Легочные объемы и емкости. Объём лёгких человека - измерение лёгочных объёмов Легочные объемы таблица

text_fields

text_fields

arrow_upward

Общим для всех живых клеток является процесс расщепления органических молекул последовательным рядом ферментативных реакций, в результате чего высвобождается энергия. Практичес­ки любой процесс, при котором окисление органических ве­ществ ведет к. выделению химической энергии, называют дыха­нием. Если для него требуется кислород, то дыхание называют аэробным , а если же реакции идут в отсутствии кислорода - анаэробным дыханием . Для всех тканей позвоночных животных и человека основным источником энергии являются процессы аэробного окисления, которые протекают в митохондриях кле­ток, приспособленных для превращения энергии окисления в энергию резервных макроэргических соединений типа АТФ. Последовательность реакций, посредством которых клетки орга­низма человека используют энергию связей органических моле­кул, называется внутренним, тканевым или клеточным дыханием.

Под дыханием высших животных и человека понимают сово­купность процессов, обеспечивающих поступление во внутрен­нюю среду организма кислорода, использование его для окис­ления органических веществ и удаление из организма углекислого газа.

Функцию дыхания у человека реализуют:

1) внешнее, или легоч­ное, дыхание, осуществляющее газообмен между наружной и внут­ренней средой организма (между воздухом и кровью);
2) кровооб­ращение, обеспечивающее транспорт газов к тканям и от них;
3) кровь как специфическая газотранспортная среда;
4) внутреннее, или тканевое, дыхание, осуществляющее непосредственный процесс клеточного окисления;
5) средства нейрогуморальной регуляции дыхания.

Результатом деятельности системы внешнего дыхания является обогащение крови кислородом и освобождение от избытка углекис­лоты.

Изменение газового состава крови в легких обеспечивают три процесса :

1) непрерывная вентиляция альвеол для поддержания нормального газового состава альвеолярного воздуха;
2) диффузия газов через альвеолярно- капиллярную мембрану в объеме, достаточ­ном для достижения равновесия давления кислорода и углекислого газа в альвеолярном воздухе и крови;
3) непрерывный кровоток в капиллярах легких в соответствии с объемом их вентиляции

Емкость легких

text_fields

text_fields

arrow_upward

Общая емкость . Количество воздуха, находящееся в легких после максимального вдоха, составляет общую емкость легких, величина которой у взрос­лого человека составляет 4100-6000 мл (рис.8.1).
Она состоит из жизненной емкости легких, представляющей собой то количество воздуха (3000-4800 мл), которое выходит из легких при максимально глубоком выдохе после максимально глубокого вдоха, и
остаточного воздуха (1100-1200 мл), который еще остается в легких после мак­симального выдоха.

Общая емкость = Жизненная емкость + Остаточный объем

Жизненная емкость составляет три легочных объема:

1) дыхательный объем , представляющий собой объем (400- 500 мл) воздуха, вдыхае­мый и выдыхаемый при каждом дыхательном цикле;
2) резервный объем вдоха (дополнительный воздух), т.е. тот объем (1900-3300 мл) воз­духа, который можно вдохнуть при максимальном вдохе после обыч­ного вдоха;
3) резервный объем выдоха (резервный воздух), т.е. объем (700- 1000 мл), который можно выдохнуть при максимальном выдохе после обычного выдоха.

Жизненная емкость = Резервный объем вдоха + Дыхательный объем + Резервный объем выдоха

функциональная остаточная емкость . При спокойном дыхании после выдоха в легких остается резервный объем выдоха и остаточный объем. Сум­му этих объемов называют функциональной остаточной емкостью, а также нормальной емкостью легких, емкостью покоя, емкостью рав­новесия, буферным воздухом.

функциональная остаточная емкость = Резервный объем выдоха + Остаточный объем

Рис.8.1. Легочные объемы и емкости.

Весь сложный процесс можно подразделить на три основных этапа: внешнее дыхание; и внутреннее (тканевое) дыхание.

Внешнее дыхание — газообмен между организмом и окружающим его атмосферным воздухом. Внешнее дыхание включает обмен газов между атмосферным и альвеолярным воздухом, а также легочных капилляров и альвеолярным воздухом.

Это дыхание осуществляется в результате периодических изменений объема грудной полости. Увеличение ее объема обеспечивает вдох (инспирацию), уменьшение — выдох (экспирацию). Фазы вдоха и следующего за ним выдоха составляют . Во время вдоха атмосферный воздух через воздухоносные пути поступает в легкие, при выдохе часть воздуха покидает их.

Условия, необходимые для внешнего дыхания:

  • герметичность грудной клетки;
  • свободное сообщение легких с окружающей внешней средой;
  • эластичность легочной ткани.

Взрослый человек делает 15-20 дыханий в минуту. Дыхание физически тренированных людей более редкое (до 8-12 дыханий в минуту) и глубокое.

Наиболее распространенные методы исследования внешнего дыхания

Методы оценки дыхательной функции легких:

  • Пневмография
  • Спирометрия
  • Спирография
  • Пневмотахометрия
  • Рентгенография
  • Рентгеновская компьютерная томография
  • Ультразвуковое исследование
  • Магнитно-резонансная томография
  • Бронхография
  • Бронхоскопия
  • Радионуклидные методы
  • Метод разведения газов

Спирометрия — метод измерения объемов выдыхаемого воздуха с помощью прибора спирометра. Используются спирометры разного типа с турбиметрическим датчиком, а также водные, в которых выдыхаемый воздух собирается под колокол спирометра, помещенный в воду. По подъему колокола определяется объем выдыхаемого воздуха. В последнее время широко применяются датчики, чувствительные к изменению объемной скорости воздушного потока, подсоединенные к компьютерной системе. В частности, на этом принципе работает компьютерная система типа «Спирометр МАС-1» белорусского производства и др. Такие системы позволяют проводить не только спирометрию, но и спирографию, а также пневмотахографию).

Спирография - метод непрерывной регистрации объемов вдыхаемого и выдыхаемого воздуха. Получаемую при этом графическую кривую называют спирофаммой. По спирограмме можно определить жизненную емкость легких и дыхательные объемы, частоту дыхания и произвольную максимальную вентиляцию легких.

Пневмотахография - метод непрерывной регистрации объемной скорости потоков вдыхаемого и выдыхаемого воздуха.

Имеется много других методов исследования респираторной системы. Среди них плетизмография грудной клетки, прослушивание звуков, возникающих при прохождении воздуха через дыхательные пути и легкие, рентгеноскопия и рентгенография, определение содержания кислорода и углекислого газа в потоке выдыхаемого воздуха и др. Некоторые из этих методов рассматриваются ниже.

Объемные показатели внешнего дыхания

Соотношение величин легочных объемов и емкостей представлено на рис. 1.

При исследовании внешнего дыхания используются следующие показатели и их аббревиатура.

Общая емкость легких (ОЕЛ) — объем воздуха, находящийся в легких после максимально глубокого вдоха (4-9 л).

Рис. 1. Средние величины объемов и емкостей легких

Жизненная емкость легких

Жизненная емкость легких (ЖЕЛ) — объем воздуха, который может выдохнуть человек при максимально глубоком медленном выдохе, сделанном после максимального вдоха.

Величина жизненной емкости легких человека составляет 3-6 л. В последнее время в связи с внедрением пневмотахографической техники все чаще определяют так называемую форсированную жизненную емкость легких (ФЖЕЛ). При определении ФЖЕЛ испытуемый должен после максимально глубокого вдоха сделать максимально глубокий форсированный выдох. При этом выдох должен производиться с усилием, направленным на достижение максимальной объемной скорости выдыхаемого воздушного потока на протяжении всего выдоха. Компьютерный анализ такого форсированного выдоха позволяет рассчитать десятки показателей внешнего дыхания.

Индивидуальную нормальную величину ЖЕЛ называют должной жизненной емкостью легких (ДЖЕЛ). Ее рассчитывают в литрах по формулам и таблицам на основе учета роста, массы тела, возраста и пола. Для женщин 18-25-летнего возраста расчет можно вести по формуле

ДЖЕЛ = 3,8*Р + 0,029*В — 3,190; для мужчин того же возраста

Остаточный объем

ДЖЕЛ = 5,8*Р + 0,085*В — 6,908, где Р — рост; В — возраст (годы).

Величина измеренной ЖЕЛ считается пониженной, если это снижение составляет более 20% от уровня ДЖЕЛ.

Если для показателя внешнего дыхания применяют название «емкость», то это значит, что в состав такой емкости входят более мелкие подразделения, называемые объемами. Например, ОЕЛ состоит из четырех объемов, ЖЕЛ — из трех объемов.

Дыхательный объем (ДО) — это объем воздуха, поступающий в легкие и удаляемый из них за один дыхательный цикл. Этот показатель называют также глубиной дыхания. В состоянии покоя у взрослого человека ДО составляет 300-800 мл (15-20% от величины ЖЕЛ); месячного ребенка — 30 мл; годовалого — 70 мл; десятилетнего — 230 мл. Если глубина дыхания больше нормы, то такое дыхание называют гиперпноэ — избыточное, глубокое дыхание, если же ДО меньше нормы, то дыхание назвают олигопноэ — недостаточное, поверхностное дыхание. При нормальной глубине и частоте дыхания его называют эупноэ — нормальное, достаточное дыхание. Нормальная частота дыхания в покое у взрослых составляет 8-20 дыхательных циклов в минуту; месячного ребенка — около 50; годовалого — 35; десятилетнего — 20 циклов в минуту.

Резервный объем вдоха (РО вд) — объем воздуха, который человек может вдохнуть при максимально глубоком вдохе, сделанном после спокойного вдоха. Величина РО вд в норме составляет 50-60% от величины ЖЕЛ (2-3 л).

Резервный объем выдоха (РО выд) — объем воздуха, который человек может выдохнуть при максимально глубоком выдохе, сделанном после спокойного выдоха. В норме величина РО выд составляет 20-35% от ЖЕЛ (1-1,5 л).

Остаточный объем легких (ООЛ) — воздух, остающийся в дыхательных путях и легких после максимального глубокого выдоха. Его величина составляет 1-1,5 л (20-30% от ОЕЛ). В пожилом возрасте величина ООЛ нарастает из-за уменьшения эластической тяги легких, проходимости бронхов, снижения силы дыхательных мышц и подвижности грудной клетки. В возрасте 60 лет он уже составляет около 45% от ОЕЛ.

Функциональная остаточная емкость (ФОЕ) — воздух, остающийся в легких после спокойного выдоха. Эта емкость состоит из остаточного объема легких (ООЛ) и резервного объема выдоха (РО выд).

Не весь атмосферный воздух, поступающий в дыхательную систему при вдохе, принимает участие в газообмене, а лишь тот, который доходит до альвеол, имеющих достаточный уровень кровотока в окружающих их капиллярах. В связи с этим выделяют гак называемое мертвое пространство.

Анатомическое мертвое пространство (АМП) — это объем воздуха, находящийся в дыхательных путях до уровня респираторных бронхиол (на этих бронхиолах уже имеются альвеолы и возможен газообмен). Величина АМП составляет 140-260 мл и зависит от особенностей конституции человека (при решении задач, в которых необходимо учитывать АМП, а величина его не указана, объем АМП принимают равным 150 мл).

Физиологическое мертвое пространство (ФМП) — объем воздуха, поступающий в дыхательные пути и легкие и не принимающий участия в газообмене. ФМП больше анатомического мертвого пространства, так как включает его как составную часть. Кроме воздуха, находящегося в дыхательных путях, в состав ФМП входит воздух, поступающий в легочные альвеолы, но не обменивающийся газами с кровью из-за отсутствия или снижения кровотока в этих альвеолах (для этого воздуха иногда применяется название альвеолярное мертвое пространство). В норме величина функционального мертвого пространства составляет 20-35% от величины дыхательного объема. Возрастание этой величины свыше 35% может свидетельствовать о наличии некоторых заболеваний.

Таблица 1. Показатели легочной вентиляции

В медицинской практике важно учитывать фактор мертвого пространства при конструировании приборов для дыхания (высотные полеты, подводное плавание, противогазы), проведении ряда диагностических и реанимационных мероприятий. При дыхании через трубки, маски, шланги к дыхательной системе человека подсоединяется дополнительное мертвое пространство и, несмотря на возрастание глубины дыхания, вентиляция альвеол атмосферным воздухом может стать недостаточной.

Минутный объем дыхания

Минутный объем дыхания (МОД) — объем воздуха вентилируемый через легкие и дыхательные пути за 1 мин. Для определения МОД достаточно знать глубину, или дыхательный объем (ДО), и частоту дыхания (ЧД):

МОД = ДО * ЧД.

В покос МОД составляет 4-6 л/мин. Этот показатель часто называют также вентиляцией легких (отличать от альвеолярной вентиляции).

Альвеолярная вентиляция

Альвеолярная вентиляция легких (АВЛ) — объем атмосферного воздуха, проходящий через легочные альвеолы за 1 мин. Для расчета альвеолярной вентиляции надо знать величину АМП. Если она не определена экспериментально, то для расчета объем АМП берут равным 150 мл. Для расчета альвеолярной вентиляции можно пользоваться формулой

АВЛ = (ДО — АМП) . ЧД.

Например, если глубина дыхания у человека 650 мл, а частота дыхания 12, то АВЛ равно 6000 мл (650-150) . 12.

АВ = (ДО — ОМП) * ЧД = ДО альв * ЧД

  • АВ — альвеолярная вентиляция;
  • ДО альв — дыхательный объем альвеолярной вентиляции;
  • ЧД — частота дыхания

Максимальная вентиляция легких (МВЛ) — максимальный объем воздуха, который может быть провентилирован через легкие человека за 1 мин. МВЛ может быть определена при произвольной гипервентиляции в покое (дышать максимально глубоко и часто в покос допустимо не более 15 с). С помощью специальной техники МВЛ может быть определена во время выполнения человеком интенсивной физической работы. В зависимости от конституции и возраста человека норма МВЛ находится в границах 40-170 л/мин. У спортсменов МВЛ может достигать 200 л/мин.

Потоковые показатели внешнего дыхания

Кроме легочных объемов и емкостей для оценки состояния дыхательной системы используют так называемые потоковые показатели внешнего дыхания. Простейшим методом определения одного из них — пиковой объемной скорости выдоха — является пикфлоуметрия. Пикфлоуметры — простые и вполне доступные приборы для пользования в домашних условиях.

Пиковая объемная скорость выдоха (ПОС) — максимальная объемная скорость потока выдыхаемого воздуха, достигнутая в процессе форсированного выдоха.

С помощью прибора пневмотахометра можно определить не только пиковую объемную скорость выдоха, но и вдоха.

В условиях медицинского стационара все большее распространение получают приборы пневмотахографы с компьютерной обработкой получаемой информации. Приборы подобного типа позволяют на основе непрерывной регистрации объемной скорости воздушного потока, создаваемого в ходе выдоха форсированной жизненной емкости легких, рассчитать десятки показателей внешнего дыхания. Чаще всего определяются ПОС и максимальные (мгновенные) объемные скорости воздушного потока в момент выдоха 25, 50, 75% ФЖЕЛ. Их называют соответственно показателями МОС 25 , МОС 50 , МОС 75 . Популярно также определение ФЖЕЛ 1 — объема форсированного выдоха за время, равное 1 e. На основе этого показателя рассчитывается индекс (показатель) Тиффно — выраженное в процентах отношение ФЖЕЛ 1 к ФЖЕЛ. Регистрируется также кривая, отражающая изменение объемной скорости воздушного потока в процессе форсированного выдоха (рис. 2.4). При этом на вертикальной оси отображается объемная скорость (л/с), на горизонтальной — процент выдохнутой ФЖЕЛ.

На приведенном графике (рис. 2, верхняя кривая) вершина указывает величину ПОС, проекция момента выдоха 25% ФЖЕЛ на кривую характеризует МОС 25 , проекция 50% и 75% ФЖЕЛ соответствует величинам МОС 50 и МОС 75 . Диагностическую значимость имеют не только скорости потока в отдельных точках, но и весь ход кривой. Ее часть, соответствующая 0-25% выдыхаемой ФЖЕЛ, отражает проходимость для воздуха крупных бронхов, трахеи и , участок от 50 до 85% ФЖЕЛ — проходимость мелких бронхов и бронхиол. Прогиб на нисходящем участке нижней кривой в области выдоха 75-85% ФЖЕЛ указывает на снижение проходимости мелких бронхов и бронхиол.

Рис. 2. Потоковые показатели дыхания. Кривые ноток — объем здорового человека (верхняя), больного с обструктивнымн нарушениями проходимости мелких бронхов (нижняя)

Определение перечисленных объемных и потоковых показателей применяются в диагностике состояния системы внешнего дыхания. Для характеристики функции внешнего дыхания в клинике используются четыре варианта заключений: норма, обструктивные нарушения, рестриктивные нарушения, смешанные нарушения (сочетание обструктивных и рестриктивных нарушений).

Для большинства потоковых и объемных показателей внешнего дыхания выходящими за пределы нормы считаются отклонения их величины от должного (расчетного) значения более чем на 20%.

Обструктивные нарушения — это нарушения проходимости дыхательных путей, ведущие к увеличению их аэродинамического сопротивления. Такие нарушения могут развиваться в результате повышения тонуса гладких мышц нижних дыхательных путей, при гипертрофии или отеке слизистых оболочек (например, при острых респираторных вирусных инфекциях), скоплении слизи, гнойного отделяемого, при наличии опухоли или инородного тела, нарушении регуляции проходимости верхних дыхательных путей и других случаях.

О наличии обструктивных изменений дыхательных путей судят по снижению ПОС, ФЖЕЛ 1 , МОС 25 , МОС 50 , МОС 75 , МОС 25-75 , МОС 75-85 , величины индекса теста Тиффно и МВЛ. Показатель теста Тиффно в норме составляет 70-85%, снижение его до 60% расценивается как признак умеренного нарушения, а до 40% — резко выраженного нарушения проходимости бронхов. Кроме того, при обструктивных нарушениях увеличиваются такие показатели, как остаточный объем, функциональная остаточная емкость и общая емкость легких.

Рестриктивные нарушения — это уменьшение расправления легких при вдохе, снижение дыхательных экскурсий легких. Эти нарушения могут развиться из-за снижения растяжимости легких, при повреждениях грудной клетки, наличии спаек, скопления в плевральной полости жидкости, гнойного содержимого, крови, слабости дыхательных мышц, нарушении передачи возбуждения в нервно-мышечных синапсах и других причин.

Наличие рестриктивных изменений легких определяют по снижению ЖЕЛ (не менее 20% от должной величины) и уменьшению МВЛ (неспецифический показатель), а также снижению растяжимости легких и в ряде случаев по возрастанию показателя теста Тиффно (более 85%). При рестриктивных нарушениях уменьшаются общая емкость легких, функциональная остаточная емкость и остаточный объем.

Заключение о смешанных (обструктивных и рестриктивных) нарушениях системы внешнего дыхания делается при одновременном наличии изменений вышеперечисленных потоковых и объемных показателей.

Легочные объемы и емкости

Дыхательный объем - это объем воздуха, который вдыхает и выдыхает человек в спокойном состоянии; у взрослого человека он равен 500 мл.

Резервный объем вдоха — это максимальный объем воздуха, который может вдохнуть человек после спокойного вдоха; величина его равна 1,5-1,8 л.

Резервный объем выдоха - это максимальный объем воздуха, который может выдохнуть человек после спокойного выдоха; этот объем составляет 1-1,5 л.

Остаточный объем - это объем воздуха, который остается в легких после максимального выдоха; величина остаточного объема 1 -1,5 л.

Рис. 3. Изменение дыхательного объема, плеврального и альвеолярного давления при вентиляции легкого

Жизненная емкость легких (ЖЕЛ) — это максимальный объем воздуха, который может выдохнуть человек после самого глубокого вдоха. ЖЕЛ включает в себя резервный объем вдоха, дыхательный объем и резервный объем выдоха. Жизненная емкость легких определяется спирометром, а метод ее определения называют спирометрией. ЖЕЛ у мужчин 4-5,5 л, а у женщин — 3-4,5 л. Она больше в положении стоя, чем в положении сидя или лежа. Физическая тренировка приводит к увеличению ЖЕЛ (рис. 4).

Рис. 4. Спирограмма легочных объемов и емкостей

Функциональная остаточная емкость (ФОЕ) — объем воздуха в легких после спокойного выдоха. ФОЕ является суммой резервного объема выдоха и остаточного объема и равна 2,5 л.

Общая емкость легких (ОЕЛ) — объем воздуха в легких по окончании полного вдоха. ОЕЛ включает в себя остаточный объем и жизненную емкость легких.

Мертвое пространство образует воздух, который находится в воздухоносных путях и не участвует в газообмене. При вдохе последние порции атмосферного воздуха входят в мертвое пространство и, не изменив своего состава, покидают его при выдохе. Объем мертвого пространства около 150 мл, или примерно 1/3, дыхательного объема при спокойном дыхании. Значит, из 500 мл вдыхаемого воздуха в альвеолы поступает лишь 350 мл. В альвеолах к концу спокойного выдоха находится около 2500 мл воздуха (ФОЕ), поэтому при каждом спокойном вдохе обновляется лишь 1/7 часть альвеолярного воздуха.

Объемы дыхания определяются спирометрически и должны причисляться к наиболее показательным вентиляционным величинам.

Минутный объем дыхания

Под этим понимают количество воздуха, вентилируемое при спокойном дыхании за минуту.

Методика определения. Испытуемому, соединенному со спирографом, дают сначала возможность несколько минут привыкать к не совсем обычному для него дыханию. После того как имеющаяся вначале в большинстве случаев гипервентиляция уступит место спокойному дыханию, определяют минутный объем дыхания, умножая объем дыхания при вдохе на число дыханий в минуту. При неспокойном дыхании измеряют объемы, вентилируемые за каждое дыхание на протяжении минуты и результаты складывают.

Нормальные величины. Должный минутный объем дыхания получают, умножая должный основный обмен (должное число калорий за 24 часа в сопоставлении с общей поверхностью тела) на 4,73.

Полученные величины будут в пределах 6-9 л. На них влияют высота метаболизма (интенсивность) (например, тиреотоксикоз) и величина вентиляции мертвого пространства. Это позволяет иногда относить уклонения от нормы за счет патологии одного из этих факторов.

При замене дыхания воздухом на дыхание кислородом у здоровых лиц не происходит изменений в минутном объеме дыхания. Наоборот, при очень выраженной дыхательной недостаточности минутный объем при дыхании кислородом уменьшается и одновременно повышается потребление в минуту кислорода. Наступает «успокоение дыхания». Объясняется такой эффект лучшей артериализацией крови при дыхании чистым кислородом по сравнению с дыханием атмосферным воздухом. Это еще больше обращает на себя внимание при нагрузке.

Сравните с этим сказанное в разделе о кардио-пульмональном (сердечно-легочном) кислородном дефиците.

Проба на максимальный объем выдоха (проба Тиффно)

Под максимальным объемом выдоха понимают экспираторную работу легких за секунду, т. е. количество воздуха, выдыхаемой с силой за секунду после максимального вдоха.

Длительность выдоха у больных эмфиземой больше, чем у здоровых лиц. Этот факт, впервые зарегистрированный на спирометре Hutchinson, был затем подтвержден Tiffeneau и Pinelli, которые указали и на совершенно определенные соотношения его с жизненной емкостью.

В немецкой литературе количество воздуха, выдыхаемое в пробе за секунду, называется «полезной долей жизненной емкости», англичане говорят о «timed capacity» (емкость за определенный промежуток времени), во французской литературе применяется термин «capacite pulmonaire utilisable a l’effort» (легочная емкость, утилизируемая при усилии).

Эта проба приобретает особое значение потому, что она позволяет делать общие выводы о широте дыхательных путей и соответственно о величине сопротивления дыханию в бронхиальной системе, а также об эластичности легких, подвижности грудной клетки и силе дыхательной мускулатуры.

Нормальные величины. Максимальный объем выдоха выражается в процентах к жизненной емкости. У здоровых он равняется 70-80% жизненной емкости. При этом в первую половину секунды должно быть экспирировано не менее 55% имеющейся жизненной емкости.

У здоровых для полного выдоха после глубокого вдоха нужно 4 секунды. Через 2 секунды выдыхают 94%, через 3 секунды - 97% жизненной емкости.

Объем выдоха снижается с возрастом с 83% жизненной емкости в юности до 69% в старости. Этот факт подтвержден Gitter в его обширных исследованиях более чем на 1000 промышленных рабочих. Tiffeneau считает нормальным такой максимальный объем выдоха а первую секунду, который составляет 83,3% истинной или фактической емкости, Biicherl - 77,3% для мужчин и 82,3% для женщин.

Методика выполнения. Применяют спирограф, кимограф которого быстро передвигает ленту (не менее 10 мм/сек). После записи жизненной емкости обычным способом испытуемому предлагают еще раз сделать максимальный вдох, чуть задержать дыхание, потом быстро и насколько возможно глубоко выдохнуть. Некоторого упрощения можно достигнуть, если запись так называемой экспирограммы провести с одновременным определением жизненной емкости и максимального объема выдоха за один выдох после максимального вдоха.

Оценка. Проба Tiffeneau считается надежным критерием для распознавания обструкционного бронхита и обусловленной им эмфиземы. В этих случаях при нормальной жизненной емкости находят значительное снижение максимального объема выдоха, тогда как при рестриктивной вентиляционной недостаточности жизненная емкость хотя и снижена, но процентная доля максимального объема выдоха остается нормальной.

Так как причиной обструкционных нарушений наряду с органически обусловленными препятствиями в дыхательных путях может быть также функциональный спазм, для дифференциально-диагностического выявления подлинной причины рекомендуется проба с астмолизином.

Проба с астмолизином . После предварительного определения жизненной емкости и максимального объема выдоха вводят подкожно 1 мл астмолизина или гистамина и через 30 минут повторно определяют те же величины. Если полученные вентиляционные величины указывают на тенденцию к нормализации, то речь идет о функциональном компоненте обструкционного бронхита.

Статью подготовил и отредактировал: врач-хирург

Дыхательный объем (ДО) - это объем воздуха, вдыхаемого и выдыхаемого при нормальном дыхании, равный в среднем 500 мл (с колебаниями от 300 до 900 мл).

Из него около 150 мл составляет объем воздуха функционального мертвого пространства (ВФМП) в гортани, трахее, бронхах, который не принимает участия в газообмене. Функциональная роль ВФМП заключается в том, что он смешивается с вдыхаемым воздухом, увлажняя и согревая его.

Резервный объем выдоха

Резервный объем выдоха - это объем воздуха, равныйу1500 -2000 мл, который человек может выдохнуть, если после нормального выдоха сделает максимальный выдох.

Резервный объем вдоха

Резервный объем вдоха - это объем воздуха, который человек может вдохнуть, если после нормального вдоха сделает максимальный вдох. Равен 1500 - 2000 мл.

Жизненная емкость легких

Жизненная ёмкость лёгких (ЖЕЛ) - максимальное количество воздуха, выдыхаемое после самого глубокого вдоха. ЖЕЛ является одним из основных показателей состояния аппарата внешнего дыхания, широко используемым в медицине. Вместе с остаточным объемом, т.е. объемом воздуха, остающегося в легких после самого глубокого выдоха, ЖЕЛ образует общую емкость легких (ОЕЛ).

В норме ЖЕЛ составляет около 3/4 общей емкости легких и характеризует максимальный объем, в пределах которого человек может изменять глубину своего дыхания. При спокойном дыхании здоровый взрослый человек использует небольшую часть ЖЕЛ: вдыхает и выдыхает 300-500 мл воздуха (так называемый дыхательный объем). При этом резервный объем вдоха, т.е. количество воздуха, которое человек способен дополнительно вдохнуть после спокойного вдоха, и резервный объем выдоха, равный объему дополнительно выдыхаемого воздуха после спокойного выдоха, составляет в среднем примерно по 1500 мл каждый. Во время физической нагрузки дыхательный объем возрастает за счет использования резервов вдоха и выдоха.

Жизненная емкость легких является показателем подвижности легких и грудной клетки. Несмотря на название, она не отражает параметров дыхания в реальных («жизненных») условиях, так как даже при самых высоких потребностях, предъявляемые организмом к дыхательной системе, глубина дыхания никогда не достигает максимального из возможных значений.

С практической точки зрения нецелесообразно устанавливать «единую» норму для жизненной емкости легких, так как эта величина зависит от ряда факторов, в частности от возраста, пола, размеров и положения тела и степени тренированности.

С возрастом жизненная емкость легких уменьшается (особенно после 40 лет). Это связано со снижением эластичности легких и подвижности грудной клетки. У женщин в среднем на 25% меньше, чем у мужчин.

Зависимость от роста можно вычислить по следующему уравнению:

ЖЕЛ=2.5*рост (м)

ЖЕЛ зависит от положения тела: в вертикальном положение она несколько больше, чем в горизонтальном положении.

Объясняется это тем, что в вертикальном положении в легких содержится меньше крови. У тренированных людей (особенно у пловцов, гребцов) она может составлять до 8 л, так как у спортсменов сильно развиты вспомогательные дыхательные мышцы (большие и малые грудные).

Остаточный объем

Остаточный объем (ОО) - это объем воздуха, который остается в легких после максимального выдоха. Равен 1000 - 1500 мл.

Общая емкость легких

Общая (максимальная) емкость легких (ОЕЛ) является суммой дыхательного, резервных (вдох и выдох) и остаточного объемов и составляет 5000 - 6000 мл.

Исследование дыхательных объемов нужно для оценки компенсации дыхательной недостаточности путем увеличения глубины дыхания (вдоха и выдоха).

Жизненная емкость легких. Систематические занятия физкультурой и спортом способствуют развитию дыхательной мускулатуры и расширению грудной клетки. Уже через 6-7 месяцев после начала занятий плаванием или бегом жизненная емкость легких у юных спортсменов может возрасти на 500 куб.см. и более. Снижение ее - признак переутомления.

Измеряется Жизненная емкость легких специальным прибором - спирометром. Для этого закройте вначале пробкой отверстие внутреннего цилиндра спирометра и продезинфицируйте его мундштук спиртом. После глубокого вдоха сделайте через взятый в рот мундштук глубокий выдох. При этом воздух не должен проходить мимо мундштука или через нос.

Измерение повторяют дважды, а в дневнике записывают наивысший результат.

Жизненная емкость легких у человека колеблется от 2,5 до 5л, а у некоторых спортсменов достигает 5,5л и более. Жизненная емкость легких зависит от возраста, пола, физического развития и других факторов. Уменьшение ее более чем на 300 куб.см может указывать на переутомление.

УДК 612.215+612.1 ББК Е 92 + Е 911

А.Б. Загайнова, Н.В. Турбасова. Физиология дыхания и кровообращения. Учебно-методическое пособие по курсу «Физиология человека и животных»: для студентов 3 курса ОДО и 5 курса ОЗО биологического факультета. Тюмень.: Издательство Тюменского государственного университета, 2007. - 76 с.

Учебно-методическое пособие включает лабораторные работы, составленные в соответствии с программой курса «Физиология человека и животных», многие из которых иллюстрируют фундаментальные научные положения классической физиологии. Часть работ имеет прикладной характер и представляет собой методы самоконтроля здоровья и физического состояния, способы оценки физической работоспособности.

ОТВЕТСТВЕННЫЙ РЕДАКТОР: В.С.Соловьев, д.мед.н., профессор

© Тюменский государственный университет, 2007

© Издательство Тюменского государственного университета, 2007

© А.Б. Загайнова, Н.В. Турбасова, 2007

Пояснительная записка

Предметом исследования в разделах «дыхание» и «кровообращение» являются живые организмы и их функционирующие структуры, обеспечивающие эти жизненно-важные функции, чем и определяется выбор методов физиологического исследования.

Цель курса: сформировать представления о механизмах функционирования органов дыхания и кровообращения, о регуляции деятельности сердечно-сосудистой и дыхательной систем, об их роли в обеспечении взаимодействия организма с внешней средой.

Задачи лабораторного практикума: ознакомить студентов с методами исследования физиологических функций человека и животных; проиллюстрировать фундаментальные научные положения; представить методики самоконтроля физического состояния, оценки физической работоспособности при физических нагрузках различной интенсивности.

На проведение лабораторных занятий по курсу «Физиология человека и животных» отводится 52 часа на ОДО и 20 часов на ОЗО. Итоговая форма отчетности по курсу «Физиология человека и животных» - экзамен.

Требования к экзамену: необходимо понимание основ жизнедеятельности организма, в том числе механизмов функционирования систем органов, клеток и отдельных клеточных структур, регуляции работы физиологических систем, а также закономерности взаимодействия организма с внешней средой.

Учебно-методическое пособие разработано в рамках программы общего курса «Физиология человека и животных» для студентов биологического факультета.

ФИЗИОЛОГИЯ ДЫХАНИЯ

Сущность процесса дыхания заключается в доставке к тканям орга­низма кислорода, обеспечивающего протекание окислительных реакций, что приводит к освобождению энергии и выделению из организма диоксида углерода, образующегося в результате обмена веществ.

Процесс, протекающий в легких и заключающийся в обмене газов между кровью и окружающей средой (воздухом, поступающим в альвеолы, называют внешним, легочным дыханием, или вентиляцией легких .

В результате газообмена в легких кровь насыщается кислородом, теряет углекислоту, т.е. вновь становится способной переносить кислород к тканям.

Обновление газового состава внутренней среды организма происходит вследствие циркуляции крови. Транспортная функция осуществляется кровью благодаря физическому растворению в ней СО 2 и О 2 и связыванию их с компонентами крови. Так, гемоглобин способен вступать в обратимую реакцию с кислородом, а связывание СО 2 происходит в результате образования в плазме крови обратимых бикарбонатных соединений.

Потребление кислорода клетками и осуществление окислительных реакций с образованием углекислого газа составляет сущность процессов внутреннего , или тканевого дыхания .

Таким образом, лишь последовательное изучение всех трех звеньев дыхания может дать представление об одном из самых сложных физиологических процессов.

Для изучения внешнего дыхания (вентиляция легких), газообмена в легких и тканях, а также транспорта газов кровью используют различные методы, позволяющие оценивать дыхательную функцию в состоянии покоя, при физической нагрузке и различных воздействиях на организм.

ЛАБОРАТОРНАЯ РАБОТА № 1

ПНЕВМОГРАФИЯ

Пневмография - это регистрация дыхательных движений. Она позволяет определить частоту и глубину дыхания, а также соотношение продолжительности вдоха и выдоха. У взрослого человека число дыхательных движений составляет 12-18 в минуту, у детей дыхание более частое. При физической работе оно увеличивается вдвое и более. При мышечной работе изменяется и частота, и глубина дыхания. Изменение ритма дыхания и его глубины наблюдаются во время глотания, разговора, после задержки дыхания и т. п.

Между двумя фазами дыхания нет пауз: вдох непосредственно переходит в выдох и выдох во вдох.

Как правило, вдох несколько короче выдоха. Время вдоха относится ко времени выдоха, как 11:12 или даже как 10:14.

Кроме ритмических дыхательных движений, обеспечивающих вентиляцию легких, по времени могут наблюдаться особые дыхательные движения. Некоторые из них возникают рефлекторно (защитные дыхательные движения: кашель, чихание), другие произвольно, в связи с фонацией (речью, пением, декламацией и др.).

Регистрация дыхательных движений грудной клетки осуществляется при помощи специального прибора - пневмографа. Получаемая запись – пневмограмма – позволяет судить: о продолжительности фаз дыхания - вдоха и выдоха, частоте дыхания, относительной глубине, зависимости частоты и глубины дыхания от физиологического состояния организма - покоя, работы и т.д.

Пневмография основана на принципе воздушной передачи дыхательных движений грудной клетки пишущему рычажку.

Наиболее употребительный в настоящее время пневмограф представляет собой продолговатую резиновую камеру, помещенную в матерчатый чехол, герметически соединенный резиновой трубочкой с капсулой Марэ. При каждом вдохе грудная клетка расширяется и сдавливает воздух в пневмографе. Это давление передается в полость капсулы Марэ, ее упругая резиновая крышечка поднимается, и опирающийся на нее рычажок пишет пневмограмму.

В зависимости от применяемых датчиков пневмографию можно осуществлять различными способами. Наиболее простым и доступным для регистрации дыхательных движений является пневмодатчик с капсулой Марэ. Для пневмографии можно применять реостатные, тензометрические и емкостные датчики, но в этом случае необходимы электронные усилительные и регистрирующие устройства.

Для работы необходимы: кимограф, манжетка от сфигмоманометра, капсула Марэ, штатив, тройник, резиновые трубки, отметчик времени, раствор аммиака. Объект исследования - человек.

Проведение работы. Собирают установку для регистрации ды­хательных движений, как показано на рис. 1, А. Манжетку от сфигмоманометра укрепляют на самой подвижной части грудной клетки испытуемого (при брюшном типе дыхания это будет нижняя треть, при грудном - средняя треть грудной клетки) и соединяют ее с помощью тройника и резиновых трубок с капсулой Марэ. Через тройник, открыв зажим, в регистрирующую систему вводят небольшое количество воздуха, следя за тем, чтобы слишком высокое давление неразорвало резиновую перепонку капсулы. Убедившись, что пневмограф укреплен правильно и движения грудной клетки передаются рычажку капсулы Марэ, подсчитывают число дыхательных движений в минуту, а затем устанавливают писчик по касательной к кимографу. Включают кимограф и отметчик времени и приступают к записи пневмограммы (испытуемый при этом не должен смотреть на пневмограмму).

Рис. 1. Пневмография.

А - графическая регистрация дыхания с помощью капсулы Марэ; Б - пневмограммы, записанные при действии различных факторов, вызывающих изменение дыхания: 1 - широкая манжетка; 2 - резиновая трубка; 3 – тройник; 4 - капсула Марэ; 5 – кимограф; 6 -отметчик времени; 7 - универсальный штатив; а - спокойное дыхание; б - при вдыхании паров аммиака; в - во время разговора; г - после гипервентиляции; д - после произвольной задержки дыхания; е - при физической нагрузке; б"-е" - отметки применяемого воздействия.

Регистрируют на кимографе следующие типы дыхания:

1) спокойное дыхание;

2) глубокое дыхание (испытуемый произвольно делает несколько глубоких вдохов и выдохов – жизненная емкость легких);

3) дыхание после физической нагрузки. Для этого испытуемого просят, не сни­мая пневмографа, сделать 10-12 приседаний. При этом, чтобы в результате резких толчков воздуха не разорвалась покрышка капсулы Марея, зажимом Пеана пережимают резиновую трубочку соединяющую пневмограф с капсулой. Тотчас после окончания приседаний зажим снимают и записывают дыхательные движения);

4) дыхание во время декламации, разговорной речи, смеха (обращают внимание, как изменяется продолжительность вдоха и выдоха);

5) дыхание при кашле. Для этого испытуемый делает несколько произвольных выдыхательных кашлевых движений;

6) одышку - диспноэ, вызванную задержкой дыхания. Опыт произво­дят в следующем порядке. Записав нормальное дыхание (эйпноэ) в положении испытуемого сидя, просят его задержать дыхание на выдохе. Обычно через 20-30 секунд происходит непро­извольное восстановление дыхания, причём частота и глубина дыхательных движений становятся значительно больше, наблю­дается одышка;

7) изменение дыхания при уменьшении углекислого газа в аль­веолярном воздухе и крови, что достигается гипервентиляци­ей лёгких. Испытуемый делает глубокие и частые дыхательные движения до лёгкого головокружения, после чего наступает естественная задержка дыхания (апноэ);

8) при глотании;

9) при вдыхании паров аммиака (к носу испытуемого подносят вату, смоченную раствором аммиака).

Некоторые пневмограммы представлены на рис. 1,Б.

Полученные пневмограммы наклейте в тетрадь. Рассчитайте количество дыхательных движений в 1 минуту при разных условиях регистрации пневмограммы. Определите, в какую фазу дыхания осуществляется глотание и речь. Сравните характер изменения дыхания под влиянием различных факторов воздействия.

ЛАБОРАТОРНАЯ РАБОТА № 2

СПИРОМЕТРИЯ

Спирометрия - метод определения жизненной емкости легких и составляющих ее объемов воздуха. Жизненная емкость легких (ЖЕЛ) - это наибольшее количество воздуха, которое человек может выдохнуть после максимального вдоха. На рис. 2 показаны легочные объемы и емкости, характеризующие функциональное состояние легких, а также пневмограмма, поясняющая связь объемов и емкостей легких с дыхательными движениями. Функциональное состояние легких зависит от возраста, роста, пола, физического развития и ряда, других факторов. Для оценки функции дыхания у данного лица, измеренные у него легочные объемы следует сравнивать с должными величинами. Должные величины рассчитывают по формулам или определяют по номограммам (рис. 3), отклонения на ± 15% расцениваются как несущественные. Для измерения ЖЕЛ и составляющих ее объемов используют сухой спирометр (рис. 4).

Рис. 2. Спирограмма. Легочные объёмы и ёмкости:

РОвд - резервный объем вдоха; ДО - дыхательный объем; РОвыд - резервный объем выдоха; ОО - остаточный объем; Евд - емкость вдоха; ФОЕ - функциональная остаточная емкость; ЖЕЛ - жизненная емкость легких; ОЕЛ - общая емкость легких.

Легочные объемы:

Резервный объем вдоха (РОвд) – максимальный объем воздуха, который человек может вдохнуть после спокойного вдоха.

Резервный объем выдоха (РОвыд) – максимальный объем воздуха, который человек может выдохнуть после спокойного выдоха.

Остаточный объем (ОО) – объем газа в легких после максимального выдоха.

Емкость вдоха (Евд) – максимальный объем воздуха, который человек может вдохнуть после спокойного выдоха.

Функциональная остаточная емкость (ФОЕ) – объем газа в легких, остающийся после спокойного вдоха.

Жизненная емкость легких (ЖЕЛ) – максимальный объем воздуха, который можно выдохнуть после максимального вдоха.

Общая емкость легких (ОЕл) – объем газов в легких после максимального вдоха.

Для работы необходимы: сухой спирометр, носовой зажим, загубник, спирт, вата. Объект исследования - человек.

Преимущество сухого спирометра заключается в том, что он портативен и удобен в работе. Сухой спирометр представляет собой воздушную турбинку, вращаемую струей выдыхаемого воздуха. Вращение турбинки через кинематическую цепь передается стрелке прибора. Для остановки стрелки по оконча­нии выдоха спирометр снабжен тормозным устройством. Величину измеряемого объема воздуха определяют по шкале прибора. Шкалу можно поворачивать, что позволяет устанавливать стрелку на нуль перед каждым измерением. Выдох воздуха из легких производят через мундштук.

Проведение работы. Мундштук спирометра протирают ватой, смоченной спиртом. Испытуемый после максимального вдоха делает максимально глубокий выдох в спирометр. По шкале спирометра определяют ЖЕЛ. Точность результатов повышается, если измерение ЖЕЛ производят несколько раз и вычисляют среднюю величину. При многократных измерениях необходимо каждый раз устанавливать исходное положение шкалы спирометра. Для этого у сухого спирометра поворачивают из­мерительную шкалу и нулевое деление шкалы совмещают со стрелкой.

ЖЕЛ определяют в положении испытуемого стоя, сидя и лежа, а также после физической нагрузки (20 приседаний за 30 секунд). Отмечают разницу в результатах измерений.

Затем испытуемый осуществляет несколько спокойных выдохов в спирометр. При этом подсчитывают количество дыхательных движений. Разделив показания спирометра на число выдохов, сделанных в спирометр, определяют дыхательный объем воздуха.

Рис. 3. Номограмма для определения долж­ной величины ЖЕЛ.

Рис. 4. Суховоздушный спиро­метр.

Для определения резервного объема выдоха испытуемый делает после очередного спокойного выдоха максимальный выдох в спирометр. По шкале спирометра определяют резервный объем выдоха. Повторяют измерения несколько раз и вычисляют среднюю величину.

Резервный объем вдоха можно определить двумя способами: вычислить и измерить спирометром. Для его вычисления необходимо из величины ЖЕЛ вычесть сумму дыхательного и резервного (выдоха) объемов воздуха. При измерении резервного объема вдоха спирометром в него набирают определённый объем воздуха и испытуемый после спокойного вдоха делает максимальный вдох из спирометра. Разность между первоначальным объемом воздуха в спирометре и объемом, оставшимся там после глубокого вдоха, соответствует резервному объему вдоха.

Для определения остаточного объема воздуха не существует прямых методов, поэтому используют косвенные. Они могут быть основаны на разных принципах. Для этих целей применяют, например, плетизмографию, оксигемометрию и измерение концентрации индикаторных газов (гелий, азот). Считают, что в норме остаточный объем составляет 25-30% от величины ЖЕЛ.

Спирометр дает возможность установить и ряд других характеристик дыхательной деятельности. Одной из них являет величина легочной вентиляции. Для ее определения число циклов дыхательных движений в минуту умножают на дыхательный объем. Так, за одну минуту между организмом и средой в норме обменивается около 6000 мл воздуха.

Альвеолярная вентиляция = частота дыхания х (дыхательный объем - объем «мертвого» пространства).

Установив параметры дыхания, можно оценить интенсивность обмена веществ в организме, определив потребление кислорода.

В ходе работы важно выяснить, находятся ли величины, полученные для конкретного человека, в пределах нормы. С этой целью были разработаны специальные номограммы и формулы, где учитывается корреляция отдельных характеристик функции внешнего дыхания и таких факторов как: пол, рост, возраст и др.

Должная величина жизненной емкости легких рассчитывается по формулам (Гуминский А.А., Леонтьева Н.Н., Маринова К.В., 1990):

для мужчин -

ЖЕЛ = {(рост (см) х 0,052) – (возраст (лет) х 0,022)} - 3,60;

для женщин –

ЖЕЛ = {(рост (см) х 0,041)- (возраст (лет) х 0,018)} - 2,68.

для мальчиков 8 -12 лет -

ЖЕЛ = {(рост (см) х 0,052) - (возраст (лет) х 0,022)} - 4,6;

для мальчиков 13 -16 лет-

ЖЕЛ = {(рост (см) х 0,052) - (возраст (лет) х 0,022)} - 4,2;

для девочек 8 - 16 лет -

ЖЕЛ = {(рост (см) х 0,041) - (возраст (лет) х 0,018)} - 3,7.

К 16-17 годам жизненная емкость легких достигает величин, характерных для взрослого человека.

Результаты работы и их оформление. 1. Занесите в таблицу 1 результаты измерений, вычислите среднее значение ЖЕЛ.

Таблица 1

Номер измерения

ЖЕЛ (покой)

стоя сидя
1 2 3 Среднее

2. Сравните результаты измерений ЖЕЛ (покой) стоя и сидя. 3. Сравните результаты измерений ЖЕЛ стоя (покой) с результатами, полученными после физической нагрузки. 4. Рассчитайте % от должной величины, зная показатель ЖЕЛ, полученный при измерении стоя (покой) и должной ЖЕЛ (рассчитанной по формуле):

ЖЕЛфакт. х 100 (%).

5. Сравните величину ЖЕЛ, измеренную спирометром, с должной ЖЕЛ, найденной по номограмме. Рассчитайте остаточный объем, а также емкости легких: общую емкость легких, емкость вдоха и функциональную остаточную емкость. 6. Сделайте выводы.

ЛАБОРАТОРНАЯ РАБОТА № 3

ОПРЕДЕЛЕНИЕ МИНУТНОГО ОБЪЕМА ДЫХАНИЯ (МОД) И ЛЕГОЧНЫХ ОБЪЕМОВ

(ДЫХАТЕЛЬНОГО, РЕЗЕРВНОГО ОБЪЕМА ВДОХА

И РЕЗЕРВНОГО ОБЪЕМА ВЫДОХА)

Вентиляция легких определяется объемом воздуха, вдыхаемого или выдыхаемого в единицу времени. Обычно измеряют минутный объем дыхания (МОД). Его величина при спокойном дыхании 6-9 л. Вентиляция легких зависит от глубины и частоты дыхания, которая в состоянии покоя составляет 16 в 1 мин (от 12 до 18). Минутный объем дыхания равен:

МОД = ДО х ЧД,

где ДО - дыхательный объем; ЧД - частота дыхания.

Для работы необходимы: сухой спирометр, носовой зажим, спирт, вата. Объект исследования - человек.

Проведение работы. Для определения объема дыхательного воздуха испытуемый должен сделать спокойный выдох в спирометр после спокойного вдоха и определить дыхательный объем (ДО). Для определения резервного объема выдоха (РОвыд) после спокойного обычного выдоха в окружающее пространство сделать глубокий выдох в спирометр. Для определения резервного объема вдоха (РОвд) установить внутренний цилиндр спирометра на каком-либо уровне (3000-5000), а затем, сделав спокойный вдох из атмосферы, зажав нос, сделать максимальный вдох из спирометра. Все измерения повторить три раза. Резервный объем вдоха можно определить по разнице:

РОвд = ЖЕЛ – (ДО – РОвыд)

Расчетным методом определить сумму ДО, РОвд и РОвыд, составляющую жизненную емкость легких (ЖЕЛ).

Результаты работы и их оформление. 1. Полученные данные оформите в виде таблицы 2.

2. Рассчитайте минутный объем дыхания.

Таблица 2

ЛАБОРАТОРНАЯ РАБОТА № 4