Действие нейротоксинов. Что такое нейротоксины? Классификация и примеры

Как показывают исследования, аутизм и другие нервные расстройства на сегодняшний момент диагностируются все чаще. Причиной тому могут быть не только наследственные генетические заболевания, но и опасные химикаты. В частности, одни только органофосфаты, используемые в сельском хозяйстве, серьезно влияют на состояние центральной нервной системы.

И недавно, эксперты определили 10 химических веществ, так называемых нейротоксинов, содержащихся как в окружающей среде, так и в бытовых предметах, мебели и одежде. По мнению ученых, именно эти вещества являются причиной развития заболеваний, поражающих нервную систему. Большинство из них уже сильно ограничено в использовании, но некоторые из них по-прежнему представляют большую опасность.

Хлорпирифос


Распространенный в прошлом химикат, входящий в группу фосфорорганических пестицидов, используемый для уничтожения вредителей. На сегодняшний момент хлорпирифос классифицируется как высокотоксичное соединение, опасное для птиц и пресноводных рыб, и умеренно токсичное для млекопитающих. Несмотря на это, оно по-прежнему широко используется в выращивании непродовольственных культур и для обработки изделий из древесины.

Метилртуть


Метилруть – опасный нейротоксин, влияющий на механизмы наследственности у человека. Она вызывает в клетках аномальные митозы (К-митозы), а также наносит повреждения хромосомам, причем ее воздействие в 1000 раз превышает эффект от колхицина. Ученые считают возможным тот факт, что метилруть может вызывать врожденные уродства и психические дефекты.

Полихлорированные бифенилы


Или ПХБ, входят в группу химических веществ, определяемых как стойкие органические загрязнители. Они попадают в организм через легкие, желудочно-кишечный тракт с пищей или кожу, и откладываются в жирах. Классифицируется ПХБ как вероятный канцероген человека. Кроме того, они вызывают заболевания печени, нарушают репродуктивную функцию и разрушают эндокринную систему.

Этанол


Как оказалось, этанол не является экологически безопасной альтернативой бензину. Судя по данным ученых из Стэнфордского университета, автомобили на смеси этанола и бензина способствуют повышению в атмосфере уровня двух канцерогенов – формальдегида и ацетальдегида. Кроме того, при использовании этанола в качестве топлива вырастет уровень атмосферного озона, который даже при малых концентрациях приводит ко всевозможным заболеваниям легких.

Свинец


Проникая в организм, свинец попадает в кровоток, и частично выводится естественным путем, частично откладывается в различных системах организма. При значительной степени интоксикации развиваются нарушения функционального состояния почек, головного мозга, нервной системы. Отравление органическими соединениями свинца приводит к нервным расстройствам – бессоннице и истерическому состоянию.

Мышьяк


В промышленности мышьяк используется для производства удобрений, химической обработки древесины и в изготовлении полупроводников. В организм человека мышьяк попадает в виде пыли и через желудочно-кишечный тракт. При длительном контакте с мышьяком могут образоваться злокачественные опухоли, кроме того нарушается обмен веществ и функции центральной и периферической нервной системы.

Марганец


Прежде всего, марганец попадает в человеческий организм через дыхательные пути. Крупные частицы, отторгнутые дыхательными путями, могут быть проглочены вместе со слюной. Избыточное количество марганца накапливается в печени, почках, железах внутренней секреции и костях. Интоксикация на протяжении нескольких лет приводит к нарушению в работе центральной нервной системы и развитию болезни Паркинсона. Кроме того, избыток марганца приводит к заболеваниям костей, возрастает риск переломов.

Фтор


Несмотря на то, что фториды широко используются в гигиене ротовой полости в борьбе с бактериальными заболеваниями зубов, они могут вызвать множество негативных эффектов. Потребление воды с содержанием фтора в концентрации одна часть на миллион вызывают изменения в мозговой ткани аналогичные болезни Альцгеймера. Самое парадоксальное: переизбыток фтора разрушительно влияет на сами зубы, вызывая флюороз.

Тетрахлорэтилен


Или перхлорэтилен является превосходным растворителем и применяется в текстильной промышленности и для обезжиривания металлов. При контакте с открытым пламенем и нагретыми поверхностями разлагается с образованием токсичных паров. При длительном контакте тетрахлорэтилен оказывает токсическое воздействие на ЦНС, печень и почки. Известен ряд острых, приводящих к смерти, отравлений.

Толуол


В химической промышленности используется для изготовления бензола, бензойной кислоты и входит в состав многих растворителей. Пары толуола проникают в организм человека через дыхательные пути и кожный покров. Интоксикация вызывает нарушения развития организма, снижает способности к обучению, поражает нервную систему и снижает иммунитет. >>>> Чем опасны нейротоксические воздействия?

Чем опасны нейротоксические воздействия?

Ряд веществ может оказывать пагубное действие на нервные волокна, и такие вещества называют нейротоксинами, а результаты их действия – нейротоксическими расстройствами. Нейротоксины могут вызывать острые реакции или действовать отсрочено, превращая токсическое воздействие в хронический процесс.

В роли нейротоксинов могут выступать химические реагенты, анестетики, антисептики, моющие средства, пестициды, инсектициды, пары металлов, лекарственные средства с нейротоксичным побочным эффектом. Нейротоксическое действие может начаться при случайном попадании в систему дыхания, в кровь компонентов данных веществ и при превышении их допустимой концентрации в крови.

Нейротоксическое воздействие веществ на организм проявляется в ряде признаков:

  • Головные боли,
  • Головокружения,
  • Чувство дурноты,
  • Слабость мышц конечностей,
  • Нарушения равновесия,
  • Чувство онемения тканей,
  • Нарушения чувствительности тканей,
  • Замедление или нарушения рефлексов,
  • Нарушения сердечной деятельности (аритмии , тахикардия),
  • Нарушения зрения,
  • Нарушения дыхания,
  • Боли, сходные с корешковым синдромом ,
  • Нарушения двигательной активности,
  • Задержка мочеиспускания или недержание мочи,
  • Спутанность сознания.

Нейротоксические расстройства могут иметь обратимый характер и исчезать при прекращении действия нейротоксина, но могут и привести к необратимым повреждениям в организме.

Нейротоксическому воздействию можно подвергнуться:

  • на производстве химических веществ, долгое время находясь во вредной атмосфере,
  • при работах с удобрениями и инсектицидами в сельском хозяйстве и на частных дачных участках,
  • при проведении дезинфекций помещений, находясь в атмосфере, наполненной парами концентрированного дезинфектанта,
  • при ремонтных и строительных работах с лако–красочными средствами, клеями, растворителями в плохо проветриваемых помещениях,
  • находясь вблизи зоны горения с высокой концентрацией угарного газа,
  • Находясь в зоне химической техногенной катастрофы (аварийные выбросы).

Нейротоксические расстройства могут со временем трансформироваться в заболевания нервной системы и опорно – двигательного аппарата: миопатии , болезнь Паркинсона, снижение или потерю зрения, нарушение работы вестибулярного аппарата , умственную деградацию, тики, тремор.

Лечение нейротоксических расстройств построено на проведении дезинтоксикационных мероприятий по выведению из организма токсических веществ и снижению их концентрации в тканях, восстановлению водно – электролитного баланса, очистке крови от токсинов путем гемосорбции . При нейротоксикозе проводят симптоматическую терапию (противосудорожными препаратами, миорелаксантами, противовоспалительными препаратами, противоаллергическими препаратами) по устранению нарушений, появившихся в результате токсического воздействия. Приоритетное направление при лечении нейротоксических расстройств приобретает восстановление дыхательной активности, гемодинамики, предотвращение отека мозга. Далее проводится мониторинг пострадавших органов, назначается соответствующее лечение и восстанавливается двигательная активность.

Нейротоксичность - это способность химических веществ, действуя на организм, вызывать нарушение структуры или функций нервной системы. Нейротоксичность присуща большинству известных веществ.

К числу нейротоксикантов относят вещества, для которых порог чувствительности нервной системы (отдельных её гистологических и анатомических образований) существенно ниже, чем других органов и систем, и в основе интоксикации которыми лежит поражение именно нервной системы.

Классификация ОВТВ нейротоксического действия :

1. Овтв вызывающие преимущественно функциональные нарушения центрального и периферического отделов нервной системы:

ОВТВ нервно-паралитического действия:

Действующие на холинореактивные синапсы;

Ингибиторы холинэстеразы: ФОС, карбаматы;

Пресинаптические блокаторы высвоб-я ацетилхолина: ботулотоксин.

Действующие на ГАМК – реактивные синапсы:

Ингибиторы синтеза ГАМК: производные гидразина;

Антагонисты ГАМК (ГАМК-литики): бициклофосфаты, норборнан;

Пресинаптические блокаторы высвобождения ГАМК: тетанотоксин.

Блокаторы Na – ионных каналов возбудимых мембран:

Тетродотоксин, сакситоксин.

ОВТВ писходислептического действия:

Эйфоригены: тетрагидроканнабиол, суфентанил, клонитазен;

Галлюциногены: диэтиламид лизергиновой кислоты (ДЛК);

Делириогены: произв-е хинуклединбензилата (BZO фенциклидин (сернил).

2. Овтв вызывающие органические повреждения нервной системы:

Таллий; - тетраэтилсвинец (ТЭС).

Таблица 6.

Токсичность некоторых отравляющих веществ

Наименование

Поражение через органы дыхания

LCt50 г мин/ м 3

ICt50 г мин/ м 3

Большинство промышленных токсикантов, пестицидов, лекарственных средств (применение которых возможно в качестве диверсионных агентов), занимают промежуточное положение между смертельно действующими отравляющими веществами и временно выводящими из строя. Различие значений их смертельных и выводящих из строя доз больше, чем у представителей первой подгруппы, и меньше, чем у представителей второй.

Отравляющие и высокотоксичные вещества нервно-паралитического действия

Действующие на холинореактивные синапсы, ингибиторы холинэстеразы

Фосфорорганические соединения

Фосфорорганические соединения нашли применение как инсектициды (хлорофос, карбофос, фосдрин, лептофос и др.), лекарственные препараты (фосфакол, армин и т.д.), наиболее токсичные представители группы приняты на вооружение армий целого ряда стран в качестве боевых отравляющих веществ (зарин, зоман, табун, Vx). Поражение ФОС людей возможно при авариях на объектах по их производству, при применении в качестве ОВ или диверсионных агентов. ФОС – производные кислот пятивалентного фосфора.

Все ФОС при взаимодействии с водой подвергаются гидролизу с образованием нетоксичных продуктов. Скорость гидролиза ФОС, растворенных в воде, различна (например, зарин гидролизуется быстрее, чем зоман, а зоман – быстрее, чем V-газы).

ФОВ образуют зоны стойкого химическиого заражения. Прибывающие из зоны заражения, пораженные ФОВ представляют реальную опасность для окружающих.

Токсикокинетика

Отравление происходит при вдыхании паров и аэрозолей, всасывании ядов в жидком и аэрозольном состоянии через кожу, слизистую глаз, с зараженной водой или пищей – через слизистую желудочно-кишечного тракта. ФОВ не обладают раздражающим действием на месте аппликации (слизистые оболочки верхних дыхательных путей и желудочно-кишечного тракта, конъюнктива глаз, кожа) и проникают в организм практически незаметно. Мало токсичные ФОС способны к относитльно продолжительному персистированию (карбофос – сутки и более). Наиболее токсичные представители, как правило, быстро гидролизуются, окисляются. Период полуэлиминации зарина и зомана составляют около 5 минут, Vх несколько больше. Метаболизм ФОС происходит во всех органах и тканях. Из организма выделяются только нетоксичные метаболиты веществ и потому выдыхаемый воздух, моча, кал не опасны для окружающих.

Леонид Завальский

Нейротоксины все чаще используют в медицине для лечебных целей.

Некоторые нейротоксины с разной молекулярной структурой обладают сходным механизмом действия, вызывая фазовые переходы в мембранах нервных и мышечных клеток. Не последнюю роль в действии нейротоксинов играет гидратация, существенно влияющая на конформацию взаимодействующих ядов и рецепторов.

Сведения о ядовитости иглобрюхов (маки-маки, рыбы-собаки, фугу и др.) восходят к глубокой древности (более 2500 лет до нашей эры). Из европейцев первым дал подробное описание симптомов отравления известный мореплаватель Кук, который вместе с 16 моряками угостился иглобрюхом во время второго кругосветного путешествия в 1774 году. Ему еще повезло, поскольку он “едва притронулся к филе”, тогда как “свинья, съевшая внутренности, околела и сдохла”. Как ни странно, японцы не могут отказать себе в удовольствии отведать такой, с их точки зрения, деликатес, хотя и знают, как осторожно следует его готовить и опасно есть.

Первые признаки отравления появляются в интервале от нескольких минут до 3 часов после приема фугу в пищу. Вначале неудачливый едок ощущает покалывание и онемение языка и губ, распространяющееся затем на все тело. Потом начинается головная и желудочная боль, руки парализуются. Походка становится шатающейся, появляется рвота, атаксия, ступор, афазия. Дыхание затрудняется, артериальное давление снижается, понижается температура тела, развивается цианоз слизистых и кожи. Больной впадает в коматозное состояние, и вскоре после остановки дыхания прекращается и сердечная деятельность. Одним словом, типичная картина действия нервно-паралитического яда.

В 1909 году японский исследователь Тахара выделил активное начало из фугу и назвал его тетродотоксином. Однако лишь спустя 40 лет удалось выделить тетродотоксин в кристаллическом виде и установить его химическую формулу. Для получения 10 г тетродотоксина японскому ученому Тсуда (1967) пришлось переработать 1 тонну яичников фугу. Тетродотоксин представляет собой соединение аминопергидрохиназолина с гуанидиновой группой и обладает чрезвычайно высокой биологической активностью. Как оказалось, именно наличие гуанидиновой группы играет решающую роль в возникновении токсичности.

Одновременно с исследованием яда скалозубых рыб и иглобрюхов во многих лабораториях мира изучались токсины, выделенные из тканей других животных: саламандр, тритонов, ядовитых жаб и других. Интересным оказалось то, что в некоторых случаях ткани совершенно разных животных, не имеющих генетического родства, в частности калифорнийского тритона Taricha torosa, рыб рода Gobiodon, центрально-американских лягушек Atelopus, австралийских осьминогов Hapalochlaena maculosa, вырабатывали тот же самый яд тетродотоксин.

По действию тетродотоксин весьма схож с другим небелковым нейротоксином – сакситоксином, продуцируемым одноклеточными жгутиковыми динофлагеллятами. Яд этих жгутиковых одноклеточных может концентрироваться в тканях моллюсков мидий при массовом размножении, после чего мидии становятся ядовитыми при употреблении человеком в пищу. Изучение молекулярной структуры сакситоксина показало, что его молекулы, как и тетродотоксин, содержат гуанидиновую группу, даже две таких группы на молекулу. В остальном сакситоксин не имеет общих структурных элементов с тетродотоксином. Но механизм действия этих ядов одинаков.

В основе патологического действия тетродотоксина лежит его способность блокировать проведение нервного импульса в возбудимых нервных и мышечных тканях. Уникальность действия яда заключается в том, что он в очень низких концентрациях – 1 гамм (стотысячная доля грамма) на килограмм живого тела – блокирует входящий натриевый ток во время потенциала действия, что приводит к смертельному исходу. Яд действует только с наружной стороны мембраны аксона. На основании этих данных японские ученые Као и Нишияма высказали гипотезу, что тетродотоксин, размер гуанидиновой группы которого близок диаметру гидратированного иона натрия, входит в устье натриевого канала и застревает в нем, стабилизируясь снаружи остальной частью молекулы, размеры которой превышают диаметр канала. Аналогичные данные были получены при изучении блокирующего действия сакситоксина. Рассмотрим явление подробнее.

В состоянии покоя между внутренней и внешней сторонами мембраны аксона поддерживается разность потенциалов, равная примерно 60 мВ (снаружи потенциал положительный). При возбуждении нерва в точке приложения за короткое время (около 1 мс) разность потенциалов меняет знак и достигает 50 мВ – первая фаза потенциала действия. После достижения максимума потенциал в данной точке возвращается к исходному состоянию поляризации, но абсолютная величина его становится несколько больше, чем в состоянии покоя (70 мВ) – вторая фаза потенциала действия. В течение 3-4 мс потенциал действия в данной точке аксона возвращается в состояние покоя. Импульс короткого замыкания достаточен для возбуждения соседнего участка нерва и переполяризации его в тот момент, когда предыдущий участок возвращается к равновесию. Таким образом, потенциал действия распространяется по нерву в виде незатухающей волны, бегущей со скоростью 20-100 м/с.

Ходжкин и Хаксли с сотрудниками подробно исследовали процесс распространения нервного возбуждений и показали, что в состоянии покоя мембрана аксона непроницаема для натрия, тогда как калий свободно диффундирует через мембрану. «Вытекающий» наружу калий уносит положительный заряд, и внутренне пространство аксона заряжается отрицательно, препятствуя дальнейшему выходу калия. В итоге оказывается, что концентрация калия снаружи нервной клетки в 30 раз меньше, чем внутри. С натрием ситуация противоположная – в аксоплазме его концентрация в 10 раз ниже, чем в межклеточном пространстве.

Молекулы тетродотоксина и сакситоксина блокируют работу натриевого канала и, как следствие, препятствуют прохождению потенциала действия через аксон. Как видно, помимо специфического взаимодействия гуанидиновой группы с устьем канала (взаимодействие типа «ключ-замок»), определенную функцию во взаимодействии выполняет оставшаяся часть молекулы, подверженная гидратации молекулами воды из водно-солевого раствора в окружении мембраны.

Значение исследований действия нейротоксинов трудно переоценить, поскольку они впервые позволили приблизиться к пониманию таких фундаментальных явлений, как селективная ионная проницаемость клеточных мембран, лежащая в основе регуляции жизненных функций организма. Используя высоко специфическое связывание меченного тритием тетродотоксина, удалось подсчитать плотность натриевых каналов в мембране аксонов разных животных. Так, в гигантском аксоне кальмара плотность каналов составила 550 на квадратный мкм, а в портняжной мышце лягушки – 380.

Специфическое блокирование нервной проводимости позволило использовать тетродотоксин как мощный местный анестетик. В настоящее время во многих странах уже налажено производство обезболивающих препаратов на основе тетродотоксина. Имеются данные о положительном терапевтическом эффекте препаратов нейротоксина при бронхиальной астме и судорожных состояниях.

Весьма подробно исследованы к настоящему времени и механизмы действия наркотиков морфиевого ряда. Медицине и фармакологии давно известны свойства опия снимать болевые ощущения. Уже в 1803 году немецкий фармаколог Фриц Сертюнер сумел очистить препарат опиума и извлечь из него действующее начало – морфин. Медицинский препарат морфина широко использовался в клинической практике, особенно в годы первой мировой войны. Главный его недостаток – побочное действие, выражающееся в формировании химической зависимости и привыкания организма к наркотику. Поэтому были предприняты попытки найти замену морфию столь же эффективным обезболивающим средством, но лишенным побочного действия. Однако и все новые вещества, как оказалось на поверку, тоже вызывают синдром привыкания. Такая судьба постигла героин (1890), меперидин (1940) и другие производные морфина. Обилие различающихся по форме молекул опиатов дает основание для точного установления строения опиат-рецептора, к которому присоединяется молекула морфия, подобно рецептору тетродотоксина.

Все молекулы анальгетически активных опиатов имеют общие элементы. Молекула опия имеет жесткую Т-образную форму, представленную двумя взаимно перпендикулярными элементами. В основании Т-молекулы размещается гидроксильная группа, а на одном из концов горизонтальной планки – атом азота. Эти элементы составляют «базовую основу» ключа, открывающего рецептор-замок. Существенным представляется то, что обезболивающей и эйфорической активностью обладают лишь левовращающие изомеры морфиевого ряда, тогда как правовращающие такой активности лишены.

Многочисленными исследованиями было установлено, что опиат-рецепторы существуют в организмах всех без исключения позвоночных животных, от акулы до приматов, включая человека. Более того, оказалось, что сам организм способен синтезировать опиеподобные вещества, называемые энкефалинами (метионин-энкефалин и лейцин-энкефалин), состоящие из пяти аминокислот и обязательно содержащие специфический морфиевый «ключ». Энкефалины выбрасываются специальными энкефалиновыми нейронами и вызывают расслабление организма. В ответ на присоединение энкефалинов в опиат-рецептору управляющий нейрон посылает сигнал расслабления гладкой мускулатуре и воспринимается древнейшей формацией нервной системы – лимбическим мозгом – как состояние высшего блаженства, или эйфории. Такое состояние, например, может наступать после завершения стресса, хорошо выполненной работы или глубокого сексуального удовлетворения, требующих известной мобилизации сил организма. Морфий возбуждает опиат-рецептор, как и энкефалины, даже когда нет основания для блаженства, например, в случае болезни. Доказано, что состояние нирваны йогов есть не что иное, как эйфория, достигнутая выбросом энкефалинов путем аутотренинга и медитации. Таким способом йоги открывают доступ к гладкой мускулатуре и могут регулировать работу внутренних органов, даже приостанавливать биение сердца.