Кот шредингера простыми словами. Что такое кот Шредингера простыми словами

Была своего рода «вторичность». Сам он редко занимался определенной научной проблемой. Его излюбленным жанром работы был отклик на чье-либо научное изыскание, развитие этой работы или ее критика. Несмотря на то, что сам Шредингер был индивидуалистом по характеру, ему всегда была необходима чужая мысль, опора для дальнейшей работы. Несмотря на этот своеобразный подход, Шредингеру удалось сделать немало открытий.

Биографические данные

Теория Шредингера сейчас известна не только студентам физико-математических факультетов. Она будет интересна всякому, кто испытывает интерес к популярной науке. Эта теория была создана известным физиком Э. Шредингером, который вошел в историю как один из создателей квантовой механики. Ученый родился 12 августа 1887 года в семье владельца фабрики по изготовлению клеенки. Будущий ученый, прославившийся на весь мир своей загадкой, увлекался в детстве ботаникой и рисованием. Первым его наставником был отец. В 1906 году Шредингер начал учебу в Венском университете, во время которой и начал восхищаться физикой. Когда настала Первая мировая война, ученый пошел на службу артиллеристом. В свободное время занимался изучением теорий Альберта Эйнштейна.

К началу 1927 года в науке сложилась драматическая ситуация. Э. Шредингер считал, что основанием теории о квантовых процессах должна служить идея о непрерывности волн. Гейзенберг, напротив, считал, что фундаментом для этой области знаний должна быть концепция о дискретности волн, а также идея о квантовых скачках. Нильс Бор не принимал ни одной из позиций.

Достижения в науке

За создание концепции волновой механики в 1933 году Шредингер получил Нобелевскую премию. Однако, воспитанный в традициях классической физики, ученый не мог мыслить иными категориями и не считал квантовую механику полноценной отраслью знания. Его не могло удовлетворить двойственное поведение частиц, и он пытался свести его исключительно к волновому. В своей дискуссии с Н. Бором Шредингер выразился так: «Если мы планируем сохранить в науке эти квантовые скачки, тогда я вообще жалею, что связал свою жизнь с атомной физикой».

Дальнейшие работы исследователя

При этом Шредингер был не только одним из создателей современной квантовой механики. Именно он был тем ученым, который ввел в научный обиход термин «объектность описания». Это возможность научных теорий описывать реальность без участия наблюдателя. Его дальнейшие исследования были посвящены теории относительности, термодинамическим процессам, нелинейной электродинамике Борна. Также ученым было сделано несколько попыток создать единую теорию поля. Кроме того, Э. Шредингер владел шестью языками.

Самая знаменитая загадка

Теория Шредингера, в которой фигурирует тот самый кот, выросла из критики ученого квантовой теории. Один из ее основных постулатов гласит, что пока за системой не производится наблюдение, она находится в состоянии суперпозиции. А именно, в двух и более состояниях, которые исключают существование друг друга. Состояние суперпозиции в науке имеет следующее определение: это способность кванта, которым может быть также электрон, фотон, или, например, ядро атома, находиться одновременно в двух состояниях или даже в двух точках пространства в тот момент, когда никто за ним не наблюдает.

Объекты в разных мирах

Простому человеку очень сложно понять такое определение. Ведь каждый объект материального мира может быть либо в одной точке пространства, либо в другой. Проиллюстрировать этот феномен можно следующим образом. Наблюдатель берет две коробки, и кладет в одну из них шарик для тенниса. Будет ясно, что в одной коробке он находится, а в другой - нет. Но если в одну из емкостей положить электрон, то верным будет следующее утверждение: эта частица находится одновременно в двух коробках, каким бы парадоксальным это ни казалось. Точно так же электрон в атоме не находится в строго определенной точке в тот или иной момент времени. Он вращается вокруг ядра, располагаясь на всех точках орбиты одновременно. В науке этот феномен называется «электронным облаком».

Что хотел доказать ученый?

Таким образом, поведение маленьких и больших объектов реализуется по совершенно разным правилам. В квантовом мире существуют одни законы, а в макромире - абсолютно другие. Однако нет такой концепции, которая объясняла бы переход от мира материальных предметов, привычных для людей, к микромиру. Теория Шредингера и была создана, для того чтобы продемонстрировать недостаточность исследований в области физики. Ученый хотел показать, что есть наука, целью которой является описание небольших объектов, и есть область знаний, изучающая обычные предметы. Во многом благодаря работам ученого и произошло разделение физики на две области: квантовую и классическую.

Теория Шредингера: описание

Свой знаменитый мысленный эксперимент ученый описал в 1935 году. В его проведении Шредингер опирался на принцип суперпозиции. Шредингер подчеркивал, что пока мы не наблюдаем за фотоном, он может быть как частицей, так и волной; как красным, так и зеленым; как круглым, так и квадратным. Этот принцип неопределенности, который непосредственно вытекает из концепции квантового дуализма, Шредингер и использовал в своей известной загадке про кота. Смысл эксперимента вкратце состоит в следующем:

  • В закрытую коробку помещается кот, а также емкость, в которой содержится синильная кислота и радиоактивное вещество.
  • Ядро в течение часа может распадаться. Вероятность этого составляет 50%.
  • Если атомное ядро распадется, то это будет зафиксировано счетчиком Гейгера. Механизм сработает, и ящик с отравой будет разбита. Кот умрет.
  • Если же распада не произойдет, то кот Шредингера будет жив.

Согласно этой теории, пока не осуществляется наблюдение за котом, он находится одновременно в двух состояниях (мертв и жив), точно так же, как и ядро атома (распавшееся или не распавшееся). Конечно, это возможно только лишь по законам квантового мира. В макромире кот не может быть и живым, и мертвым одновременно.

Парадокс наблюдателя

Чтобы понять суть теории Шредингера, необходимо также иметь представление о парадоксе наблюдателя. Его смысл состоит в том, что объекты микромира могут находиться одновременно в двух состояниях только тогда, когда за ними не производится наблюдение. К примеру, в науке известен так называемый «Эксперимент с 2-мя щелями и наблюдателем». На непрозрачную пластинку, в которой были сделаны две вертикальные щели, ученые направляли пучок электронов. На экране, находившемся за пластиной, электроны рисовали волновую картину. Иными словами, они оставляли черные и белые полосы. Когда же исследователи захотели понаблюдать, каким образом электроны пролетают через щели, то частицы отобразили на экране всего лишь две вертикальные полосы. Они вели себя как частицы, а не как волны.

Копенгагенское объяснение

Современное объяснение теории Шредингера носит название копенгагенского. Исходя из парадокса наблюдателя, оно звучит следующим образом: до тех пор, пока никто не наблюдает за ядром атома в системе, оно находится одновременно в двух состояниях - распавшемся и нераспавшемся. Однако утверждение о том, что кот жив и мертв одновременно, крайне ошибочно. Ведь в макромире никогда не наблюдаются те же явления, что и в микромире.

Поэтому речь идет не о системе «кот-ядро», а о том, что между собой связаны счетчик Гейгера и ядро атома. Ядро может выбрать то или иное состояние в момент, когда производятся измерения. Однако данный выбор имеет место не в тот момент, когда экспериментатор открывает ящик с котом Шредингера. На самом деле, открытие ящика имеет место в макромире. Иными словами, в системе, которая очень далека от атомного мира. Поэтому ядро выбирает свое состояние именно в тот момент, когда оно попадает на детектор счетчика Гейгера. Таким образом, Эрвин Шредингер в своем мысленном эксперименте описал систему недостаточно полно.

Общие выводы

Таким образом, не совсем корректно связывать макросистему с микроскопическим миром. В макромире квантовые законы теряют свою силу. Ядро атома может находиться одновременно в двух состояниях только лишь в микромире. То же самое не может быть сказано относительно кота, поскольку он является объектом макромира. Поэтому только на первый взгляд создается впечатление, что кот переходит из суперпозиции в одно из состояний в момент открытия ящика. В действительности его судьба определяется в тот момент, когда атомное ядро взаимодействует с детектором. Вывод можно сделать такой: состояние системы в загадке Эрвина Шредингера никак не связано с человеком. Оно зависит не от экспериментатора, а от детектора - предмета, который «ведет наблюдение» за ядром.

Продолжение концепции

Теория Шредингера простыми словами описывается так: пока наблюдатель не смотрит на систему, она может находиться одновременно в двух состояниях. Однако еще один ученый - Юджин Вигнер, пошел дальше и решил довести концепцию Шредингера до полного абсурда. "Позвольте! - сказал Вигнер, - А что если рядом с экспериментатором, наблюдающим за котом, стоит его коллега?" Напарник не знает о том, что именно увидел сам экспериментатор в тот момент, когда открыл коробку с котом. Кот Шредингера выходит из состояния суперпозиции. Однако никак не для коллеги наблюдателя. Только в тот момент, когда последнему станет известна судьба кота, животное можно окончательно назвать живым или мертвым. Кроме того, на планете Земля живут миллиарды людей. И самый последний вердикт можно будет вынести только тогда, когда результат эксперимента станет достоянием всех живых существ. Конечно, всем людям можно рассказать судьбу кота и теорию Шредингера кратко, однако это очень долгий и трудоемкий процесс.

Принципы квантового дуализма в физике так и не были опровергнуты мысленным экспериментом Шредингера. В каком-то смысле каждое существо можно назвать ни живым и ни мертвым (находящимся в суперпозиции) до тех пор, пока есть хотя бы один человек, за ним не наблюдающий.

Может ли кот одновременно быть и живым и мертвым? Сколько существует параллельных вселенных? И существуют ли они вообще? Это вовсе не вопросы из области фантастики, а вполне реальные научные задачи, решаемые квантовой физикой.

Итак, начнем с Кота Шредингера . Это мысленный эксперимент, который предложил Эрвин Шредингер с целью указать на парадокс, существующий в квантовой физике. Суть эксперимента заключается в следующем.

В закрытый ящик одновременно помещен воображаемый кот, а также такой же воображаемый механизм с радиоактивным ядром и емкостью с ядовитым газом. Согласно эксперименту, если ядро распадется, то оно приведет механизм в действие: емкость с газом откроется и кот умрет. Вероятность распада ядра составляет 1 к 2.

Парадокс заключается в том, что согласно квантовой механике если над ядром не производят наблюдение, то кот находится в так называемой суперпозиции, другими словами кот одновременно находится во взаимоисключающих состояниях (он одновременно жив и мертв). Однако если наблюдающий откроет ящик, он может убедиться, что кот находится в одном конкретном состоянии: он или жив, или мертв. По мнению Шредингера, неполнота квантовой теории состоит в том, что она не уточняет, при каких условиях кот перестает быть в суперпозиции и оказывается либо живым, либо мертвым.

Данный парадокс усугубляется экспериментом Вигнера, который добавляет к уже существующему мысленному эксперименту категорию друзей. Согласно Вигнеру, во время открытия экспериментатором коробки, он узнает, жив ли кот или мертв. Для экспериментатора кот перестает быть в суперпозиции, однако для друга, который находится за дверью, и который еще не знает о результатах эксперимента, кот все еще находится где-то "между жизнью и смертью". Так можно продолжать с бесконечным количеством дверей и друзей, и согласно подобной логике, кот будет находиться в суперпозиции до тех пор, пока все люди во Вселенной не узнают, что же увидел экспериментатор, открыв ящик.

Как же объясняет подобный парадокс квантовая физика? Квантовая физика предлагает мысленный эксперимент квантового самоубийства и два возможных варианта развития событий, исходя различных интерпретаций квантовой механики.

В ходе проведения мысленного эксперимента на участника направлено ружье, которое либо выстрелит в результате распада радиоактивного атома, либо нет. Опять 50 на 50. Таким образом, участник эксперимента либо умрет, либо нет, а пока он находится, как и кот Шредингера в суперпозиции.

Данную ситуацию можно интерпретировать по-разному с точки зрения квантовой механики. Согласно копенгагенской интерпретации, ружье рано или поздно выстрелит, и участник умрет. Согласно интепретации Эверетта, суперпозиция предусматривает наличие двух параллельных вселенных, в которых одновременно существует участник: в одной из них он жив (ружье не выстрелило), во второй он мертв (оружие выстрелило). Однако если многомировая интерпретация верна, то в одной из вселенных участник всегда остается жив, что приводит к идее существования «квантового бессмертия».

Что касается кота Шредингера и наблюдателя эксперимента, то, согласно интерпретации Эверетта, он также оказывается вместе с котом сразу в двух Вселенных, то есть, выражаясь, «квантовым языком», «запутывается» с ним.

Звучит как история из фантастического романа, тем не менее, это одна из многих научных теорий, которая имеет место быть в современной физике.

В статье описывается, что такое теория Шредингера. Показан вклад этого великого ученого в современную науку, а также описан придуманный им мысленный эксперимент про кота. Вкратце обрисована область применения такого рода знаний.

Эрвин Шредингер

Пресловутого кота, который ни жив, ни мертв, сейчас задействуют везде. Про него снимают фильмы, в его честь называют сообщества про физику и животных, есть даже такой бренд одежды. Но чаще всего люди подразумевают парадокс с несчастным котом. А вот про его создателя, Эрвина Шредингера, как правило, забывают. Он родился в Вене, которая тогда была частью Австро-Венгрии. Был отпрыском весьма образованной и состоятельной семьи. Его отец, Рудольф, производил линолеум и вкладывал деньги в том числе и в науку. Его мать была дочерью химика, и Эрвин часто ходил слушать в академию лекции деда.

Так как одна из бабушек ученого являлась англичанкой, с детства он был заинтересован иностранными языками и в совершенстве овладел английским. Неудивительно, что в школе Шредингер каждый год был лучшим в классе, а в университете задавался сложными вопросами. В науке начала двадцатого века уже были выявлены несоответствия между более понятной классической физикой и поведением частиц микро- и наномира. На разрешение возникающих противоречий и бросил все силы

Вклад в науку

Для начала стоит сказать, что этот физик занимался многими областями науки. Однако когда мы произносим «теория Шредингера», то подразумеваем не созданное им математически стройное описание цвета, а вклад в квантовую механику. В те времена технология, эксперимент и теория шли рука об руку. Развивалась фотография, были зафиксированы первые спектры, открылось явление радиоактивности. Ученые, которые получали результаты, тесно взаимодействовали с теоретиками: соглашались, дополняли друг друга, спорили. Создавались новые школы и отрасли науки. Мир заиграл совсем другими красками, и человечество получило новые загадки. Несмотря на сложность математического аппарата, описать, что такое теория Шредингера, простым языком можно.

Квантовый мир - это просто!

Сейчас хорошо известно, что масштаб исследуемых объектов напрямую влияет на результаты. Видимые глазу предметы подчиняются понятиям классической физики. Теория Шредингера применима к телам размерами сто на сто нанометров и меньше. А чаще всего речь идет вообще об отдельных атомах и более мелких частицах. Итак, каждый элемент микросистем обладает одновременно свойствами как частицы, так и волны (корпускулярно-волновой дуализм). От материального мира электронам, протонам, нейтронам и т. п. присуща масса и связанные с ней инерция, скорость, ускорение. От теоретической волны - такие параметры, как частота и резонанс. Для того чтобы понять, как это возможно одновременно, и почему они неотделимы друг от друга, ученым потребовалось пересмотреть вообще все представление о строении веществ.

Теория Шредингера подразумевает, что математически эти два свойства связаны через некий конструкт, называемый волновой функцией. Нахождение математического описания этого понятия принесло Шредингеру Нобелевскую премию. Однако физический смысл, который приписал ему автор, не совпал с представлениями Бора, Зоммерфельда, Гейзенберга и Эйнштейна, которые основали так называемую Копенгагенскую интерпретацию. Отсюда и возник «парадокс кота».

Волновая функция

Когда речь идет о микромире элементарных частиц, теряют смысл понятия, присущие макромасштабам: масса, объем, скорость, размер. И вступают в свои права зыбкие вероятности. Объекты таких размеров невозможно человеку зафиксировать - людям доступны только опосредованные способы изучения. Например, полоски света на чувствительном экране или на пленке, количество щелчков, толщина напыляемой пленки. Все остальное - область расчетов.

Теория Шредингера строится на уравнениях, которые вывел этот ученый. А их неотъемлемой составляющей является Она однозначно описывает тип и квантовые свойства исследуемой частицы. Считается, что волновая функция показывает состояние, к примеру, электрона. Однако она сама, вопреки представлениям её автора, физического смысла не имеет. Это просто удобный математический инструмент. Так как в нашей статье излагается теория Шредингера простыми словами, скажем, что квадрат волновой функции описывает вероятность найти систему в заранее заданном состоянии.

Кот как пример макрообъекта

С данной интерпретацией, которая называется копенгагенской, сам автор не согласился до конца жизни. Ему претила размытость понятия вероятности, и он настаивал на наглядности самой функции, а не ее квадрата.

Как пример несостоятельности таких представлений, он утверждал, что в таком случае микромир влиял бы на макрообъекты. Теория гласит следующее: если в герметичную коробку поместить живой организм (например, кота) и капсулу с ядовитым газом, которая открывается, если некий радиоактивный элемент распадается, и остается закрытой, если распад не происходит, то до открытия коробки получаем парадокс. Согласно квантовым представлениям, атом радиоактивного элемента с некоторой вероятностью за определенный промежуток времени распадется. Таким образом, до экспериментального обнаружения атом одновременно и цел, и нет. И, как гласит теория Шредингера, на эту же долю вероятности кот одновременно мертв, а в остальном жив. Что, согласитесь, абсурдно, ибо, открыв коробку, мы обнаружим только одно состояние животного. И в закрытой емкости, рядом со смертоносной капсулой, кот либо мертв, либо жив, так как данные показатели дискретны и не предполагают промежуточных вариантов.

Данному феномену есть конкретное, но пока не до конца доказанное объяснение: при отсутствии ограничивающих время условий для определения конкретного состояния гипотетического кота этот эксперимент, несомненно, парадоксален. Однако квантовомеханические правила нельзя употреблять для макрообъектов. Точно провести границу между микромиром и обычным пока не получилось. Тем не менее животное размером с кошку, без сомнений, - макрообъект.

Применение квантовой механики

Как и для любого, даже теоретического, явления, встает вопрос о том, чем может быть полезен кот Шредингера. Теория большого взрыва, например, основывается именно на процессах, которые касаются этого мысленного эксперимента. Все, что относится к сверхвысоким скоростям, сверхмалому строению вещества, изучению вселенной как таковой, объясняется в том числе и квантовой механикой.

Как объяснил нам Гейзенберг, из-за принципа неопределенности описание объектов квантового микромира носит иной характер, нежели привычное описание объектов ньютоновского макромира. Вместо пространственных координат и скорости, которыми мы привыкли описывать механическое движение, например шара по бильярдному столу, в квантовой механике объекты описываются так называемой волновой функцией. Гребень «волны» соответствует максимальной вероятности нахождения частицы в пространстве в момент измерения. Движение такой волны описывается уравнением Шрёдингера, которое и говорит нам о том, как изменяется со временем состояние квантовой системы.

Теперь про кота. Всем известно, что коты любят прятаться в коробках (). Эрвин Шредингер тоже был в курсе. Более того, с чисто нордическим изуверством он использовал эту особенность в знаменитом мысленном эксперименте. Суть его заключалась в том, что в коробке с адской машиной заперт кот. Машина через реле подсоединена к квантовой системе, например, радиоактивно распадающемуся веществу. Вероятность распада известна и составляет 50%. Адская машина срабатывает когда квантовое состояние системы меняется (происходит распад) и котик погибает полностью. Если предоставить систему "Котик-коробка-адская машина-кванты" самой себе на один час и вспомнить, что состояние квантовой системы описывается в терминах вероятности, то становится понятным, что узнать жив котик или нет, в данный момент времени, наверняка не получится, так же, как не выйдет точно предсказать падение монеты орлом или решкой заранее. Парадокс очень прост: волновая функция, описывающая квантовую систему, смешивает в себе два состояния кота - он жив и мертв одновременно, так же как связанный электрон с равной вероятностью может находится в любом месте пространства, равноудаленного от атомного ядра. Если мы не открываем коробку, мы не знаем точно, как там котик. Не произведя наблюдения (читай измерения) над атомным ядром мы можем описать его состояние только суперпозицией (смешением) двух состояний: распавшегося и нераспавшегося ядра. Кот, находящийся в ядерной зависимости, и жив и мертв одновременно. Вопрос стоит так: когда система перестаёт существовать как смешение двух состояний и выбирает одно конкретное?

Копенгагенская интерпретация эксперимента говорит нам о том, что система перестаёт быть смешением состояний и выбирает одно из них в тот момент, когда происходит наблюдение, оно же измерение (коробка открывается). То есть сам факт измерения меняет физическую реальность, приводя к коллапсу волновой функции (котик либо становится мёртвым, либо остаётся живым, но перестаёт быть смешением того и другого)! Вдумайтесь, эксперимент и измерения, ему сопутствующие, меняют реальность вокруг нас. Лично мне этот факт выносит мозг гораздо сильнее алкоголя. Небезызвестный Стив Хокинг тоже тяжело переживает этот парадокс, повторяя, что когда он слышит про кота Шредингера, его рука тянется к браунингу. Острота реакции выдающегося физика-теоретика связанна с тем, что по его мнению, роль наблюдателя в коллапсе волновой функции (сваливанию её к одному из двух вероятностных) состояний сильно преувеличена.

Конечно, когда профессор Эрвин в далеком 1935 г. задумывал свое кото-измывательство это был остроумный способ показать несовершенство квантовой механики. В самом деле, кот не может быть жив и мертв одновременно. В результате одной из интерпретаций эксперимента стала очевидность противоречия законов макро-мира (например, второго закона термодинамики - кот либо жив, либо мертв) и микро-мира (кот жив и мертв одновременно).

Вышеописанное применяется на практике: в квантовых вычислениях и в квантовой криптографии. По волоконно-оптическому кабелю пересылается световой сигнал, находящийся в суперпозиции двух состояний. Если злоумышленники подключатся к кабелю где-то посередине и сделают там отвод сигнала, чтобы подслушивать передаваемую информацию, то это схлопнет волновую функцию (с точки зрения копенгагенской интерпретации будет произведено наблюдение) и свет перейдёт в одно из состояний. Проведя статистические пробы света на приёмном конце кабеля, можно будет обнаружить, находится ли свет в суперпозиции состояний или над ним уже произведено наблюдение и передача в другой пункт. Это делает возможным создание средств связи, которые исключают незаметный перехват сигнала и подслушивание.

Еще одной наиболее свежей интерпретацией мысленного эксперимента Шредингера является рассказ Шелдона Купера, героя сериала «Теория большого взрыва» («Big Bang Theory»), который он произнес для менее образованной соседки Пенни. Суть рассказа Шелдона заключается в том, что концепция кота Шредингера может быть применена в отношениях между людьми. Для того чтобы понять, что происходит между мужчиной и женщиной, какие отношения между ними: хорошие или плохие, – нужно просто открыть ящик. А до этого отношения являются одновременно и хорошими, и плохими.

«Любой, кто не шокирован квантовой теорией , не понимает её», - так сказал Нильс Бор, основатель квантовой теории.
Основа классической физики - однозначная запрограммированность мира, иначе лапласовский детерминизм, с появлением квантовой механики сменилась вторжением мира неопределенностей и вероятностных событий. И здесь, как нельзя кстати, оказались для физиков-теоретиков мысленные эксперименты. Это были пробные камни, на которых проверялись новейшие идеи.

«Кот Шрёдингера»- это мысленный эксперимент , предложенный Эрвином Шрёдингером, которым он хотел показать неполноту квантовой механики при переходе от субатомных систем к системам макроскопическим.

В закрытый ящик помещён кот. В ящике есть механизм, содержащий радиоактивное ядро, и ёмкость с ядовитым газом. Вероятность того, что ядро распадётся за 1 час, составляет 1/2. Если ядро распадается, оно приводит механизм в действие, он открывает ёмкость с газом, и кот умирает. Согласно квантовой механике, если над ядром не производится наблюдение, то его состояние описывается суперпозицией (смешением) двух состояний - распавшегося ядра и нераспавшегося ядра, следовательно, кот, сидящий в ящике, и жив, и мёртв одновременно. Если же ящик открыть, то экспериментатор может увидеть только какое-нибудь одно конкретное состояние - «ядро распалось, кот мёртв» или «ядро не распалось, кот жив».

Когда же система перестаёт существовать как смешение двух состояний и выбирает одно конкретное?

Цель эксперимента - показать, что квантовая механика неполна без некоторых правил, указывающих, при каких условиях происходит коллапс волновой функции (мгновенное изменение квантового состояния объекта, происходящее при измерении), и кот либо становится мёртвым, либо остаётся живым, но перестаёт быть смешением того и другого.

Поскольку ясно, что кот обязательно должен быть либо живым, либо мёртвым (не существует состояния, промежуточного между жизнью и смертью), то означает, что это верно и для атомного ядра. Оно обязательно будет либо распавшимся, либо нераспавшимся.

Статья Шредингера «Текущая ситуация в квантовой механике» с представлением мысленного эксперимента с котом вышла в немецком журнале «Естественные науки» в 1935 году с целью обсуждения ЭПР-парадокса.

Статьи Эйнштейна-Подольского-Розена и Шредингера обозначили странную природу «квантовой запутанности» (термин введен Шредингером), характерной для квантовых состояний, являющихся суперпозицией состояний двух систем (например, двух субатомных частиц).

Толкования квантовой механики

За время существования квантовой механики учеными были выдвинуты разные ее толкования, но наиболее поддерживаемые из всех на сегодня являются «копенгагенская» и «многомировая».

«Копенгагенская интерпретация» - это толкование квантовой механики сформулировали Нильс Бор и Вернер Гейзенберг во время совместной работы в Копенгагене (1927г.). Ученые попытались ответить на вопросы, возникающие вследствие свойственного квантовой механике корпускулярно-волнового дуализма, в частности на вопрос об измерении.

В копенгагенской интерпретации система перестаёт быть смешением состояний и выбирает одно из них в тот момент, когда происходит наблюдение. Эксперимент с котом показывает, что в этой интерпретации природа этого самого наблюдения - измерения - определена недостаточно. Некоторые полагают, что опыт говорит о том, что до тех пор, пока ящик закрыт, система находится в обоих состояниях одновременно, в суперпозиции состояний «распавшееся ядро, мёртвый кот» и «нераспавшееся ядро, живой кот», а когда ящик открывают, то только тогда происходит коллапс волновой функции до одного из вариантов. Другие догадываются, что «наблюдение» происходит, когда частица из ядра попадает в детектор; однако (и это ключевой момент мысленного эксперимента) в копенгагенской интерпретации нет чёткого правила, которое говорит, когда это происходит, и потому эта интерпретация неполна до тех пор, пока такое правило в неё не введено, или не сказано, как его можно ввести. Точное правило таково: случайность появляется в том месте, где в первый раз используется классическое приближение.

Таким образом, мы можем опираться на следующий подход: в макроскопических системах мы не наблюдаем квантовых явлений (кроме явления сверхтекучести и сверхпроводимости); поэтому, если мы накладываем макроскопическую волновую функцию на квантовое состояние, мы из опыта должны заключить, что суперпозиция разрушается. И хотя не совсем ясно, что́ значит, что нечто является «макроскопическим» вообще, про кота точно известно, что он является макроскопическим объектом. Таким образом, копенгагенская интерпретация не считает, что до открытия ящика кот находится в состоянии смешения живого и мёртвого.

В « многомировой интерпретации» квантовой механики, не считающей процесс измерения чем-то особенным, оба состояния кота существуют, но декогерируют, т.е. происходит процесс, при котором квантово-механическая система взаимодействует с окружающей средой и приобретает информацию, имеющуюся в окружающей среде, или иначе, « запутывается» с окружающей средой. И когда наблюдатель открывает ящик, он запутывается с котом и от этого образуются два состояния наблюдателя, соответствующие живому и мёртвому коту, и эти состояния не взаимодействуют друг с другом. Тот же механизм квантовой декогеренции важен и для «совместных» историй. В этой интерпретации только «мёртвый кот» или «живой кот» могут быть в «совместной истории.

Другими словами, когда ящик открывается, Вселенная расщепляется на две разные вселенные, в одной из которых наблюдатель смотрит на ящик с мёртвым котом, а в другой - наблюдатель смотрит на живого кота.

Парадокс "друга Вигнера"

Парадокс друга Вигнера – это усложнённый эксперимент парадокса «кота Шрёдингера». Лауреат Нобелевской премии, американский физик Юджин Вигнер ввел категорию «друзей». После завершения опыта экспериментатор открывает коробку и видит живого кота. Состояние кота в момент открытия коробки переходит в состояние «ядро не распалось, кот жив». Таким образом, в лаборатории кот признан живым. За пределами лаборатории находится «друг». Друг еще не знает, жив кот или мёртв. Друг признает кота живым только тогда, когда экспериментатор сообщит ему исход эксперимента. Но все остальные «друзья» еще не признали кота живым, и признают только тогда, когда им сообщат результат эксперимента. Таким образом, кота можно признать полностью живым только тогда, когда все люди во Вселенной узнают результат эксперимента. До этого момента в масштабе Большой Вселенной кот остается полуживым и полумёртвым одновременно.

Вышеописанное применяется на практике: в квантовых вычислениях и в квантовой криптографии. По волоконно-оптическому кабелю пересылается световой сигнал, находящийся в суперпозиции двух состояний. Если злоумышленники подключатся к кабелю где-то посередине и сделают там отвод сигнала, чтобы подслушивать передаваемую информацию, то это схлопнет волновую функцию (с точки зрения копенгагенской интерпретации будет произведено наблюдение) и свет перейдёт в одно из состояний. Проведя статистические пробы света на приёмном конце кабеля, можно будет обнаружить, находится ли свет в суперпозиции состояний или над ним уже произведено наблюдение и передача в другой пункт. Это делает возможным создание средств связи, которые исключают незаметный перехват сигнала и подслушивание.

Эксперимент (который в принципе может быть выполнен, хотя работающие системы квантовой криптографии, способные передавать большие объёмы информации, ещё не созданы) также показывает, что «наблюдение» в копенгагенской интерпретации не имеет отношения к сознанию наблюдателя, поскольку в данном случае к изменению статистики на конце кабеля приводит совершенно неодушевлённое ответвление провода.

А в квантовых вычислениях состоянием «шредингеровского кота» называется особое запутанное состояние кубитов, при котором они все находятся в одинаковой суперпозиции всех нулей или единиц.

( «Кубит» - это наименьший элемент для хранения информации в квантовом компьютере. Он допускает два собственных состояния, но при этом может находиться и в их суперпозиции. При любом измерении состояния кубита он случайно переходит в одно из своих собственных состояний.)

В реалиях! Малый брат «кота Шрёдингера»

Прошло уже 75 лет с тех пор, как появился «кот Шредингера», но до сих пор некоторые из следствий квантовой физики кажутся расходящимися с нашими обыденными представлениями о веществе и его свойствах. Согласно законам квантовой механики должно быть возможным создание такого состояния «кота», когда он будет одновременно и жив, и мёртв, т.е. будет находиться в состоянии квантовой суперпозиции двух состояний. Однако на практике создание квантовой суперпозиции такого большого количества атомов пока не удаётся. Трудностью является то, что чем больше атомов находиться в суперпозиции, тем менее устойчиво это состояние, поскольку внешние воздействия стремятся его разрушить.

Физикам из Венского университета (публикация в журнале «Nature Communications », 2011г.) впервые в мире удалось продемонстрировать квантовое поведение органической молекулы, состоящей из 430 атомов и находящейся в состоянии квантовой суперпозиции. Полученная экспериментаторами молекула больше похожа на осьминога. Размер молекул составляет порядка 60 ангстрем, а длина волны де Бройля для молекулы составляла всего 1 пикометр. Такой «молекулярный осьминог» оказался способным продемонстрировать свойства, присущие коту Шрёдингера.

Квантовое самоубийство

Квантовое самоубийство - мысленный эксперимент в квантовой механике, который был предложен независимо друг от друга Г. Моравеком и Б. Маршалом, а в 1998 году был расширен космологом Максом Тегмарком. Этот мысленный эксперимент, являясь модификацией мысленного эксперимента с котом Шрёдингера, наглядно показывает разницу между двумя интерпретациями квантовой механики: копенгагенской интерпретацией и многомировой интерпретацией Эверетта.

Фактически эксперимент представляет собой эксперимент с котом Шрёдингера с точки зрения кота.

В предложенном эксперименте на участника направлено ружьё, которое стреляет или не стреляет в зависимости от распада какого-либо радиоактивного атома. Вероятность, что в результате эксперимента ружьё выстрелит и участник умрёт, составляет 50 %. Если копенгагенская интерпретация верна, то ружьё в конечном итоге выстрелит, и участник умрёт.
Если же верна многомировая интерпретация Эверетта, то в результате каждого проведенного эксперимента вселенная расщепляется на две вселенных, в одной из которых участник остается жив, а в другой погибает. В мирах, где участник умирает, он перестает существовать. Напротив, с точки зрения неумершего участника, эксперимент будет продолжаться, не приводя к исчезновению участника. Это происходит потому, что в любом ответвлении участник способен наблюдать результат эксперимента лишь в том мире, в котором он выживает. И если многомировая интерпретация верна, то участник может заметить, что он никогда не погибнет в ходе эксперимента.

Участник никогда не сможет рассказать об этих результатах, так как с точки зрения стороннего наблюдателя, вероятность исхода эксперимента будет одинаковой и в многомировой, и в копенгагенской интерпретациях.

Квантовое бессмертие

Квантовое бессмертие - мысленный эксперимент, вытекающий из мысленного эксперимента с квантовым самоубийством и утверждающий, что согласно многомировой интерпретации квантовой механики существа, имеющие способность к самосознанию, бессмертны.

Представим, что участник эксперимента взрывает ядерную бомбу вблизи себя. Практически во всех параллельных Вселенных ядерный взрыв уничтожит участника. Но, несмотря на это, должно существовать небольшое множество альтернативных Вселенных, в которых участник каким-либо образом выживает (то есть Вселенных, в которых возможно развитие потенциального сценария спасения). Идея квантового бессмертия состоит в том, что участник остаётся в живых, и тем самым способен воспринимать окружающую реальность, по меньшей мере в одной из Вселенных в множестве, пусть даже количество таких вселенных чрезвычайно мало в сравнении с количеством всех возможных Вселенных. Таким образом, со временем участник обнаружит, что он может жить вечно. Некоторые параллели с этим умозаключением могут быть найдены в концепции антропного принципа.

Другой пример вытекает из идеи квантового самоубийства. В этом мысленном эксперименте участник направляет на себя ружьё, которое может либо выстрелить, либо нет в зависимости от результата распада какого-либо радиоактивного атома. Вероятность, что в результате эксперимента ружьё выстрелит и участник умрёт, составляет 50 %. Если Копенгагенская интерпретация верна, то ружьё в конечном итоге выстрелит, и участник умрёт.

Если же верна многомировая интерпретация Эверетта, то в результате каждого проведённого эксперимента вселенная расщепляется на две вселенных, в одной из которых участник остается жив, а в другой погибает. В мирах, где участник умирает, он перестает существовать. Напротив, с точки зрения не умершего участника, эксперимент будет продолжаться, не приводя к исчезновению участника, так как после каждого расщепления вселенных он будет способен осознавать себя только в тех вселенных, где он выжил. Таким образом, если многомировая интерпретация Эверетта верна, то участник может заметить, что он никогда не погибнет в ходе эксперимента, тем самым «доказывая» свое бессмертие, по крайней мере с его точки зрения.

Сторонники квантового бессмертия указывают на то, что эта теория не противоречит никаким известным законам физики (эта позиция далека от единодушного признания в научном мире). В своих рассуждениях они опираются на следующие два спорных допущения:
- верна многомировая интерпретация Эверетта, а не Копенгагенская интерпретация, так как последняя отрицает существование параллельных вселенных;
- все возможные сценарии, в которых в ходе эксперимента участник может умереть, содержат по крайней мере малое подмножество сценариев, где участник остаётся в живых.

Возможным аргументом против теории квантового бессмертия может быть то, что второе допущение не обязательно следует из многомировой интерпретации Эверетта, и оно может вступать в противоречие с законами физики, которые, как считается, распространяются на все возможные реальности. Многомировая интерпретация квантовой физики необязательно предполагает, что «всё возможно». Она лишь указывает на то, что в определённый момент времени вселенная может разделиться на некоторое число других, каждая из которых будет соответствовать одному из множества всех возможных исходов. К примеру, считается, что второе начало термодинамики справедливо для всех вероятных вселенных. Это означает, что теоретически существование этого закона препятствует образованию параллельных вселенных, где он нарушался бы. Следствием этого может быть достижение с точки зрения экспериментатора такого состояния реальности, где его дальнейшее выживание становится невозможным, так как это потребовало бы нарушения закона физики, который, по высказанному ранее допущению справедлив для всех возможных реальностей.

Например, при взрыве ядерной бомбы, описанном выше, достаточно трудно описать правдоподобный сценарий, не нарушающий основных биологических принципов, в котором участник останется в живых. Живые клетки просто-напросто не могут существовать при температурах, достигаемых в центре ядерного взрыва. Для того чтобы теория квантового бессмертия осталась справедливой, необходимо, чтобы либо произошла осечка (и тем самым не произошло ядерного взрыва), либо случилось какое-либо событие, которое основывалось бы на пока неоткрытых или недоказанных законах физики. Другим аргументом против обсуждаемой теории может служить наличие у всех существ естественной биологической смерти, которую невозможно избежать ни в одной из параллельных Вселенных (по крайней мере, на данном этапе развития науки)

С другой стороны, второе начало термодинамики является статистическим законом, и ничему не противоречит возникновение флуктуации (например, появление области с условиями, подходящими для жизни наблюдателя во вселенной, в целом достигшей состояния тепловой смерти; или в принципе возможное движение всех частиц, возникших в результате ядерного взрыва, таким образом, что каждая из них пролетит мимо наблюдателя), хотя такая флуктуация возникнет лишь в крайне малой части из всех возможных исходов. Аргумент, относящийся к неизбежности биологической смерти, также может быть опровергнут на основании вероятностных соображений. Для каждого живого организма в данный момент времени существует ненулевая вероятность, что он останется жив в течение следующей секунды. Таким образом, вероятность того, что он останется жив в течение следующего миллиарда лет, также отлична от нуля (поскольку является произведением большого числа ненулевых сомножителей), хотя и очень мала.

В идее квантового бессмертия проблемно то, что согласно ей самосознающее существо будет «вынуждено» переживать чрезвычайно маловероятные события, которые будут возникать в ситуациях, при которых участник, казалось бы, должен погибнуть. Даже несмотря на то, что во многих параллельных вселенных участник умирает, те немногие вселенные, которые участник способен субъективно воспринимать, будут развиваться по крайне маловероятному сценарию. Это в свою очередь может в некотором роде вызвать нарушение принципа причинности, природа которого в квантовой физике еще недостаточно ясна.

Хотя идея квантового бессмертия вытекает большей частью из эксперимента с «квантовым самоубийством», Тегмарк утверждает, что при любых нормальных условиях всякое мыслящее существо перед смертью проходит через этап (от нескольких секунд до нескольких лет)уменьшения уровня самосознания, никак не связанный с квантовой механикой, и у участника нет никакой возможности для продолжительного существования посредством перехода из одного мира в другой, дающий ему возможность выжить.

Здесь сознающий себя разумный наблюдатель лишь в относительно малом числе возможных состояний, при которых он сохраняет самосознание, продолжает оставаться в, так сказать, «здоровом теле». Возможность того, что наблюдатель, сохранив сознание, останется искалеченным, значительно больше, чем если он останется цел и невредим. Любая система (в том числе живой организм) имеет гораздо больше возможностей функционировать неправильно, чем оставаться в идеальной форме. Эргодическая гипотеза Больцмана требует, чтобы бессмертный наблюдатель рано или поздно прошёл все состояния, совместимые с сохранением сознания, в том числе и те, в которых он будет ощущать непереносимые страдания, - и таких состояний будет значительно больше, чем состояний оптимального функционирования организма. Таким образом, как считает философ Дэвид Льюис, нам следовало бы надеяться, что многомировая интерпретация неверна.