Химические свойства многоатомных спиртов с примерами. Химические свойства спиртов одноатомных и многоатомных. Получение многоатомных спиртов

Многоатомные спирты можно рассматривать как производные углеводородов, в которых несколько атомов водорода замещены на группы ОН.

Двухатомные спирты, называются диолами или гликолями, трехатомные – триолы или глицерины.

Названия многоатомных спиртов образуются по общим правилам номенклатуры ИЮПАК. Представителями многоатомных спиртов являются:

этандиол-1,2 пропантриол-1,2,3

Этиленгликоль глицерин

Физические свойства спиртов.

Многоатомные спирты – это вязкие жидкости, сладкого вкуса, хорошо растворимые в воде и этаноле, плохо – в других органических растворителях. Этиленгликоль сильный яд.

Химические свойства спиртов.

Для многоатомных спиртов характерны реакции одноатомных спиртов и они могут протекать с участием одной или нескольких групп –ОН.

    Взаимодействие с активными металлами:

    Взаимодействие со щелочами. Введение в молекулу дополнительных групп ОН, являющихся электроноакцепторами, усиливает кислотные свойства спиртов, так как происходит делокализация электронной плотности.

    Взаимодействие с гидроксидами тяжелых металлов (гидроксидом меди) – качественная реакция на многоатомные спирты.

    Взаимодействие с галогеноводородами:

    Взаимодействие с кислотами с образованием сложных эфиров:

а) с минеральными кислотами

нитроглицерин

Нитроглицерин – бесцветная маслянистая жидкость. В виде разбавленных спиртовых растворов (1%) применяется при стенокардии, т.к. оказывает сосудорасширяющее действие.

При взаимодействии глицерина с фосфорной кислотой образуется смесь α- и β-глицерофосфатов:

Глицерофосфаты – структурные элементы фосфолипидов, применяются как общеукрепляющее средство

б) с органическими кислотами. При взаимодействии глицерина с высшими карбоновыми кислотами образуются жиры:

    Реакции дегидратации

диоксан (циклический диэфир)

    При нагревании глицерин разлагается с образованием слезоточивого вещества – акролеина:


Акролеин

    Окисление:

При окислении глицерина образуется ряд продуктов. При мягком окислении – глицериновый альдегид (1) и дигидроксиацетон (2):

При окислении в жестких условиях образуется 1,3-диоксоацетон (3):

Биологически значимыми являются пяти- и шестиатомные спирты.

Накопление –ОН групп ведет к появлению сладкого вкуса. Ксилит и сорбит – заменители сахара для больных диабетом

Инозиты – шестиатомные спирты циклогексанового ряда. В связи с наличием ассиметрических атомов углерода у инозита существует несколько стереоизомеров; наиболее важен мезоинозит (миоинозит)

инозит мезоинозит

Мезоинозит относится к витаминоподобным соединениям (витамины группы В) и является структурным компонентом сложных липидов. В растениях широко распространена фитиновая кислота, представляющая собой гексафосфат мезоинозита. Её кальциевая соль, называемая фитином, стимулирует кроветворение, улучшает нервную деятельность при заболеваниях, связанных с недостатком фосфора в организме.

Фенолы

Фенолы – это производные ароматических углеводородов, в которых один или несколько атомов водорода замещены на гидроксильные группы.

Органические углеводороды, в молекулярной структуре которых находится две и более группы -ОН, называются многоатомными спиртами. По-другому соединения называются полиспиртами или полиолами.

Представители

В зависимости от строения выделяют двухатомные, трёхатомные, четырёхатомные и т.д. спирты. Они отличаются на одну гидроксильную группу -ОН. Общую формулу многоатомных спиртов можно записать как C n H 2 n+2 (OH) n . Однако количество атомов углерода не всегда соответствует количеству гидроксильных групп. Такое несоответствие объясняется разной структурой углеродного скелета. Например, пентаэритрит содержит пять атомов углерода и четыре группы -ОН (один углерод посередине), а сорбит - по шесть атомов углерода и групп -ОН.

Рис. 1. Структурные формулы пентаэритрита и сорбита.

В таблице описаны наиболее известные представители полиолов.

Вид спирта

Название

Формула

Физические свойства

Двухатомные (диолы)

Этиленгликоль

HO-CH 2 -CH 2 -OH

Прозрачная маслянистая сильно токсичная жидкость без запаха, со сладким привкусом

Трёхатомные (триолы)

Глицерин

Вязкая прозрачная жидкость. Смешивается с водой в любых пропорциях. Имеет сладкий вкус

Четырёхатомные

Пентаэритрит

Кристаллический белый порошок со сладким вкусом. Растворяется в воде и органических растворителях

Пятиатомные

CH 2 OH(CHOH) 3 CH 2 OH

Кристаллическое бесцветное вещество сладкое на вкус. Хорошо растворяется в воде, спиртах, органических кислотах

Шестиатомные

Сорбит (глюцит)

Сладкое кристаллическое вещество, хорошо растворимое в воде, но плохо растворимое в этаноле

Некоторые кристаллические многоатомные спирты, например, ксилит, сорбит, используют в качестве сахарозаменителя и пищевой добавки.

Рис. 2. Ксилит.

Получение

Полиолы получают лабораторным и промышленным путём:

  • гидратацией оксида этилена (получение этиленгликоля):

    С 2 Н 4 О + Н 2 О → HO-CH 2 -CH 2 -OH;

  • взаимодействием галогеналканов с раствором щелочей:

    R-CHCl-CH 2 Cl + 2NaOH → R-CHOH-CH 2 OH + 2NaCl;

  • окислением алкенов:

    R-CH=CH 2 + H 2 O + KMnO 4 → R-CHOH-CH 2 OH + MnO 2 + KOH;

  • омылением жиров (получение глицерина):

    C 3 H 5 (COO) 3 -R + 3NaOH → C 3 H 5 (OH) 3 + 3R-COONa

Рис. 3. Молекула глицерина.

Свойства

Химические свойства многоатомных спиртов обусловлены нахождением в молекуле нескольких гидроксильных групп. Их близкое положение способствует более лёгким разрывам водородных связей, чем у одноатомных спиртов. Многоатомные спирты проявляют кислотные и основные свойства.

Основные химические свойства описаны в таблице.

Реакция

Описание

Уравнение

Со щелочными металлами

Замещая атом водорода в группе -ОН атомом металла, образуют соли с активными металлами и их щелочами

  • HO-CH 2 -CH 2 -OH + 2Na → NaO-CH 2 -CH 2 -ONa + H 2 ;
  • HO-CH 2 -CH 2 -OH + 2NaOH → NaO-CH 2 -CH 2 -ONa + 2H 2 O

С галогеноводородами

Одна из групп -ОН замещается на галоген

HO-CH 2 -CH 2 -OH + HCl → Cl-CH 2 -CH 2 -OH (этиленхлоргидрин) + H 2 O

Этерификация

Реагируют с органическими и минеральными кислотами с образованием жиров - сложных эфиров

C 3 H 8 O 3 + 3HNO 3 → C 3 H 5 O 3 (NO 2) 3 (нитроглицерин) + 3H 2 O

Качественная реакция

При взаимодействии с гидроксидом меди (II) в щелочной среде образуется тёмно-синий раствор

HO-CH 2 -CH 2 -OH + Cu(OH) 2 → C 4 H 10 O 4 + 2H 2 O

Соли двухатомных спиртов называются гликолятами, трёхатомных - глицератами.

Что мы узнали?

Из урока химии узнали, что такое многоатомные спирты или полиолы. Это углеводороды, содержащие несколько гидроксильных групп. В зависимости от количества -ОН различают двухатомные, трёхатомные, четырёхатомные, пятиатомные и т.д. спирты. Наиболее простой двухатомный спирт - этиленгликоль. Полиолы обладают сладким вкусом и хорошо растворяются в воде. Диолы и триолы - вязкие жидкости. Высшие спирты - кристаллические вещества.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 129.

Спирты - крупная группа органических химических веществ. Она включает подклассы одноатомных и многоатомных спиртов, а также все вещества комбинированного строения: альдегидоспирты, производные фенола, биологические молекулы. Эти вещества вступают в множество типов реакций как по гидроксильной группе, так и по атому углерода, несущему ее. Эти химические свойства спиртов следует изучить детально.

Виды спиртов

В веществах спиртов содержится гидроксильная группа, присоединенная к несущему углеродному атому. В зависимости от количества атомов углерода, с которыми соединен несущий С, спирты делятся на:

  • первичные (соединенные с концевым углеродом);
  • вторичные (соединены с одной гидроксильной группой, одним водородом и двумя углеродными атомами);
  • третичные (соединены с тремя углеродными атомами и одной гидроксильной группой);
  • смешанные (многоатомные спирты, в которых имеются гидроксильные группы у вторичных, первичных или третичных углеродных атомов).

Также спирты делятся в зависимости от количества гидроксильных радикалов на одноатомные и многоатомные. Первые содержат только одну гидроксильную группу у несущего углеродного атома, к примеру, этанол. Многоатомные спирты содержат две и более гидроксильные группы у разных несущих углеродных атомов.

Химические свойства спиртов: таблица

Наиболее удобно подать интересующий нас материал посредством таблицы, которая отражает общие принципы реакционной способности спиртов.

Реакционная связь, тип реакции

Реагент

Продукт

Связь О-Н, замещение

Активный металл, гидрид активного металла, щелочь или амиды активных металлов

Алкоголяты

Связь С-О и О-Н, межмолекулярная дегидратация

Спирт при нагревании в кислой среде

Простой эфир

Связь С-О и О-Н, внутримолекулярная дегидратация

Спирт при нагревании над концентрированной серной кислотой

Непредельный углеводород

Связь С-О, замещение

Галогеноводород, тионилхлорид, квазифосфониевая соль, галогениды фосфора

Галогеналканы

Связь С-О - окисление

Доноры кислорода (перманганат калия) с первичным спиртом

Альдегид

Связь С-О - окисление

Доноры кислорода (перманганат калия) с вторичным спиртом

Молекула спирта

Кислород (горение)

Углекислый газ и вода.

Реакционная способность спиртов

Благодаря наличию в молекуле одноатомного спирта углеводородного радикала - связи С-О и связи О-Н - данный класс соединений вступает в многочисленные химические реакции. Они определяют химические свойства спиртов и зависят от реакционной способности вещества. Последняя, в свою очередь, зависит от длины углеводородного радикала, присоединенного у несущему углеродному атому. Чем он больше, тем ниже полярность связи О-Н, из-за чего реакции, идущие с отщеплением водорода от спирта, будет протекать медленнее. Это же снижает константу диссоциации упомянутого вещества.

Химические свойства спиртов также зависят от количества гидроксильных групп. Одна смещает электронную плотность на себя вдоль сигма-связей, что увеличивает реакционную способность по О-Н группе. Поскольку это поляризует связь С-О, то реакции с ее разрывом идут активнее у спиртов, у которых имеется две и более О-Н групп. Потому многоатомные спирты, химические свойства которых более многочисленные, охотнее вступают в реакции. Также они содержат несколько спиртовых групп, из-за чего свободно могут вступать в реакции по каждой из них.

Типичные реакции одноатомных и многоатомных спиртов

Типичные химические свойства спиртов проявляются только в реакции с активными металлами, их основаниями и гидридами, кислотами Льюиса. Также типичными являются взаимодействия с галогенводородами, галогенидами фосфора и прочими компонентами с получением галогеналканов. Также спирты являются и слабыми основаниями, потому вступают в реакции с кислотами, образуя при этом галогенводороды и сложные эфиры неорганических кислот.

Простые эфиры образуются из спиртов при межмолекулярной дегидратации. Эти же вещества вступают в реакции дегидрирования с образованием альдегидов из первичного спирта и кетонов из вторичного. Третичные спирты в подобные реакции не вступают. Также химические свойства этилового спирта (и других спиртов) оставляют возможность полного их окисления кислородом. Это простая реакция горения, сопровождающаяся выделением воды с углекислым газом и некоторого количества тепла.

Реакции по атому водорода связи О-Н

Химические свойства одноатомных спиртов допускают разрыв связи О-Н и отщепление водорода. Эти реакции протекают при взаимодействии с активными металлами и их основаниями (щелочами), с гидридами активных металлов, а также с кислотами Льюиса.

Также спирты активно вступают в реакции со стандартными органическими и неорганическими кислотами. В данном случае продуктов реакции является сложный эфир или галогенуглеводород.

Реакции синтеза галогеналканов (по связи С-О)

Галогеналканы - это типичные соединения, которые могут быть получены из спиртов при протекании нескольких типов химических реакций. В частности, химические свойства одноатомных спиртов позволяют вступать во взаимодействие с галогенводородами, с галогенидами трех- и пятивалентного фосфора, квазифосфониевыми солями, тионилхлоридом. Также галогеналканы из спиртов могут быть получены промежуточным путем, то есть синтезом алкилсульфоната, который позже вступит в реакцию замещения.

Пример первой реакции с галогенводородом указан на графическом приложении выше. Здесь бутиловый спирт реагирует с хлоридом водорода с образованием хлорбутана. В общем, класс соединений, содержащих хлор и углеводородный насыщенный радикал, называется алкилхлоридом. Побочным продуктом химического взаимодействия является вода.

Реакции с получением алкилхлорида (йодида, бромида или фторида) достаточно многочисленные. Типичный пример - взаимодействие с трибромидом фосфора, пентахлоридом фосфора и прочими соединениями данного элемента и его галогенидов, перхлоридов и перфторидов. Они протекают по механизму нуклеофильного замещения. С тионилхлоридом спирты реагируют также с образованием хлоралкана и выделением SO 2 .

Наглядно химические свойства одноатомных предельных спиртов, содержащих насыщенный углеводородный радикал, представлены в виде реакций на иллюстрации ниже.

Спирты легко взаимодействуют с квазифосфониевой солью. Однако данная реакция наиболее выгодна при протекании у одноатомных вторичных и третичных спиртов. Они региоселективны, позволяют "имплантировать" галогеновую группу в строго определенное место. Продукты таких реакций получаются с высокой массовой долей выхода. А многоатомные спирты, химические свойства которых несколько отличаются от таковых у одноатомных, могут изомеризоваться в ходе реакции. Потому получение целевого продукта затрудняется. Пример реакции на изображении.

Внутримолекулярная и межмолекулярная дегидратация спиртов

Гидроксильная группа, расположенная у несущего углеродного атома, может отщепляться при помощи сильных акцепторов. Так протекают реакции межмолекулярной дегидратации. При взаимодействии одной молекулы спирта с другой в растворе концентрированной серной кислоты молекула воды отщепляется от обеих гидроксильных групп, радикалы которых соединяются в молекулу простого эфира. При межмолекулярной дегидратации этаналя можно получить диоксан - продукт дегидратации по четырем гидроксильным группам.

При внутримолекулярной дегидратации продуктом является алкен.

Видеоурок 2: Фенол: Химические свойства

Лекция: Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола


Спирты и фенолы

В зависимости от типа углеводородного радикала, а также в некоторых случаях особенностей прикрепления группы -ОН к этому углеводородному радикалу соединения с гидроксильной функциональной группой разделяют на спирты и фенолы.

Существует подразделение органических соединений на спирты и фенолы. За основу данного деления берется тип углеводородного радикала и особенности прикрепления к нему -ОН-групп.

Спирты (алканолы) - производные предельных и непредельных углеводородов, в которых ОН-группа соединена с углеводородным радикалом без непосредственного присоединения к ароматическому кольцу.

Фенолы - органические вещества, имеющие в структуре ОН-группы, непосредственно присоединенные к ароматическому кольцу.

Названные особенности положения ОН-групп, существенно влияют на различие свойств спиртов и фенолов. В соединениях фенола связь О-Н более полярна в сравнении со спиртами. Это повышает подвижность атома водорода в ОН-группе. У фенолов значительно ярче, чем у спиртов, выражены кислотные свойства.

Классификация спиртов

Существует несколько классификаций спиртов. Так, по характеру углеводородного радикала спирты подразделяются на:

  • Предельные , содержащие только предельные углеводородные радикалы. В их молекулах один или несколько атомов водорода замещены ОН-группой, к примеру:

Этандиол-1,2 (этиленгликоль)

  • Непредельные , содержащие между атомами углерода двойные или тройные связи, к примеру:


Пропен-2-ол-1 (аллиловый спирт)

  • Ароматические , содержащие в молекуле бензольное кольцо и ОН-группу, которые связаны друг с другом через атомы углерода, к примеру:

Фенилметанол (бензиловый спирт)

По атомности, т.е. числу ОН-групп , спирты делятся на:

  • Одноатомные , к примеру:

  • Двухатомные (гликоли) , к примеру:

    Трехатомные , к примеру:

    Многоатомные , содержащие более трех ОН-групп, к примеру:



По характеру связи атома углерода и ОН-группы спирты подразделяются на:

  • Первичные , в которых ОН-группа связана с первичным атомом углерода, к примеру:

  • Вторичные , в которых ОН-группа связана со вторичным атомом углерода, к примеру:

    Третичны е , в которых ОН-группа связана с третичным атомом углерода, к примеру:

Кодификатор ЕГЭ по химии требует от вас знания химических свойств предельных одноатомных и многоатомных спиртов, рассмотрим их.
Химические свойства предельных одноатомных спиртов

1. Реакции замещения

    Взаимодействие с щелочными, щелочноземельными металлами , в результате образуются алкоголяты металлов и выделяется водород. К примеру, при взаимодействии этилового спирта и натрия образуется этилат натрия:

2C 2 H 5 OH+ 2Na→ 2C 2 H 5 ONa+ H2

Важно помнить следующее правило для данной реакции: спирты не должны содержать воду, иначе образование алкоголятов станет невозможным, поскольку они легко гидролизуются.

    Реакция этерификации , т.е. взаимодействие спиртов с органическими и кислородсодержащими неорганическими кислотами приводит к образованию сложных эфиров. Данная реакция катализируется сильными неорганическими кислотами. К примеру, взаимодействие этанола с уксусной кислотой образует этилацетат (уксусно-этиловый эфир):

Механизм реакции этерификации выглядит так:


Это обратимая реакция, поэтому для смещения равновесия в сторону образования сложного эфира, реакцию проводят при нагревании, а также в присутствии концентрированной серной кислоты как водоотнимающего вещества.

    Взаимодействие спиртов с галогеноводородами . При действии на спирты галогеноводородных кислот происходит замещение гидроксильной группы на атом галогена. В результате такой реакции образуются галогеналканы и вода. К примеру:

C 2 H 5 OH+ HCl → C 2 H 5 Cl+ H 2 O.

Это обратимая реакция.

2. Реакции элиминирования (отщепления)

    Дегидратация спиртов бывает межмолекулярной и внутримолекулярной.

При межмолекулярной одна молекула воды образуется в результате отщепления атома водорода от одной молекулы спирта и гидроксильной группы - от другой молекулы. В результате образуются простые эфиры (R-O-R). Условиями реакции являются присутствие концентрированной серной кислоты и нагревание 140 0 C:

С 2 Н 5 ОC 2 H 5 → C 2 H 5 -O-C 2 H 5 +H 2 O

Дегидратация этанола с этанолом привела к образованию диэтилового эфира (этоксиэтана) и воды.

СН 3 ОC 2 H 5 → CH 3 -O-C 2 H 5 +H 2 O

Дегидратация метанола с этанолом привела к образованию метилэтилового эфира (метоксиэтана) и воды.

Внутримолекулярная дегидратация спиртов в отличии от межмолекулярной протекает следующим образом: одна молекула воды отщепляется от одной молекулы спирта:

Для проведения данного типа дегидратации требуется сильное нагревание. В результате из одной молекулы спирта образуется одна молекула алкена и одна молекула воды.

Поскольку молекула метанола содержит только один атом углерода, для него невозможна внутримолекулярная дегидратация. При межмолекулярной дегидратации метанола возможно образование только простого эфира (CH 3 -O-CH 3):

2CH 3 OH → CH 3 -O-CH 3 + H 2 O.

Необходимо помнить, что в случае дегидратации несимметричных спиртов внутримолекулярное отщепление воды будет протекать в соответствии с правилом Зайцева, то есть водород будет отщепляться от наименее гидрированного атома углерода.

    Дегидрирование спиртов:

а) Дегидрирование первичных спиртов при нагревании в присутствии металлической меди приводит к образованию альдегидов:

б) В случае вторичных спиртов аналогичные условия приведут к образованию кетонов:

в) Третичные спирты дегидрированию не подвергаются.


3. Реакции окисления

    Горение . Спирты легко вступают в реакцию горения. При этом образуется большое количество тепла:

2СН 3 - ОН + 3O 2 → 2CO 2 + 4H 2 O + Q.

    Окисление спиртов происходит в присутствии катализаторов Cu, Cr и др. при нагревании. Окисление происходит и в присутствии хромовой смеси (H 2 SO 4 + K 2 Cr 2 O 7) или перманганата магния (KMnO 4). Первичные спирты образуют альдегиды, к примеру:

C 2 H 5 OH+ CuO → CH 3 COH + Cu + + H 2 O.

В результате получили уксусный альдегид (этаналь, ацетальдегид), медь, воду. Если образовавшийся альдегид не удалить из реакционной среды, образуются соответствующая кислота.


Вторичные спирты в этих же условиях образуют кетоны:

Для третичных спиртов реакция окисления не характерна.

Химические свойства многоатомных спиртов

Многоатомные спирты являются более сильными кислотами, чем одноатомные.

    Для многоатомных спиртов характерны такие же, как и для одноатомных, реакции с щелочными, щелочноземельными металлами. При этом в молекуле спирта замещается разное число атомов водорода ОН-групп. В результате образуются соли. К примеру:

Поскольку многоатомные спирты обладают кислотными свойствами больше одноатомных, то они охотно реагируют не только с металлами, но и с их гидроксидами тяжелых металлов. Реакция с гидроксидом меди 2 является качественной реакцией на многоатомные спирты. Голубой осадок при взаимодействии с многоатомным спиртом переходит в ярко синий раствор.

  • Реакция этерификации, т.е. взаимодействие с органическими и кислородсодержащими неорганическими кислотами с образованием сложных эфиров:

C 6 H 5 ONa + CH 3 COCl → C 6 H 5 OCOCH 3 + NaCl

Многоатомные спирты – органические соединения, в молекулах которых содержится несколько гидроксильных групп (-ОН), соединённых с углеводородным радикалом

Гликоли (диолы)

  • Сиропообразная, вязкая бесцветная жидкость, имеет спиртовой запах, хорошо смешивается с водой, сильно понижает температуру замерзания воды(60%-ый раствор замерзает при -49 ˚С) –это используется в системах охлаждения двигателей – антифризы.
  • Этиленгликоль токсичен – сильный Яд! Угнетает ЦНС и поражает почки.

Триолы

  • Бесцветная, вязкая сиропообразная жидкость, сладкая на вкус. Не ядовит. Без запаха. Хорошо смешивается с водой.
  • Распространён в живой природе. Играет важную роль в обменных процессах, так как входит в состав жиров (липидов) животных и растительных тканей.

Номенклатура

В названиях многоатомных спиртов (полиолов ) положение и число гидроксильных групп указывают соответствующими цифрами и суффиксами -диол (две ОН-группы), -триол (три ОН-группы) и т.д. Например:

Получение многоатомных спиртов

I . Получение двухатомных спиртов

В промышленности

1. Каталитическая гидратация оксида этилена (получение этиленгликоля):

2. Взаимодействие дигалогенпроизводных алканов с водными растворами щелочей :

3. Из синтез-газа :

2CO + 3H 2 250°,200 МПа ,kat →CH 2 (OH)-CH 2 (OH)

В лаборатории

1. Окисление алкенов :

II . Получение трёхатомных спиртов (глицерина)

В промышленности

Омыление жиров (триглицеридов):

Химические свойства многоатомных спиртов

Кислотные свойства

1. С активными металлами:

HO-CH 2 -CH 2 -OH + 2Na → H 2 + NaO-CH 2 -CH 2 -ONa (гликолят натрия)

2. С гидроксидом меди( II ) – качественная реакция!


Упрощённая схема

Основные свойства

1. С галогенводородными кислотами

HO-CH 2 -CH 2 -OH + 2HCl H+ ↔ Cl-CH 2 -CH 2 -Cl + 2H 2 O

2. С азотной кислотой

Т ринитроглицерин - основа динамита

Применение

  • Этиленгликоль производства лавсана , пластмасс , и для приготовления антифризов - водных растворов, замерзающих значительно ниже 0°С (использование их для охлаждения двигателей позволяет автомобилям работать в зимнее время); сырьё в органическом синтезе.
  • Глицерин широко используется в кожевенной, текстильной промышленности при отделке кож и тканей и в других областях народного хозяйства. Сорбит (шестиатомный спирт) используется как заменитель сахара для больных диабетом. Глицерин находит широкое применение в косметике , пищевой промышленности , фармакологии , производстве взрывчатых веществ . Чистый нитроглицерин взрывается даже при слабом ударе; он служит сырьем для получения бездымных порохов и динамита ― взрывчатого вещества, которое в отличие от нитроглицерина можно безопасно бросать. Динамит был изобретен Нобелем, который основал известную всему миру Нобелевскую премию за выдающиеся научные достижения в области физики, химии, медицины и экономики. Нитроглицерин токсичен, но в малых количествах служит лекарством , так как расширяет сердечные сосуды и тем самым улучшает кровоснабжение сердечной мышцы.