.2003) под руководством академика С. Н. Федорова. Очки обеспечивают защиту структур глаза от светового повреждения, провоцирования глазной патологии и преждевременного старения под действием ультрафиолетовых и фиолетово-синих лучей. Фильтрация лучей фиолетово-синей группы позволяет улучшить различительную способность при различных нарушениях зрения. Достоверно установлено, что у людей с компьютерным зрительным синдромом (КЗС) легкой и средней степени улучшается острота зрения вдаль, повышаются резервы аккомодации и конвергенции, устойчивость бинокулярного зрения, улучшается контрастная и цветовая чувствительность. По данным компании ООО «Алис-96», проведенные исследования релаксационных очков позволяют рекомендовать их не только для лечения КЗС, но и для профилактики зрительного утомления пользователям видеотерминалов, водителям транспорта и всем, кто подвергается воздействию высоких световых нагрузок.

Мы надеемся, уважаемые читатели, что вам было интересно ознакомиться с результатами научных исследований, связывающих длительное воздействие коротковолнового синего излучения с риском возникновения возрастной дегенерации макулы. Теперь вы сможете подобрать эффективные солнцезащитные и контрастные очковые линзы не только для улучшения контрастности зрения, но и для профилактики болезней глаз.

* Что такое возрастная дегенерация макулы
Это заболевание глаз, встречающееся у 8% людей в возрасте старше 50 лет и 35% людей старше 75 лет. Оно развивается, когда повреждаются очень хрупкие клетки макулы - зрительного центра сетчатки. Люди, страдающие этим заболеванием, не могут нормально фокусировать глаза на предметах, находящихся в самом центре поля зрения. Это нарушает процесс зрения в центральной области, жизненно важной для чтения, вождения автомобиля, просмотра телепередач, распознавания предметов и лиц. При высокой стадии развития ВДМ пациенты видят только благодаря своему периферийному зрению. Причины развития ВДМ обусловлены генетическими факторами и образом жизни - курением, пищевыми привычками, а также воздействием солнечного света. ВДМ стала основной причиной слепоты у людей старше 50 лет в индустриально развитых странах. В настоящее время от ВДМ страдают от 13 до 15 млн жителей США. Риск развития ВДМ в два раза выше у людей, подвергающихся среднему или продолжительному воздействию солнечного света по сравнению с теми, кто мало времени проводит на солнце.

Ольга Щербакова, Веко 10, 2007. Статья подготовлена с использованием материалов компании "Essilor"

В настоящее время доказано повреждающее воздействие синего света на фоторецепторы и пигментный эпителий сетчатки


Солнечный свет — источник жизни на Земле, свет от Солнца доходит до нас за 8,3 мин. Хотя лишь 40% энергии солнечных лучей, попадающих на верхнюю границу атмосферы, преодолевают ее толщу, но и эта энергия не менее чем в 10 раз превышает ту, которая содержится во всех разведанных запасах подземного топлива. Солнце решающим образом повлияло на образование всех тел Солнечной системы и создало условия, которые привели к возникновению и развитию жизни на Земле. Однако длительное воздействие некоторых наиболее высокоэнергетичных диапазонов солнечного излучения представляет реальную опасность для многих живых организмов, в том числе и человека. На страницах журнала мы неоднократно рассказывали о том, с каким риском для глаз связано длительное воздействие ультрафиолетового света, однако, как показывают данные научных исследований, синий свет видимого диапазона также представляет определенную опасность.

Ультрафиолетовый и синий диапазоны солнечного излучения

Ультрафиолетовое излучение - это невидимое глазом электромагнитное излучение, занимающее часть спектральной области между видимым и рентгеновским излучениями в пределах длин волн 100-380 нм. Вся область ультрафиолетового излучения условно делится на ближнюю (200-380 нм) и далекую, или вакуумную (100-200 нм). Ближний УФ-диапазон, в свою очередь, подразделяется на три составляющих - UVA, UVB и UVC, отличающихся по своему воздействию на организм человека. UVC является наиболее коротковолновым и высокоэнергетичным ультрафиолетовым излучением с диапазоном длин волн 200-280 нм. UVB-излучение включает длины волн от 280 до 315 нм и является излучением средней энергии, представляющим опасность для органов зрения человека. Именно UVB способствует возникновению загара, фотокератита, в экстремальных случаях и заболеваний кожи. UVB практически полностью поглощается роговицей, но часть UVB-диапазона (300-315 нм) может проникать в глаза. UVA - это наиболее длинноволновая и наименее энергетичная составляющая ультрафиолета с диапазоном длин волн 315-380 нм. Роговица поглощает некоторое количество UVА, однако большая часть поглощается хрусталиком.

В отличие от ультрафиолета синий свет является видимым. Именно синие световые волны придают окраску небу (или любому другому предмету). Синий свет начинает видимый диапазон солнечного излучения - к нему относятся световые волны с длиной от 380 до 500 нм, которые имеют наиболее высокую энергию. Название «синий свет» в сущности является упрощенным, поскольку оно охватывает световые волны начиная от фиолетового диапазона (от 380 до 420 нм) и собственно синего (от 420 до 500 нм). Так как синие волны имеют наименьшую длину, они, согласно законам релеевского светорассеяния, наиболее интенсивно рассеиваются, поэтому значительная часть раздражающего блеска солнечного излучения обусловлена синим светом. Пока человек не достигает весьма почтенного возраста, синий свет не поглощается такими естественными физиологическими фильтрами, как слезная пленка, роговица, хрусталик и стекловидное тело глаза.


Прохождение света через различные структуры глаза

Наивысшая проницаемость коротковолнового видимого синего света обнаруживается в молодом возрасте и медленно сдвигается в более длинноволновый видимый диапазон по мере увеличения срока жизни человека.



Светопроницаемость структур глаза в зависимости от возраста

Вредное воздействие синего света на сетчатку

Вредное воздействие синего света на сетчатку было впервые доказано в разнообразных исследованиях на животных. Воздействуя на обезьян большими дозами синего света, исследователи Харверт и Перлинг (Harwerth & Pereling) установили в 1971 году, что это приводит к продолжительной утрате спектральной чувствительности в синем диапазоне, возникающей из-за повреждений сетчатки. В 1980-е годы эти результаты были подтверждены другими учеными, которые обнаружили, что воздействие синим светом приводит к образованию фотохимических повреждений сетчатки, в особенности ее пигментного эпителия и фоторецепторов. В 1988 году в опытах на приматах Янг (Young) установил взаимосвязь между спектральным составом излучения и риском возникновения повреждений сетчатки. Он продемонстрировал, что достигающие сетчатки различные компоненты спектра излучения опасны в разной степени, а риск поражения экспоненциально возрастает с увеличением энергии фотонов. При воздействии на глаза светом диапазона от ближней инфракрасной области и до середины видимого спектра повреждающие эффекты незначительны и слабо зависят от продолжительности облучения. В то же время было обнаружено резкое увеличение повреждающего воздействия при достижении длины светового излучения 510 нм.



Спектр светового повреждения сетчатки

Согласно результатам этого исследования при равных условиях эксперимента синий свет в 15 раз более опасен для сетчатки, чем весь оставшийся диапазон видимого спектра.
Эти данные были подтверждены другими экспериментальными исследованиями, в том числе исследованием профессора Реме, который показал, что при облучении глаз крыс зеленым светом не обнаружено апоптоза или других вызванных светом повреждений, в то время как наблюдается массовая апоптическая гибель клеток после облучения синим светом. В исследованиях было показано, что изменение тканей после длительного воздействия ярким светом было таким же, какое связывают с симптомами возрастной дегенерации макулы.

Кумулятивное воздействие синего света

Уже давно было установлено, что старение сетчатки непосредственно зависит от продолжительности воздействия солнечного излучения. В настоящее время, хотя и нет абсолютно четких клинических доказательств, все большее число специалистов и экспертов убеждены, что кумулятивное воздействие синего света является фактором риска развития возрастной дегенерации макулы (ВДМ). Для установления четкой корреляции были проведены широкомасштабные эпидемиологические исследования. В 2004 году в США были опубликованы результаты исследования «The Beaver Dam Study», в котором участвовали 6 тыс. человек, а наблюдения проводились на протяжении 5-10 лет. Результаты исследования показали, что у людей, которые летом подвергаются воздействию солнечного света более 2 ч в день, риск развития ВДМ в 2 раза выше, чем у тех, кто проводит летом на солнце менее 2 ч. Однако не было выявлено однозначной взаимосвязи между длительностью солнечного облучения и частотой обнаружения ВДМ, что может свидетельствовать о кумулятивном характере повреждающего воздействия света, ответственного за риск ВДМ. Было указано, что кумулятивное воздействие солнечного света связано с риском возникновения ВДМ, что является скорее результатом воздействия видимого, а не ультрафиолетового света. Предыдущие исследования не обнаружили взаимосвязи между кумулятивным воздействием UBA- или UVB-диапазонов, но была установлена взаимосвязь между ВДМ и воздействием на глаза синего света. В настоящее время доказано повреждающее воздействие синего света на фоторецепторы и пигментный эпителий сетчатки. Синий свет вызывает фотохимическую реакцию, продуцирующую свободные радикалы, которые оказывают повреждающее воздействие на фоторецепторы - колбочки и палочки. Образующиеся вследствие фотохимической реакции продукты метаболизма не могут быть нормально утилизированы эпителием сетчатки, они накапливаются и вызывают ее дегенерацию.

Меланин - пигмент, обуславливающий цвет глаз, поглощает лучи света, защищая сетчатку и препятствуя ее повреждению. Люди со светлой кожей и голубыми или светлоокрашенными глазами потенциально более подвержены развитию ВДМ, так как у них меньшая концентрация меланина. Голубые глаза пропускают во внутренние структуры в 100 раз больше света, чем глаза темной окраски.

Для профилактики развития ВДМ следует применять очки с линзами, отрезающими синюю область видимого спектра. При одинаковых условиях воздействия синий свет в 15 раз более опасен для сетчатки, чем остальной свет видимого диапазона.

Как защитить глаза от синего света

Ультрафиолетовое излучение невидимо для наших глаз, поэтому мы пользуемся специальными приборами - УФ-тестерами или спектрофотометрами для оценки защитных свойств очковых линз в ультрафиолетовой области. В отличие от ультрафиолетового синий свет мы видим хорошо, поэтому во многих случаях можем оценить, насколько наши линзы отфильтровывают синий свет.
Очки, получившие название блю-блокеры (blue-blockers), появились в 1980-е годы, когда результаты вредного воздействия излучения синего диапазона видимого спектра еще не были так очевидны. Желтый цвет прошедшего через линзу света свидетельствует о поглощении линзой сине-фиолетовой группы, поэтому блю-блокеры, как правило, имеют желтый оттенок в своей окраске. Они могут быть желтыми, темно-желтыми, оранжевыми, зелеными, янтарными, коричневыми. Помимо защиты глаз блю-блокеры значительно улучшают контрастность изображения. Очки отфильтровывают синий свет, в результате чего исчезает хроматическая аберрация света на сетчатке, что увеличивает и разрешающую способность глаза. Блю-блокеры могут быть окрашенными в темные тона и поглощать до 90-92% света, а могут быть светлыми, если поглощают только фиолетово-синий диапазон видимого спектра. В том случае, когда линзы блю-блокеров поглощают более 80-85% лучей всех фиолетово-синих фрагментов видимого спектра, они могут изменить цвет наблюдаемых синих и зеленых предметов. Поэтому для обеспечения цветоразличения предметов всегда необходимо оставлять пропускание хотя бы малой части синих фрагментов света.

В настоящее время в ассортименте многих компаний представлены линзы, отрезающие синий диапазон видимого спектра. Так, концерн « » производит линзы «SunContrast», которые обеспечивают увеличение контрастности и четкости, то есть разрешающей способности изображения за счет поглощения синей составляющей света. Линзы «SunContrast» с различными коэффициентами поглощения выпускаются шести цветов, среди которых оранжевый (40%), светло-коричневый (65%), коричневый (75 и 85%), зеленый (85%) и специально созданный для водителей вариант «SunContrast Drive» с коэффициентом светопоглощения 75%.

На международной оптической выставке «MIDO-2007» концерн « » представил линзы специального назначения «Airwear Melanin», которые избирательно отфильтровывают синий свет. Эти линзы выполнены из окрашенного в массе поликарбоната и содержат синтетический аналог природного пигмента меланина. Они отфильтровывают 100% ультрафиолетового и 98% коротковолнового синего диапазона солнечного излучения. Линзы «Airwear Melanin» защищают глаза и тонкую, чувствительную кожу вокруг них, при этом они обеспечивают естественную цветопередачу (на российском рынке новинка доступна с 2008 года).

Все полимерные материалы для очковых линз корпорации «HOYA», а именно PNX 1.53, EYAS 1.60, EYNOA 1.67, EYRY 1.70, отсекают не только ультрафиолетовое излучение, но и часть видимого спектра до 390-395 нм, являясь коротковолновыми фильтрами. Кроме того, корпорация «HOYA» производит по заказу широкий ассортимент линз «Special Sphere», повышающих контрастность изображения. К этой категории продукции относятся линзы «Office Brown» и «Office Green» - соответственно светло-коричневого и светло-зеленого цветов, рекомендуемые для работы с компьютером и в офисе в условиях искусственного освещения. Также в эту группу продукции входят линзы оранжевого и желтого цветов «Drive» и «Save Life», рекомендуемые для водителей, линзы коричневого цвета «Speed» для занятий спортом на открытом воздухе, серо-зеленые солнцезащитные линзы «Pilot» для занятий экстремальными видами спорта и темно-коричневые солнцезащитные линзы «Snow» для занятий зимними видами спорта.

В нашей стране в 1980-е годы были внедрены очки для оленеводов, представлявшие собой окрашенные линзы-фильтры. Из отечественных разработок можно отметить релаксационные комбинированные очки, разработанные компанией ООО «Алис-96» (патент РФ № 35068, приоритет от 27.08.2003) под руководством академика С. Н. Федорова. Очки обеспечивают защиту структур глаза от светового повреждения, провоцирования глазной патологии и преждевременного старения под действием ультрафиолетовых и фиолетово-синих лучей. Фильтрация лучей фиолетово-синей группы позволяет улучшить различительную способность при различных нарушениях зрения. Достоверно установлено, что у людей с компьютерным зрительным синдромом (КЗС) легкой и средней степени улучшается острота зрения вдаль, повышаются резервы аккомодации и конвергенции, устойчивость бинокулярного зрения, улучшается контрастная и цветовая чувствительность. По данным компании ООО «Алис-96», проведенные исследования релаксационных очков позволяют рекомендовать их не только для лечения КЗС, но и для профилактики зрительного утомления пользователям видеотерминалов, водителям транспорта и всем, кто подвергается воздействию высоких световых нагрузок.

Мы надеемся, уважаемые читатели, что вам было интересно ознакомиться с результатами научных исследований, связывающих длительное воздействие коротковолнового синего излучения с риском возникновения возрастной дегенерации макулы. Теперь вы сможете подобрать эффективные солнцезащитные и контрастные очковые линзы не только для улучшения контрастности зрения, но и для профилактики болезней глаз.

* Что такое возрастная дегенерация макулы
Это заболевание глаз, встречающееся у 8% людей в возрасте старше 50 лет и 35% людей старше 75 лет. Оно развивается, когда повреждаются очень хрупкие клетки макулы - зрительного центра сетчатки. Люди, страдающие этим заболеванием, не могут нормально фокусировать глаза на предметах, находящихся в самом центре поля зрения. Это нарушает процесс зрения в центральной области, жизненно важной для чтения, вождения автомобиля, просмотра телепередач, распознавания предметов и лиц. При высокой стадии развития ВДМ пациенты видят только благодаря своему периферийному зрению. Причины развития ВДМ обусловлены генетическими факторами и образом жизни - курением, пищевыми привычками, а также воздействием солнечного света. ВДМ стала основной причиной слепоты у людей старше 50 лет в индустриально развитых странах. В настоящее время от ВДМ страдают от 13 до 15 млн жителей США. Риск развития ВДМ в два раза выше у людей, подвергающихся среднему или продолжительному воздействию солнечного света по сравнению с теми, кто мало времени проводит на солнце.

Ольга Щербакова, Веко 10, 2007. Статья подготовлена с использованием материалов компании "Essilor"

Мировая научная общественность уже не первое десятилетие спорит о вреде и пользе воздействия синего света на человеческий организм. Представители одного лагеря заявляют о серьезной угрозе и разрушительном действии синего света, а их оппоненты приводят веские доводы в пользу оздоровительного эффекта от него. В чем причина этих разногласий? Кто прав и, как разобраться, нужен ли людям синий свет для поддержания здоровья? Или природа что-то перепутала, включив его в доступный человеческому восприятию видимый спектр…

Рисунок 1. Электромагнитное излучение в диапазоне длин волн от 380 до 760 нм

Особую актуальность все эти вопросы имеют для людей, страдающих катарактой и задумавшихся об имплантации интраокулярных линз (ИОЛ) . Многие производители предлагают ИОЛ, изготовленные из материалов, не пропускающих электромагнитное излучение в диапазоне длин волн 420–500 нм, характерном для синего света (узнать такие линзы легко, они имеют желтоватый оттенок).

Но один из лидеров рынка искусственных хрусталиков - компания Abbott Medical Optics (АМО) - осознанно плывет против течения, борясь со стереотипами и отстаивая свою принципиальную и обоснованную позицию. АМО создает прозрачные линзы, подобно естественным хрусталикам молодых здоровых глаз полностью пропускающие синий свет в видимом диапазоне.

Отвечая на этот вопрос, чем обусловлен столь серьезный выбор, возможно, нам удастся развеять миф о вреде синего света, прежде принимавшийся большинством в качестве неопровержимого постулата.

Осторожно! Синий свет

Цвета всех видимых объектов, обусловлены различными длинами волн электромагнитного излучения. Попадая в глаза, отражённый от этих от этих объектов свет вызывает реакцию светочувствительных клеток сетчаски, инициирующую формирование нервных импульсов, переправляемых по зрительному нерву в мозг, где и формируется привычная "карптина мира" - изображение, каким мы его видим. Наши глаза воспринимают электромагнитное излучение в диапазоне длин волн от 380 до 760 нм.
Так как коротковолновое излучение (в данном случае синий свет) сильнее рассеивается в структурах глаза, оно ухудшает качество зрения и провоцирует возникновение симптомов зрительного утомления. Но основные опасения относительно синего света связаны не с этим, а с его действием на сетчатку. Помимо сильного рассеяния, коротковолновое излучение обладает большой энергией. Оно вызывает фотохимическую реакцию в клетках сетчатки, в ходе которой продуцируются свободные радикалы, оказывающие повреждающее воздействие на фоторецепторы - колбочки и палочки.

Эпителий сетчатки не способен утилизировать продукты метаболизма, образующиеся вследствие данных реакция. Эти продукты накапливаются и вызывают дегенерацию сетчатки . В результате длительных экспериментов, проводимых независимыми группами ученых в разных странах, таких как Швеция, США, Россия, Великобритания, удалось установить, что наиболее опасной является полоса длин волн, расположенная в сине-фиолетовой части спектра примерно от 415 до 455 нм.

Однако нигде не сказано и на практике не подтверждено, что синий свет с длиной волны из данного диапазона может моментально лишить человека здорового зрения. Лишь продолжительное, избыточное его воздействие на глаза может способствовать возникновению негативных эффектов. Наиболее опасным является даже не солнечный, а искусственный свет, исходящий от энергосберегающих ламп и экранов различных электронных устройств. В спектрах такого искусственного света преобладает опасный набор длин волн от 420 до 450 нм.


Рисунок 2. Воздействие коротковолнового излучения на структуру глаза

Не весь спектр синего света вреден для глаз!

Было доказано, что определенная часть диапазона синего света отвечает за правильное функционирование биоритмов, иначе говоря, за регуляцию «внутренних часов». Несколько лет назад в моде была теория замены утреннего кофе пребыванием в помещении с синими лампами . Действительно, результаты многих экспериментов демонстрируют, что синий свет помогает людям проснуться, заряжает энергией, улучшает внимание и активизирует мыслительный процесс, влияя на психомоторные функции. Такой эффект связан с воздействием синего света с длиной волны порядка (450–480 нм) на выработку жизненно важного гормона мелатонина, отвечающего за регуляцию суточного ритма, а также за изменение биохимического состава крови, улучшение работы сердца и легких, стимуляцию иммунной и эндокринной системы, влияющего на процессы адаптации при смене часовых поясов и даже на замедление процессов старения,.

Также стоит отметить незаменимую роль синего света в обеспечении высокой цветовой контрастной чувствительности и в поддержании высокой остроты зрения в сумеречное время, а также в условиях плохой освещенности.

Доказано самой природой!

Еще одним подтверждением пользы синего света является факт, связанный с возрастными изменениями естественного хрусталика. С годами хрусталик становиться более плотным и приобретает желтоватый оттенок. В результате этого происходит изменение светопропускания глаз - в них происходит заметная фильтрация синей области спектра. Корреляция между данными изменениями и нарушением циркадных ритмов у пожилых людей была замечена давно. Установлено, что у таких людей гораздо чаще возникают проблемы со сном: они без видимых причин просыпаются среди ночи, не могут надолго погружаться в глубокий сон, при этом в дневное время испытывают сонливость и дремлют. Это происходит за счет снижения восприимчивости их глаз к синему свету, а значит и к уменьшению выработки мелатонина в дозах, необходимых для регуляции здорового суточного ритма.

Фильтрация должна быть разумной!

Современные технические возможности и постоянно расширяющие научные сведения позволяют создавать специальные очковые покрытия, уменьшающие пропускание вредной части спектра видимого излучения. Такие решения доступны всем, кто следит за сохранением здоровья глаз. Что же касается людей с установленными интраокулярными линзами, для них действуют те же правила предосторожности. Чрезмерное пребывание на солнце или под влиянием искусственных источников света, содержащих коротковолновую синюю составляющую, может наносить вред их организму. Но это не означает, что их ИОЛ должны полностью блокировать попадание в глаза синего света. Люди с искусственными хрусталиками, так же, как и все остальные могут и должны пользоваться внешними средствами оптической защиты.

Но начисто лишать их возможности воспринимать видимый (и в том числе полезный!) синий свет, значит, подвергать их здоровье серьезной опасности. Проще говоря, человек всегда может надеть солнцезащитные очки, но вынуть из глаза интраокулярную линзу при всем желании сам не сможет.

Рисунок 3. Люди с ИОЛ должны пользоваться внешними средствами оптической защиты

Все вышесказанное относится к ответу на вопрос о выборе ИОЛ, о пользе тех из них, свойства которые максимально приближены к свойствам естественных хрусталиков, а еще о том, как важно не забывайте следить за своим здоровьем каждый день!

Куда смотрят разрушители мифов?!

В завершении хочется добавить еще несколько слов уже не о медицинской, а о маркетинговой составляющей спора о синем свете. Практика имплантации интраокулярных линз берет свое начало с середины прошлого века. По мере развития технологий, расширения научных знаний и совершенствования материалов, ИОЛ становились все более эффективными и безопасными.

Однако изначально существовал целый ряд трудностей, которые только предстояло преодолеть. Одной из них являлась разработка стабильного прозрачного биосовместимого полимера, пригодного для производства искусственных хрусталиков. Как раз для стабилизации к этому полимеру примешивали специальные вещества, имевшие желтоватый цвет. По естественным физическим причинам такие ИОЛ не пропускали синий свет внутрь глаза.

И производителям, которые в большинстве своем параллельно занимались созданием специальных защитных покрытий для очковых линз, необходимо было каким-то образом объяснить «необходимость» такой фильтрации, так как устранить ее они еще не могли. Тогда и возникло учение о вреде синего света для сетчатки, получившее широкую известность и до сих пор пугающее непосвященных страшными мифами, так до конца и не доказанными.

Литература:

  1. Журнал «Веко», № 4/2014, «Осторожно, синий свет!», О.Щербакова.
  2. A Comparison of Blue Light and Caffeine Effects on Cognitive Function and Alertness in Humans, C. Martyn Beaven, Johan Ekström PLOS ONE journal, October 7, 2013.
  3. Руководство для врачей «Фототерапия», В. И. Крандашов, Е. Б. Петухов, М.: Медицина 2001.
  4. Журнал «Наука и жизнь», № 12/ 2011.
12.10.2017

Головные боли, ухудшение зрения и памяти, бессонница, депрессия, ожирение, диабет и даже онкологические заболевания - есть мнение, что одна или сразу несколько из этих бед настигает вас прямо сейчас, медленно, но неотвратимо, а причина - в синем спектре излучения дисплея вашего устройства, хоть смартфона, хоть ПК. Чтобы защитить пользователей, всё больше производителей встраивают в своё ПО фильтры синего света. Разбираемся, это маркетинговая уловка или фильтры действительно помогают, опасны ли гаджеты для сна и здоровья, а если да, то как жить дальше.

Синее излучение: что это и вредит ли оно здоровью

По своей природе свет - электромагнитное излучение, видимый диапазон которого характеризуется длиной волны от 380 нм (граница с ультрафиолетом) до 780 нм (соответственно, граница с инфракрасным излучением).

Почему же наибольшее беспокойство учёных и врачей вызывает именно синий свет? Разберём по пунктам.

Сниженная чёткость изображения. Синий свет характеризуется относительно короткой длиной волны и высокой частотой колебаний. В отличие, например, от зелёного и красного, синие волны лишь частично достигают глазного дна, где находятся рецепторы. Остальное рассеивается на полпути, что делает картинку менее чёткой и, следовательно, заставляет сильнее напрягать глаза. Как следствие, при избытке синего цвета мы получаем повышенное глазное давление, усталость и головные боли.

Негативное влияние на сетчатку. Энергия фотонов обратно пропорциональна длине электромагнитной волны, а значит, коротковолновое фиолетовое и синее излучение обладает большей энергией, нежели любое другое. Попадая в рецепторы, оно вызывает химическую реакцию с высвобождением продуктов метаболизма, которые не могут полностью утилизироваться поверхностной тканью сетчатки - эпителием. Со временем это может серьёзно повредить сетчатку и вызвать ухудшение зрения вплоть до слепоты.

Нарушение сна. Эволюция неплохо натренировала человеческий организм: стемнело - хочется спать, рассвело - пора просыпаться. Этот цикл называется циркадным ритмом, а за его корректную работу отвечает гормон мелатонин, выработка которого обеспечивает крепкий и здоровый сон. Яркий свет, в том числе от дисплея, нарушает продуцирование этого «гормона сна», и даже если мы чувствуем усталость, уснуть не можем - мелатонина не хватает. А регулярные ночные бдения перед экраном и вовсе могут привести к хронической бессоннице.

К слову, и здесь своё влияние оказывает цвет и интенсивность излучения. Согласитесь, намного уютнее нам спится в приглушённом свете жёлтого ночника, нежели под яркой люминесцентной лампой (а лучше бы, конечно, в полной темноте). По той же причине крайне редко в телевизорах и прочей электронике диодные индикаторы бывают синего цвета - они сами по себе намного ярче красных и зелёных и к ним намного более чувствительно периферийное зрение.

Прочие опасности. Перечисленные выше последствия сегодня считаются доказанными за десятилетия независимых исследований в данной области. Тем не менее, учёные продолжают изучать особенности воздействия синего света на организм человека и получают неутешительные результаты. С большой вероятностью нарушение циркадного ритма существенно повышает уровень сахара в крови и может привести к диабету. Гормон лептин, отвечающий за чувство сытости, напротив, снижается, и в результате человек будет испытывать чувство голода даже если организму еда не нужна.

Таким образом, регулярное использование гаджетов на ночь может спровоцировать ожирение и диабет - вследствие большего количества поглощаемой еды вкупе с нарушенным циклом сна. Но и это ещё не всё. В Гарвардской медицинской школе предполагают, что смещение циклов и регулярное воздействие света ночью заметно повышает риск сердечно-сосудистых и даже онкологических заболеваний.

Кто подвержен негативному воздействию и весь ли синий свет вреден

Хорошо известно, что с возрастом хрусталик глаза мутнеет и, соответственно, пропускает меньше света, в том числе синего - видимый спектр с годами медленно смещается из коротковолнового в длинноволновый спектр. Наибольшая проницаемость для синего света - у глаз десятилетнего ребёнка, который уже активно пользуется гаджетами, но ещё не имеет сформировавшихся природных фильтров. Ровно по той же причине больше всего рискуют постоянные пользователи гаджетов с повышенной светочувствительностью или с искусственным хрусталиком без фильтра синего излучения.

Однозначного ответа, какое именно синее излучение вредно, а какое нет, на сегодняшний день не существует. В одних исследованиях утверждается, что наиболее вреден спектр от 415 до 455 нм, в других говорится об опасности волн вплоть до 510 нм. Таким образом, чтобы снизить связанные с синим излучением риски, лучше максимально оградить себя от всего коротковолнового видимого спектра.

Как снизить вред от синего излучения

Пауза перед сном. Врачи рекомендуют хотя бы за два часа перед сном воздержаться от использования любых устройств с экраном: смартфонов, планшетов, телевизоров и так далее. Этого времени как раз хватит для того, чтобы организм выработал достаточное количество мелатонина, и можно было спокойно уснуть. Идеальный вариант - пойти прогуляться, а детям ежедневное пребывание на свежем воздухе в течение нескольких часов и вовсе обязательно.

Блю-блокеры. В 1980-1990-е года, в эпоху расцвета персональных компьютеров, главной проблемой мониторов было излучение от электронно-лучевых трубок. Но уже тогда учёные исследовали особенности влияния синего света на организм человека. В результате возник рынок так называемых блю-блокеров - линз или очков, которые фильтруют синее излучение.

Самый доступный вариант - очки с линзами жёлтого или оранжевого цвета, которые можно купить за пару сотен рублей. Но при желании можно подобрать блокеры подороже, которые при большей эффективности (фильтрация до 100% ультрафиолета и до 98% вредных коротких волн) не будут искажать остальные цвета.

Программные средства. С недавних пор разработчики ОС и прошивок начали встраивать в некоторые из них программные ограничители синего излучения дисплеев. В разных устройствах они называются по-разному: Night Shift в iOS (и компьютерах с macOS), «Ночной режим» в Cyanogen OS, «Фильтр синего света» в устройствах Samsung, «Режим защиты зрения» в EMUI, «Режим чтения» в MIUI и так далее.

Эти режимы не станут панацеей, особенно для любителей посидеть в соцсетях на ночь глядя, но всё же способны снизить вредное воздействие на глаза. Если подобной опции нет в вашем устройстве, мы рекомендуем установить соответствующее приложение: f.lux для «рутованных» Android-устройств, или Night Filter для гаджетов без root-прав. На компьютеры и ноутбуки с Windows тот же f.lux можно скачать и установить - он обладает рядом пресетов, а также возможностью настройки расписания по своему усмотрению.

Выводы

Ночные бдения перед экраном смартфона или телевизора вообще не вписываются в здоровый образ жизни, но именно излучение синего спектра существенно усугубляет ситуацию. Его воздействие определенно ведёт к усталости и ухудшению зрения. Кроме того, оно нарушает цикл сна и, не исключено, ведёт к ожирению и диабету. Возможность же увеличения риска сердечно-сосудистых заболеваний и рака из-за воздействия света, требует дальнейшего изучения. Таким образом, есть все основания отказаться от использования любых гаджетов за несколько часов перед сном или хотя бы включать программные фильтры, которые сегодня большинство разработчиков предустанавливают в своё ПО. Хуже точно не будет.