Для чего нужен ядерный реактор. Атомный реактор: принцип работы, характеристики, описание. Как устроены ядерные реакторы, как добывают электричество с помощью них

Построенный под западными трибунами футбольного поля Чикагского университета и включенный 2 декабря 1942 года, Chicago Pile-1 (CP-1) был первым в мире ядерным реактором. Он состоял из графитовых и урановых блоков, а так же имел кадмиевые, индиевые и серебряные регулирующие стержни, но не имел никакой защиты от радиации и системы охлаждения. Научный руководитель проекта, физик Энрико Ферми, описал СР-1 как «сырая куча черных кирпичей и деревянных брёвен».

Работа над реактором была начата 16 ноября 1942 года. Была проделана сложная работа. Физики и сотрудники университета работали круглосуточно. Они построили решётку из 57 слоёв оксида урана и урановых слитков, встроенных в графитовые блоки. Деревянный каркас поддерживал конструкцию. Протеже Ферми, Леона Вудс – единственная женщина на проекте – вела тщательные измерения по мере «роста кучи».


2 декабря 1942 года реактор был готов к тесту. Он содержал 22 000 урановых слитков и на него ушло 380 тонн графита, а так же 40 тонн оксида урана и шесть тонн металлического урана. На создание реактора ушло 2,7 млн долларов. Эксперимент начался в 09-45. На нём присутствовали 49 человек: Ферми, Комптон, Сцилард, Зинн, Хиберри, Вудс, молодой плотник, который изготовил графитовые блоки и кадмиевые стержни, медики, обычные студенты и другие учёные.

Три человека составляли «отряд смертников» — они были частью системы безопасности. Их задача состояла в том, чтобы потушить пожар, если что-то пойдёт не так. Было и управление: регулирующие стержни, которыми управляли вручную и аварийный стержень, который был привязан к перилам балкона над реактором. В случае аварийной ситуации верёвку должен был перерезать специально дежуривший на балконе человек и стержень бы погасил реакцию.

В 15-53, впервые в истории, началась самоподдерживающаяся цепная ядерная реакция. Эксперимент увенчался успехом. Реактор проработал 28 минут.

Чтобы понять принцип работы и устройство ядерного реактора, нужно совершить небольшой экскурс в прошлое. Атомный реактор – это многовековая воплощенная, пусть и не до конца, мечта человечества о неисчерпаемом источнике энергии. Его древний «прародитель» — костер из сухих веток, однажды озаривший и согревший своды пещеры, где находили спасение от холода наши далекие предки. Позже люди освоили углеводороды – уголь, сланцы, нефть и природный газ.

Наступила бурная, но недолгая эпоха пара, которую сменила еще более фантастическая эпоха электричества. Города наполнялись светом, а цеха – гулом невиданных доселе машин, приводимых в движение электродвигателями. Тогда казалось, что прогресс достиг своего апогея.

Все изменилось в конце XIX века, когда французский химик Антуан Анри Беккерель совершенно случайно обнаружил, что соли урана обладают радиоактивностью. Спустя 2 года, его соотечественники Пьер Кюри и его супруга Мария Склодовская-Кюри получили из них радий и полоний, причем уровень их радиоактивности в миллионы раз превосходил показатели тория и урана.

Эстафету подхватил Эрнест Резерфорд, детально изучивший природу радиоактивных лучей. Так начинался век атома, явивший на свет свое любимое дитя – атомный реактор.

Первый ядерный реактор

«Первенец» родом из США. В декабре 1942 года дал первый ток реактор, которому досталось имя его создателя — одного из величайших физиков столетия Э. Ферми. Три года спустя в Канаде обрела жизнь ядерная установка ZEEP. «Бронза» досталась первому советскому реактору Ф-1, запущенному в конце 1946 года. Руководителем отечественного ядерного проекта стал И. В. Курчатов. Сегодня в мире успешно трудятся более 400 ядерных энергоблоков.

Типы ядерных реакторов

Их основное назначение – поддерживать контролируемую ядерную реакцию, производящую электроэнергию. На некоторых реакторах производятся изотопы. Если кратко, то они представляют собой устройства, в недрах которых одни вещества превращаются в другие с выделением большого количества тепловой энергии. Это своеобразная «печь», где вместо традиционных видов топлива «сгорают» изотопы урана – U-235, U-238 и плутоний (Pu).

В отличии, к примеру, от автомобиля, рассчитанного на несколько видов бензина, каждому виду радиоактивного топлива соответствует свой тип реактора. Их два – на медленных (с U-235) и быстрых (c U-238 и Pu) нейтронах. На большинстве АЭС установлены реакторы на медленных нейтронах. Помимо АЭС, установки «трудятся» в исследовательских центрах, на атомных субмаринах и .

Как устроен реактор

У всех реакторов примерна одна схема. Его «сердце» — активная зона. Ее можно условно сравнить с топкой обычной печки. Только вместо дров там находится ядерное топливо в виде тепловыделяющих элементов с замедлителем – ТВЭЛов. Активная зона находится внутри своеобразной капсулы — отражателе нейтронов. ТВЭЛы «омываются» теплоносителем – водой. Поскольку в «сердце» очень высокий уровень радиоактивности, его окружает надежная радиационная защита.

Операторы контролируют работу установки с помощью двух важнейших систем – регулирования цепной реакции и дистанционной системы управления. Если возникает нештатная ситуация, мгновенно срабатывает аварийная защита.

Как работает реактор

Атомное «пламя» невидимо, так как процессы происходят на уровне деления ядер. В ходе цепной реакции тяжелые ядра распадаются на более мелкие фрагменты, которые, будучи в возбужденном состоянии, становятся источниками нейтронов и прочих субатомных частиц. Но на этом процесс не заканчивается. Нейтроны продолжают «дробиться», в результате чего высвобождается большая энергия, то есть, происходит то, ради чего и строятся АЭС.

Основная задача персонала – поддержание цепной реакции с помощью управляющих стержней на постоянном, регулируемом уровне. В этом его главное отличие от атомной бомбы, где процесс ядерного распада неуправляем и протекает стремительно, в виде мощнейшего взрыва.

Что произошло на Чернобыльской АЭС

Одна из основных причин катастрофы на Чернобыльской АЭС в апреле 1986 года – грубейшее нарушение эксплуатационных правил безопасности в процессе проведения регламентных работ на 4-м энергоблоке. Тогда из активной зоны было одновременно выведено 203 графитовых стержня вместо 15, разрешенных регламентом. В итоге, начавшаяся неуправляемая цепная реакция завершилась тепловым взрывом и полным разрушением энергоблока.

Реакторы нового поколения

За последнее десятилетие Россия стала одним из лидеров мировой ядерной энергетики. На данный момент госкорпорация «Росатом» ведет строительство АЭС в 12 странах, где возводятся 34 энергоблока. Столь высокий спрос – свидетельство высокого уровня современной российской ядерной техники. На очереди — реакторы нового 4-го поколения.

«Брест»

Один из них – «Брест», разработка которого ведется в рамках проекта «Прорыв». Ныне действующие системы разомкнутого цикла работают на низкообогащенном уране, после чего остается большое количество отработанного топлива, подлежащего захоронению, что требует огромных затрат. «Брест» — реактор на быстрых нейтронах уникален замкнутым циклом.

В нем отработанное топливо после соответствующей обработки в реакторе на быстрых нейтронах опять становится полноценным топливом, которое можно загружать обратно в ту же установку.

«Брест» отличает высокий уровень безопасности. Он никогда не «рванет» даже при самой серьезной аварии, очень экономичен и экологически безопасен, поскольку повторно пользуется своим «обновленным» ураном. Его также невозможно использовать для наработки оружейного плутония, что открывает широчайшие перспективы по его экспорту.

ВВЭР-1200

ВВЭР-1200 – инновационный реактор поколения «3+» мощностью 1150 МВт. Благодаря своим уникальным техническим возможностям, он обладает практически абсолютной эксплуатационной безопасностью. Реактор в изобилии оснащен системами пассивной безопасности, которые сработают даже в отсутствии электроснабжения в автоматическом режиме.

Одна из них – система пассивного отведения тепла, которая автоматически активируется при полном обесточивании реактора. На этот случай предусмотрены аварийные гидроемкости. При аномальном падении давления в первом контуре в реактор начинается подача большого количества воды, содержащей бор, которая гасит ядерную реакцию и поглощает нейтроны.

Еще одно ноу-хау находится в нижней части защитной оболочки – «ловушка» расплава. Если все же в результате аварии активная зона «потечет», «ловушка» не позволит разрушиться защитной оболочке и предотвратит попадание радиоактивных продуктов в грунт.

Устройство и принцип действия основаны на инициализации и контроле самоподдерживающейся ядерной реакции. Его используют в качестве исследовательского инструмента, для производства радиоактивных изотопов и в качестве источника энергии для атомных электростанций.

принцип работы (кратко)

Здесь используется процесс при котором тяжелое ядро ​​распадается на два более мелких фрагмента. Эти осколки находятся в очень возбужденном состоянии и испускают нейтроны, другие субатомные частицы и фотоны. Нейтроны могут вызвать новые деления, в результате которых их излучается еще больше, и так далее. Такой непрерывный самоподдерживающийся ряд расщеплений называется цепной реакцией. При этом выделяется большое количество энергии, производство которой является целью использования АЭС.

Принцип работы ядерного реактора и таков, что коло 85% энергии расщепления высвобождается в течение очень короткого промежутка времени после начала реакции. Остальная часть вырабатывается в результате радиоактивного распада продуктов деления, после того как они излучили нейтроны. Радиоактивный распад является процессом, при котором атом достигает более стабильного состояния. Он продолжается и после завершения деления.

В атомной бомбе цепная реакция увеличивает свою интенсивность, пока не будет расщеплена большая часть материала. Это происходит очень быстро, производя чрезвычайно мощные взрывы, характерные для таких бомб. Устройство и принцип действия ядерного реактора основаны на поддержании цепной реакции на регулируемом, почти постоянном уровне. Он сконструирован таким образом, что взорваться, как атомная бомба, не может.

Цепная реакция и критичность

Физика ядерного реактора деления состоит в том, что цепная реакция определяется вероятностью расщепления ядра после испускания нейтронов. Если популяция последних уменьшается, то скорость деления в конце концов упадет до нуля. В этом случае реактор будет находиться в докритическом состоянии. Если же популяция нейтронов поддерживается на постоянном уровне, то скорость деления будет оставаться стабильной. Реактор будет находиться в критическом состоянии. И, наконец, если популяция нейтронов со временем растет, скорость деления и мощность будет увеличиваться. Состояние активной зоны станет сверхкритическим.

Принцип действия ядерного реактора следующий. Перед его запуском популяция нейтронов близка к нулю. Затем операторы удаляют управляющие стержни из активной зоны, увеличивая деление ядер, что временно переводит реактор в сверхкритическое состояние. После выхода на номинальную мощность операторы частично возвращают управляющие стержни, регулируя количество нейтронов. В дальнейшем реактор поддерживается в критическом состоянии. Когда его необходимо остановить, операторы вставляют стержни полностью. Это подавляет деление и переводит активную зону в докритическое состояние.

Типы реакторов

Большинство существующих в мире ядерных установок являются энергетическими, генерирующими тепло, необходимое для вращения турбин, которые приводят в движение генераторы электрической энергии. Также есть много исследовательских реакторов, а некоторые страны имеют подводные лодки или надводные корабли, движимые энергией атома.

Энергетические установки

Существует несколько видов реакторов этого типа, но широкое применение нашла конструкция на легкой воде. В свою очередь, в ней может использоваться вода под давлением или кипящая вода. В первом случае жидкость под высоким давлением нагревается теплом активной зоны и поступает в парогенератор. Там тепло от первичного контура передается на вторичный, также содержащий воду. Генерируемый в конечном счете пар служит рабочей жидкостью в цикле паровой турбины.

Реактор кипящего типа работает по принципу прямого энергетического цикла. Вода, проходя через активную зону, доводится до кипения на среднем уровне давления. Насыщенный пар проходит через серию сепараторов и сушилок, расположенных в корпусе реактора, что приводит его в сверхперегретое состояние. Перегретый водяной пар затем используется в качестве рабочей жидкости, вращающей турбину.

Высокотемпературные с газовым охлаждением

Высокотемпературный газоохлаждаемый реактор (ВТГР) - это ядерный реактор, принцип работы которого основан на применении в качестве топлива смеси графита и топливных микросфер. Существуют две конкурирующие конструкции:

  • немецкая «засыпная» система, которая использует сферические топливные элементы диаметром 60 мм, представляющие собой смесь графита и топлива в графитовой оболочке;
  • американский вариант в виде графитовых гексагональных призм, которые сцепляются, создавая активную зону.

В обоих случаях охлаждающая жидкость состоит из гелия под давлением около 100 атмосфер. В немецкой системе гелий проходит через промежутки в слое сферических топливных элементов, а в американской - через отверстия в графитовых призмах, расположенных вдоль оси центральной зоны реактора. Оба варианта могут работать при очень высоких температурах, так как графит имеет чрезвычайно высокую температуру сублимации, а гелий полностью инертен химически. Горячий гелий может быть применен непосредственно в качестве рабочей жидкости в газовой турбине при высокой температуре или его тепло можно использовать для генерации пара водяного цикла.

Жидкометаллический и принцип работы

Реакторам на быстрых нейтронах с натриевым теплоносителем уделялось большое внимание в 1960-1970-х годах. Тогда казалось, что их возможности по воспроизводству в ближайшее время необходимы для производства топлива для быстро развивающейся атомной промышленности. Когда в 1980-е годы стало ясно, что это ожидание нереалистично, энтузиазм угас. Однако в США, России, Франции, Великобритании, Японии и Германии построен ряд реакторов этого типа. Большинство из них работает на диоксиде урана или его смеси с диоксидом плутония. В Соединенных Штатах, однако, наибольший успех был достигнут с металлическими топливом.

CANDU

Канада сосредоточила свои усилия на реакторах, в которых используется природный уран. Это избавляет от необходимости для его обогащения прибегать к услугам других стран. Результатом такой политики стал дейтерий-урановый реактор (CANDU). Контроль и охлаждение в нем производится тяжелой водой. Устройство и принцип работы ядерного реактора состоит в использовании резервуара с холодной D 2 O при атмосферном давлении. Активная зона пронизана трубами из циркониевого сплава с топливом из природного урана, через которые циркулирует охлаждающая его тяжелая вода. Электроэнергия производится за счет передачи теплоты деления в тяжелой воде охлаждающей жидкости, которая циркулирует через парогенератор. Пар во вторичном контуре затем проходит через обычный турбинный цикл.

Исследовательские установки

Для проведения научных исследований чаще всего используется ядерный реактор, принцип работы которого состоит в применении водяного охлаждения и пластинчатых урановых топливных элементов в виде сборок. Способен функционировать в широком диапазоне уровней мощности, от нескольких киловатт до сотен мегаватт. Поскольку производство электроэнергии не является основной задачей исследовательских реакторов, они характеризуются вырабатываемой тепловой энергией, плотностью и номинальной энергией нейтронов активной зоны. Именно эти параметры помогают количественно оценить способность исследовательского реактора проводить конкретные изыскания. Маломощные системы, как правило, функционируют в университетах и ​​используются для обучения, а высокая мощность необходима в научно-исследовательских лабораториях для тестирования материалов и характеристик, а также для общих исследований.

Наиболее распространен исследовательский ядерный реактор, строение и принцип работы которого следующие. Его активная зона расположена в нижней части большого глубокого бассейна с водой. Это упрощает наблюдение и размещение каналов, по которым могут быть направлены пучки нейтронов. При низких уровнях мощности нет необходимости прокачивать охлаждающую жидкость, так как для поддержания безопасного рабочего состояния естественная конвекция теплоносителя обеспечивает достаточный отвод тепла. Теплообменник, как правило, находится на поверхности или в верхней части бассейна, где скапливается горячая вода.

Корабельные установки

Первоначальным и основным применением ядерных реакторов является их использование в подводных лодках. Главным их преимуществом является то, что, в отличие от систем сжигания ископаемого топлива, для выработки электроэнергии им не требуется воздух. Следовательно, атомная субмарина может оставаться в погруженном состоянии в течение длительного времени, а обычная дизель-электрическая подлодка должна периодически подниматься на поверхность, чтобы запускать свои двигатели в воздухе. дает стратегическое преимущество кораблям ВМС. Благодаря ей отпадает необходимость заправляться в иностранных портах или от легко уязвимых танкеров.

Принцип работы ядерного реактора на подводной лодке засекречен. Однако известно, что в США в нем используется высокообогащенный уран, а замедление и охлаждение производится легкой водой. Конструкция первого реактора атомной субмарины USS Nautilus находилась под сильным влиянием мощных исследовательских установок. Его уникальными особенностями является очень большой запас реактивности, обеспечивающей длительный период работы без дозаправки и возможность перезапуска после остановки. Электростанция в подлодках должна быть очень тихой, чтобы избежать обнаружения. Для удовлетворения конкретных потребностей различных классов субмарин были созданы разные модели силовых установок.

На авианосцах ВМС США используется ядерный реактор, принцип работы которого, как полагают, заимствован у крупнейших подлодок. Подробные сведения их конструкции также не были опубликованы.

Кроме США, атомные подводные лодки имеются у Великобритании, Франции, России, Китая и Индии. В каждом случае конструкция не разглашалась, но считается, что все они весьма схожи - это является следствием одинаковых требований к их техническим характеристикам. Россия также обладает небольшим флотом на которых устанавливались такие же реакторы, как и на советских субмаринах.

Промышленные установки

Для целей производства используется ядерный реактор, принцип работы которого состоит в высокой производительности при низком уровне производства энергии. Это обусловлено тем, что длительное пребывание плутония в активной зоне приводит к накоплению нежелательного 240 Pu.

Производство трития

В настоящее время основным материалом, получаемым с помощью таких систем, является тритий (3 H или T) - заряд для Плутоний-239 имеет длительный период полураспада, равный 24100 годам, поэтому страны с арсеналами ядерного оружия, использующими этот элемент, как правило, имеют его больше, чем необходимо. В отличие от 239 Pu, период полураспада трития составляет примерно 12 лет. Таким образом, чтобы поддерживать необходимые запасы, этот радиоактивный изотоп водорода должен производиться непрерывно. В США в Саванна-Ривер (штат Южная Каролина), например, работает несколько реакторов на тяжелой воде, которые производят тритий.

Плавучие энергоблоки

Созданы ядерные реакторы, способные обеспечить электроэнергией и паровым отоплением удаленные изолированные районы. В России, например, нашли применение небольшие энергетические установки, специально предназначенные для обслуживания арктических населенных пунктов. В Китае 10-МВт установка HTR-10 снабжает теплом и электроэнергией исследовательский институт, в котором она находится. Разработки небольших автоматически управляемых реакторов с аналогичными возможностями ведутся в Швеции и Канаде. В период с 1960 по 1972 год армия США использовала компактные водяные реакторы для обеспечения удаленных баз в Гренландии и Антарктике. Они были заменены мазутными электростанциями.

Покорение космоса

Кроме того, были разработаны реакторы для энергоснабжения и передвижения в космическом пространстве. В период с 1967 по 1988 год Советский Союз устанавливал небольшие ядерные установки на спутники серии «Космос» для питания оборудования и телеметрии, но эта политика стала мишенью для критики. По крайней мере один из таких спутников вошел в атмосферу Земли, в результате чего радиоактивному загрязнению подверглись отдаленные районы Канады. Соединенные Штаты запустили только один спутник с ядерным реактором в 1965 году. Однако проекты по их применению в дальних космических полетах, пилотируемых исследованиях других планет или на постоянной лунной базе продолжают разрабатываться. Это обязательно будет газоохлаждаемый или жидкометаллический ядерный реактор, физические принципы работы которого обеспечат максимально высокую температуру, необходимую для минимизации размера радиатора. Кроме того, реактор для космической техники должен быть максимально компактным, чтобы свести к минимуму количество материала, используемого для экранирования, и для уменьшения веса во время старта и космического полета. Запас топлива обеспечит работу реактора на весь период космического полета.

Сегодня мы совершим небольшое путешествие в мир ядерной физики. Темой нашей экскурсии будет ядерный реактор. Вы узнаете, как он устроен, какие физические принципы лежат в основе его работы и где применяют это устройство.

Зарождение атомной энергетики

Первый в мире ядерный реактор был создан в 1942 году в США экспериментальной группой физиков под руководством лауреата нобелевской премии Энрико Ферми. Тогда же ими была осуществлена самоподдерживающаяся реакция расщепления урана. Атомный джин был выпущен на свободу.

Первый советский ядерный реактор был запущен в 1946 году, а спустя 8 лет дала ток первая в мире АЭС в городе Обнинске. Главным научным руководителем работ в атомной энергетике СССР был выдающийся физик Игорь Васильевич Курчатов.

С тех сменилось несколько поколений ядерных реакторов, но основные элементы его конструкции сохранились неизменными.

Анатомия атомного реактора

Эта ядерная установка представляет собой толстостенный стальной бак с цилиндрической ёмкостью от нескольких кубических сантиметров до многих кубометров.

Внутри этого цилиндра размещается святая святых - активная зона реактора. Именно здесь происходит цепная реакция деления ядерного топлива.

Рассмотрим, как происходит этот процесс.

Ядра тяжелых элементов, в частности Уран-235 (U-235), под действием небольшого энергетического толчка способны разваливаться на 2 осколка приблизительно равной массы. Возбудителем этого процесса является нейтрон.

Осколки чаще всего представляют собой ядра бария и криптона. Каждый из них несет положительный заряд, поэтому силы кулоновского отталкивания вынуждают их разлетаться в разные стороны со скоростью около 1/30 световой скорости. Эти осколки являются носителями колоссальной кинетической энергии.

Для практического использования энергии, необходимо, чтобы её выделение носило самоподдерживающийся характер. Цепная реакция, о которой идёт речь, тем интересна, что каждый акт деления сопровождается испусканием новых нейтронов. На один начальный нейтрон в среднем возникает 2-3 новых нейтрона. Количество делящихся ядер урана лавинообразно нарастает, вызывая выделение огромной энергии. Если этот процесс не контролировать - произойдет ядерный взрыв. Он имеет место в .

Чтобы регулировать число нейтронов в систему вводятся материалы, которые поглощают нейтроны, обеспечивая плавное выделение энергии. В качестве поглотителей нейтронов используют кадмий или бор.

Как же обуздать и использовать громадную кинетическую энергию осколков? Для этих целей служит теплоноситель, т.е. специальная среда, двигаясь в которой осколки тормозятся и нагревают её до чрезвычайно высоких температур. Такой средой может являться обычная или тяжелая вода, жидкие металлы (натрий), а также некоторый газы. Чтобы не вызвать переход теплоносителя в парообразное состояние, в активной зоне поддерживается высокое давление (до 160 атм). По этой причине стенки реактора изготавливают из десятисантиметровой стали специальных сортов.

Если нейтроны вылетят за пределы ядерного топлива, то цепная реакция может прерваться. Поэтому существует критическая масса делящегося вещества, т.е. его минимальная масса, при которой, будет поддерживаться цепная реакция. Она зависит от различных параметров, в том числе и от наличия отражателя, окружающего активную зону реактора. Он служит для предотвращения утечки нейтронов в окружающую среду. Наиболее распространенным материалом для этого конструктивного элемента является графит.

Процессы, происходящие в реакторе, сопровождаются выделением самого опасного вида радиации – гамма излучения. Чтобы минимизировать эту опасность, в нём предусмотрена противорадиационная защита.

Как работает атомный реактор

В активной зоне реактора размещают ядерное горючее, именуемое ТВЭЛами. Они представляют собой таблетки, сформированные из расщепляемого материала и уложенные в тонкие трубки длиной около 3,5 м и диаметром в 10 мм.

Сотни однотипных топливных сборок размещают в активную зону, они и становятся источниками тепловой энергии, выделяемой в процессе цепной реакции. Теплоноситель, омывающий ТВЭЛы, образует первый контур реактора.

Нагретый до высоких параметров, он перекачивается насосом в парогенератор, где передает свою энергию воде второго контура, превращая её в пар. Полученный пар вращает турбогенератор. Вырабатываемая этим агрегатом электроэнергия передается потребителю. А отработанный пар, охлажденный водой из пруда–охладителя, в виде конденсата, возвращается в парогенератор. Цикл замыкается.

Такая двухконтурная схема работа ядерной установки исключает проникновение радиации, сопровождающей процессы, происходящие в активной зоне, за его пределы.

Итак, в реакторе происходит цепочка превращений энергии: ядерная энергия расщепляемого материала → в кинетическую энергию осколков → тепловую энергию теплоносителя → кинетическую энергию турбины → и в электрическую энергию в генераторе.

Неизбежные потери энергии приводят к тому, что КПД атомных электростанций сравнительно не велик 33-34%.

Кроме выработки электрической энергии на АЭС ядерные реакторы используют для получения различных радиоактивных изотопов, для исследований во многих областях промышленности, для изучения допустимых параметров промышленных реакторов. Всё более широкое распространение получают транспортные реакторы, обеспечивающие энергией двигатели транспортных средств.

Типы ядерных реакторов

Как правило, ядерные реакторы работают на уране U-235. Однако его содержание в природном материале чрезвычайно мало, всего 0,7%. Основную же массу природного урана составляет изотоп U-238. Цепную реакцию в U-235 могут вызвать лишь медленные нейтроны, а изотоп U-238 расщепляется только быстрыми нейтронами. В результате же расщепления ядра рождаются как медленные, так и быстрые нейтроны. Быстрые нейтроны, испытывая торможение в теплоносителе (воде), становятся медленным. Но количество изотопа U-235 в природном уране столь мало, что приходится прибегать к его обогащению, доводя его концентрацию до 3-5%. Процесс этот весьма дорогой и экономически невыгоден. Кроме того время исчерпания природных ресурсов этого изотопа оценивается лишь 100-120 годами.

Поэтому в атомной промышленности происходит постепенный переход на реакторы, работающие на быстрых нейтронах.

Основное их отличие - в качестве теплоносителя используют жидкие металлы, которые не замедляют нейтроны, а в роли ядерного горючего используют U-238. Ядра этого изотопа через цепочку ядерных превращений переходят в Плутоний-239, который подвержен цепной реакции так же как и U-235. Т.е имеет место воспроизведение ядерного горючего, причём в количестве, превышающем его расход.

По оценке специалистов запасов изотопа Урана-238 должно хватить на 3000 лет. Этого времени вполне достаточно, чтобы у человечества хватило времени для разработки иных технологий.

Проблемы использования ядерной энергетики

Наряду с очевидными преимуществами ядерной энергетики, нельзя недооценивать масштаб проблем, связанных с эксплуатацией ядерных объектов.

Первая из них - это утилизация радиоактивных отходов и демонтированного оборудования атомной энергетики. Эти элементы обладают активным радиационным фоном, который сохраняется на протяжении длительного периода. Для утилизации этих отходов используют специальные свинцовые контейнеры. Их предполагается хоронить в районах вечной мерзлоты на глубине до 600 метров. Поэтому постоянно ведутся работы по поиску способа переработки радиоактивных отходов, что должно решить проблему утилизации и способствовать сохранению экологии нашей планеты.

Второй не менее тяжелой проблемой является обеспечение безопасности в процессе эксплуатации АЭС. Крупные аварии, подобные Чернобыльской, способны унести множество человеческих жизней и вывести из использования огромные территории.

Авария на японской АЭС «Фукусима-1» лишь подтвердила потенциальную опасность, которая проявляется при возникновении внештатной ситуации на ядерных объектах.

Однако возможности ядерной энергетики столь велики, что экологические проблемы уходят на второй план.

На сегодняшний день у человечества нет иного пути утоления всё нарастающего энергетического голода. Основой ядерной энергетики будущего, вероятно, станут «быстрые» реакторы с функцией воспроизводства ядерного топлива.

Если это сообщение тебе пригодилось, буда рада видеть тебя

В средине двадцатого века внимание человечества было сосредоточено вокруг атома и объяснения учеными ядерной реакции, которую первоначально решили использовать в военных целях, изобретая согласно Манхэттенскому проекту первые ядерные бомбы. Но в 50-х годах XX века ядерный реактор в СССР применили в мирных целях. Общеизвестно, что 27 июня 1954 года на службу человечества поступила первая в мире атомная электростанция мощностью 5000 кВт. Сегодня ядерный реактор позволяет вырабатывать электроэнергию в 4000 МВт и более, то есть в 800 раз больше, чем было полвека назад.

Что такое ядерный реактор: основное определение и главные комплектующие элементы агрегата

Ядерный реактор – это специальный агрегат, при помощи которого вырабатывается энергия как следствие правильного поддержания контролируемой ядерной реакции. Использовать слово «атомный» в сочетании со словом «реактор» - допускается. Многие вообще считают понятия «ядерный» и «атомный» - синонимами, так как не находят между ними принципиальной разницы. Но представители науки склоняются к более верному сочетанию – «ядерный реактор».

Интересный факт! Ядерные реакции могут протекать с выделением или поглощением энергии.

Основными комплектующими в устройстве ядерного реактора считаются следующие элементы:

  • Замедлитель;
  • Регулирующие стержни;
  • Стержни, содержание обогащенную смесь изотопов урана;
  • Специальные защитные элементы от радиации;
  • Теплоноситель;
  • Парогенератор;
  • Турбина;
  • Генератор;
  • Конденсатор;
  • Ядерное горючее.

Какие основополагающие принципы работы ядерного реактора определяются учеными-физиками и почему они незыблемы

Основополагающий принцип работы ядерного реактора базируется на особенностях проявления ядерной реакции. В момент стандартного физического цепного ядерного процесса протекает взаимодействие частицы с атомным ядром, как следствие, ядро превращается в новое с выделением вторичных частиц, которые ученые называют гамма-квантами. Во время ядерной цепной реакции высвобождается огромное количество тепловой энергии. Пространство, в котором протекает цепная реакция, называется активной зоной реактора.

Интересный факт! Активная зона внешне напоминает собой котел, через который протекает обычная вода, выполняющая роль теплоносителя.

Для упреждения потери нейтронов зону актива реактора окружают специальным отражателем нейтронов. Его первостепенная задача – отбрасывать большую часть вылетающих нейтронов внутрь активной зоны. В качестве отражателя используют обычно то же вещество, которое служит замедлителем.

Главное управление ядерным реактором происходит с помощью специальных регулирующих стержней. Известно, что эти стержни вводятся в активную зону реактора и создают все условия для функционирования агрегата. Обычно управляющие стержни изготавливаются из химических соединений бора и кадмия. Почему используются именно эти элементы? Да все потому, что бор или кадмий способны эффективно поглощать тепловые нейтроны. И как только планируется запуск, по принципу действия ядерного реактора, управляющие стержни вводятся в активную зону. Их первостепенная задача – поглощать значительную часть нейтронов, тем самым провоцируя развитие цепной реакции. Результат должен дойти до желаемого уровня. При увеличении мощности свыше установленного уровня включаются автоматы, обязательно погружающие управляющие стержни вглубь активной зоны реактора.

Таким образом, становится понятно, что управляющие или регулирующие стержни играют важную роль в работе теплового ядерного реактора.

А для уменьшения утечки нейтронов активную зону реактора окружают отражателем нейтронов, отбрасывающих значительную массу вылетающих свободно нейтронов внутрь активной зоны. В значении отражателя используют обычно то же самое вещество, что и для замедлителя.

Ядро атомов вещества-замедлителя по стандарту обладает сравнительно небольшой массой, чтобы при столкновении с легким ядром имеющийся с цепи нейтрон терял энергию большую, чем при столкновении с тяжелым. Наиболее распространенные замедлители – обычная вода или графит.

Интересный факт! Нейтроны в процессе ядерной реакции характеризуются чрезвычайно высокой скоростью движения, поэтому и требуется замедлитель, подталкивающий нейтроны терять часть своей энергии.

Ни один реактор в мире не может функционировать нормально без помощи теплоносителя, так как его назначение – выводить энергию, которая вырабатывается в сердце реактора. В качестве теплоносителя используется обязательно жидкость или газы, так как они не способны поглощать нейтроны. Приведем пример теплоносителя для компактного ядерного реактора – вода, углекислый газ, а иногда даже жидкий металлический натрий.

Таким образом, принципы работы ядерного реактора всецело базируются на законах цепной реакции, ее протекании. Все комплектующие реактора - замедлитель, стержни, теплоноситель, ядерное горючее – выполняют поставленные задачи, обуславливая нормальную работоспособность реактора.

Какое топливо используют для ядерных реакторов и почему именно эти химические элементы избираются

Основным топливом в реакторах могут служить изотопы урана, также плутония или тория.

Еще в 1934 году Ф.Жолио-Кюри, пронаблюдав за процессом деления ядра урана, заметил, что в результате химической реакции ядро урана делится на осколки-ядра и два-три свободных нейтрона. А это значит, что появляется вероятность, что свободные нейтрону примкнут к другим ядрам урана и спровоцируют очередное деление. А так, как предсказывает цепная реакция: из трех ядер урана освободится уже шесть-девять нейтронов, и они снова примкнут к вновь образовавшимся ядрам. И так до бесконечности.

Важно помнить! Нейтроны, появляющиеся при делении ядер, способны провоцировать деление ядер изотопа урана с массовым числом 235, а для уничтожения ядер изотопа урана с массовым числом 238 может оказаться мало возникающей в процессе распада энергии.

Уран с числом 235 редко встречается в природе. На его долю приходится только 0,7%, а вот природный уран-238 занимает более просторную нишу и составляет 99,3 %.

Невзирая на такую малую долю урана-235 в природе, все равно физики и химики от него не могут отказаться, потому что он наиболее эффективен для функционирования ядерного реактора, удешевляя процесс получения энергии для человечества.

Когда появились первые ядерные реакторы и где их принято применять сегодня

Еще в 1919 году физики уже триумфовали, когда Резерфордом была обнаружен и описан процесс образования движущихся протонов как результат столкновения альфа-частиц с ядрами атомов азота. Это открытие означало, что ядро изотопа азота в результате столкновения с альфа-частицей превращалось в ядро изотопа кислорода.

Прежде чем появились первые ядерные реакторы, мир узнал несколько новых законов физики, трактующих все важные аспекты ядерной реакции. Так, в 1934 году Ф.Жолио-Кюри, Х.Халбан, Л. Коварски впервые предложили обществу и кругу мировых ученых теоретическое предположение и доказательную базу о возможности осуществления ядерных реакций. Все эксперименты были связаны с наблюдением за делением ядра урана.

В 1939 году Э.Ферми, И.Жолио-Кюри, О. Ган, О. Фриш отследили реакцию деления ядер урана при бомбардировке их нейтронами. В ходе исследований ученые установили, что при попадании в ядро урана одного ускоренного нейтрона имеющееся ядро делится на две-три части.

Цепная реакция была практически доказана в средине XX века. Ученым удалось в 1939 году доказать, что при делении одного уранового ядра высвобождается где-то 200 МэВ энергии. А вот на кинетическую энергию ядер-осколков отводится приблизительно 165 МэВ, а остаток уносит с собой гамма-кванты. Данное открытие совершило прорыв в квантовой физике.

Э.Ферми работы и исследования продолжает еще несколько лет и запускает первый ядерный реактор в 1942 году в США. Воплощенный проект получил название – «Чикагская поленница» и был поставлен на венные рельсы. 5 сентября 1945 года Канада запустила свой ядерный реактор ZEEP. Европейский континент не отставал, и в это же время возводилась установка Ф-1. А для россиян есть и другая памятная дата – 25 декабря 1946 года в Москве под руководством И.Курчатова запускается реактор. Это были не самые мощные ядерные реакторы, но это было началом освоения человеком атома.

В мирных целях научный ядерный реактор создали в 1954 году в СССР. Первый в мире мирный корабль с ядерной силовой установкой – атомный ледокол «Ленин» - был построен в Советском Союзе в 1959 году. И еще одно достижение нашего государства – атомный ледокол «Арктика». Данный надводный корабль впервые в мире достиг Северного полюса. Это случилось в 1975 году.

Первые портативные ядерные реакторы работали на медленных нейтронах.

Где используют ядерные реакторы и какие виды использует человечество

  • Промышленные реакторы. Их используют для выработки энергии на АЭС.
  • Атомные реакторы, выступающие как движетель атомных подводных лодок.
  • Экспериментальные (портативные, малые) реакторы. Без них не проходит ни один современный научный опыт или исследование.

Сегодня научный свет научился при помощи специальных реакторов опреснять морскую воду, обеспечивать население качественной питьевой водой. Действующих ядерных реакторов в России очень много. Так, по статистике по состоянию на 2018 год работает в государстве около 37 блоков.

А по классификации они могут быть следующими:

  • Исследовательские (исторические). К ним относят станцию Ф-1, которая создавалась как опытная площадка по получению плутония. На Ф-1 работал Курчатов И.В., руководил первым физическим реактором.
  • Исследовательские (действующие).
  • Оружейные. Как образец реактора – А-1, который вошел в историю, как первый реактор с охлаждением. Прошлая мощность ядерного реактора небольшая, но функциональная.
  • Энергетические.
  • Судовые. Известно, что на кораблях и подводных лодках по необходимости и технической целесообразности используют водо-водяные или жидкометаллические реакторы.
  • Космические. Как пример, назовем установку «Енисей» на космических кораблях, которая вступает в действие, если необходимо добыть дополнительное количество энергии, и получать ее придется при помощи солнечных батарей и изотопных источников.

Таким образом, тема о ядерных реакторах достаточно расширенная, поэтому требует глубокого изучения и понимания законов квантовой физики. Но значение ядерных реакторов для энергетики и экономики государства уже, бесспорно, овеяно аурой полезности и выгоды.