Чему равно 2 космическая скорость. Космическая скорость

Первая космическая скорость - это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Рассмотрим движение тела в неинерциальной системе отсчета - относительно Земли.

В этом случае объект на орбите будет находиться в состоянии покоя, так как на него будут действовать уже две силы: центробежная сила и сила тяготения.

где m - масса объекта, M - масса планеты, G - гравитационная постоянная (6,67259·10 −11 м?·кг −1 ·с −2),

Первая космическая скорость, R - радиус планеты. Подставляя численные значения (для Земли 7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения - так как g = GM/R?, то

Втора?я косми?ческая ско?рость - наименьшая скорость, которую необходимо придать объекту, масса которого пренебрежимо мала по сравнению с массой небесного тела, для преодоления гравитационного притяжения этого небесного тела и покидания круговой орбиты вокруг него.

Запишем закон сохранения энергии

где слева стоят кинетическая и потенциальная энергии на поверхности планеты. Здесь m - масса пробного тела, M - масса планеты, R - радиус планеты, G -гравитационная постоянная, v 2 - вторая космическая скорость.

Между первой и второй космическими скоростями существует простое соотношение:

Квадрат скорости убегания равен удвоенному ньютоновскому потенциалу в данной точке:

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 15. Вывод формул для 1-й и 2-й космических скоростей.:

  1. Распределение Максвелла по скоростям. Наиболее вероятная среднеквадратичная скорость движения молекулы.
  2. 14. Вывод третьего закона Кеплера для кругового движения
  3. 1. Скорость элиминации. Константа скорости элиминации. Время полуэлиминации
  4. 7.7. Формула Релея-Джинса. Гипотеза Планка. Формула Планка
  5. 13. Космическая и авиационная геодезия. Особенности зондирования в водной среде. Системы машинного зрения ближнего радиуса действия.
  6. 18. Этический аспект культуры речи. Речевой этикет и культура общения. Формулы речевого этикета. Этикетные формулы знакомства, представления, приветствия и прощания. «Ты» и «Вы» как формы обращения в русском речевом этикете. Национальные особенности речевого этикета.

Любой предмет, будучи подброшенным вверх, рано или поздно оказывается на земной поверхности, будь то камень, лист бумаги или простое перышко. В то же время, спутник, запущенный в космос полвека назад, космическая станция или Луна продолжают вращаться по своим орбитам, словно на них вовсе не действует нашей планеты. Почему так происходит? Почему Луне не грозит упасть на Землю, а Земля не движется навстречу к Солнцу? Неужели на них не действует всемирное тяготение?

Из школьного курса физики мы знает, что всемирное тяготение воздействует на любое материальное тело. Тогда логично будет предположить, что есть некая сила, нейтрализующая действие гравитации. Эту силу принято называть центробежной. Ее действие легко ощутить привязав на один конец нитки небольшой груз и раскрутив его по окружности. При этом чем больше скорость вращения тем сильнее натяжение нити, а чем медленнее вращаем мы груз тем больше вероятность, что он упадет вниз.

Таким образом мы вплотную приблизились к понятию «космическая скорость». В двух словах ее можно описать как скорость, позволяющую любому объекту преодолеть тяготение небесного тела. В качестве может выступать планета, ее или другая система. Космическая скорость есть у каждого объекта, который движется по орбите. К слову сказать, размер и форма орбиты зависят от величины и направления скорости, которую данный объект получил на момент выключения двигателей, и высоты, на которой произошло данное событие.

Космическая скорость бывает четырех видов. Самая меньшая из них - это первая. Это наименьшая скорость, которая должна быть у чтобы он вышел на круговую орбиту. Ее значение можно определить по такой формуле:

V1=√µ/r, где

µ - геоцентрическая гравитационная постоянная (µ = 398603 * 10(9) м3/с2);

r — расстояние от точки запуска до центра Земли.

Из-за того, что форма нашей планеты не является идеальным шаром (на полюсах она как бы немного приплюснута), то расстояние от центра до поверхности больше всего на экваторе - 6378,1 . 10(3) м, а меньше всего на полюсах - 6356,8 . 10(3) м. Если взять среднюю величину - 6371 . 10(3) м, то получим V1 равной 7,91 км/с.

Чем больше космическая скорость будет превышать данную величину, тем более вытянутую форму будет приобретать орбита, удаляясь от Земли на все большее расстояние. В какой-то момент эта орбита разорвется, примет форму параболы, и космический аппарат отправится бороздить космические просторы. Для того чтобы покинуть планету, у корабля должна быть вторая космическая скорость. Ее можно рассчитать по формуле V2=√2µ/r. Для нашей планеты эта величина равна 11,2 км/с.

Астрономы давно уже определили, чему равна космическая скорость, как первая, так и вторая, для каждой планеты нашей родной системы. Их несложно рассчитать по вышеприведенным формулам, если заменить константу µ на произведение fM, в котором M - масса интересующего небесного тела, а f - постоянная тяготения (f= 6,673 х 10(-11) м3/(кг х с2).

Третья космическая скорость позволит любому преодолеть тяготение Солнца и покинуть родную Солнечную систему. Если рассчитывать ее относительно Солнца, то получится значение 42,1 км/с. А для того чтобы с Земли выйти на околосолнечную орбиту, понадобится разогнаться до 16,6 км/с.

Ну и, наконец, четвертая по счету космическая скорость. С ее помощью можно преодолеть притяжение непосредственно самой галактики. Ее величина варьируется в зависимости от координат галактики. Для нашего эта величина составляет примерно 550 км/с (если рассчитывать относительно Солнца).

Самые первые источники письменности, устные легенды и сказания, передаваемые из уст в уста, свидетельствуют о желании человека летать, подобно птице. И вот летательные аппараты легко обгоняют любых птиц. Но человек не только освоил воздушное пространство, этого ему показалось мало.

Активно осваивается ближний космос, на Земной орбите находятся целые комплексы, состоящие из жилых, научных, технических модулей. По красной планете - Марсу - вовсю колесят исследовательские автоматические аппараты, по поверхности Луны делаются «огромные шаги человечества», а миссии «Вояджер» вообще навсегда покидают свою родную звезду. С какой скоростью летят аппараты в космосе? "Вторая космическая скорость" - что означает это словосочетание?

Как оторваться от Земли и как её покинуть

Для начала рассмотрим, как вообще летают наши космические аппараты. Представим, что на поверхности Земли построена некая фантастическая башня. Настолько высокая, что её вершина расположена там, где уже совсем нет воздуха. На верхней площадке сооружения ставим пушку, способную выпускать снаряды с разными начальными скоростями.

Первый снаряд выпускается с небольшим количеством пороха в заряде. Снаряд, падает недалеко от башни. Если каждый последующий выстрел производить, последовательно увеличивая мощность заряда, снаряды, выпускаемые из пушки, будут падать всё дальше, огибая земной шар.

При условии, что наша пушка установлена так высоко, что снаряды будут лететь вне атмосферы, и воздух не станет тормозить их движение, в определённый момент снаряд (под номером 6 на рисунке) вообще не упадёт на поверхность планеты. Обогнув её, он пролетит рядом с выпустившей его пушкой и пойдёт на второй, третий круг и т. д. Такой эффект мы сможем наблюдать, когда начальная скорость снаряда будет 7,91 километров в секунду - это и есть первая космическая скорость.

А что будет, если скорость повышать дальше? Если выпустить снаряд из пушки так, чтобы летел он быстрее 11 км/с, траектория его превратится из эллипса в параболу (линия 7 на рисунке) и он, преодолев силу притяжения, навсегда покинет нашу планету. Это в небесной механике вторая космическая скорость.

Кто был первым

Кто же сумел первым придать технике такие скорости? Обе - первая и вторая космические скорости - были достигнуты аппаратами, изготовленными руками советских инженеров.

Осенью 57 года прошлого века советская ракета-носитель P-7, развив первую космическую скорость, выводит на орбиту Земли первый в истории человечества искусственный спутник. Но человек не был бы самим собой, если бы его удовлетворила участь кружиться вокруг своей колыбели.

Спустя буквально два года, опять же советским, космическим кораблём была достигнута вторая космическая скорость ракет, позволившая миссии преодолеть земное притяжение и направиться в сторону Луны.

Как рассчитать

А от чего зависит величина космических скоростей? Очевидно, во первых, от мощности гравитационного поля, которое создаёт космическое тело. Одно дело оторваться от астероида, где придать мячу вторую космическую скорость можно просто - посильнее размахнувшись, швырнуть его в космос. Другое дело - покинуть пределы Земли, с её массой.

Есть ещё один нюанс. Рассмотрим две планеты, вращающиеся вокруг Солнца: Меркурий и малую планету , открытую недавно, Эриду. Оба космических тела вращаются вокруг одного и того же светила с одной и той же массой. Но вот 1 космическая скорость у Меркурия составляет около 50 км/с, Эрида же летит по своей орбите намного медленнее - около 3,5 км/с. В чём же дело? А в том, что Эрида в 200 раз дальше от светила чем Меркурий и сила притяжения Солнца там в 200 в кубе раз слабее. Отсюда ещё один фактор - расстояние от центра космического тела. То есть чем ближе к нему мы находимся, тем выше будет вторая космическая скорость. Формула первой космической скорости известна из школьного курса физики.

  • G - константа гравитации, принимается в расчётах 6,67 ∙ 10 -11 м 3 ∙с -2 ∙кг;
  • M - масса космического тела;
  • R - расстояние от центра планеты до орбиты (радиус вращения).

Не сложно вычисляется и вторая космическая скорость. Формула ее приведена ниже.

Для того чтобы, находясь в районе земной орбиты, навсегда покинуть Солнечную систему, необходимо разогнаться до скорости (относительно Солнца) 47 км/с, ее принято называть третьей космической.

Наше Солнце так же, как вокруг него планеты, само вращается вокруг центра галактики, именумой Млечным Путем, со скоростью около 250 километров в секунду. Для того чтобы навсегда распрощаться с галактикой, ему понадобилась бы скорость порядка 650 км/с (космическая скорость № 4).

Вторая космическая скорость для небольшого астероида составляет около 30-60 м/с. Улететь от такого объекта в космосе несложно. Другое дело - нейтронные звёзды или ещё чего похуже - чёрные дыры. Вторая космическая скорость для чёрной дыры - свыше 300 тысяч километров в секунду - выше скорости света. Именно поэтому ни один объект, даже свет, не в состоянии покинуть объятия этого космического монстра.

Мы – земляне – привыкли, что твердо стоим на земле и никуда не улетаем, а если подкинем какой-нибудь предмет в воздух, то он обязательно упадет на поверхность. Всему виной создаваемое нашей планетой гравитационное поле, которое искривляет пространство-время и заставляет брошенное в сторону, например, яблоко лететь по искривленной траектории и пересечься с Землей.

Гравитационное поле создает вокруг себя любой объект, и у Земли, обладающей внушительной массой, это поле довольно сильно. Именно поэтому строятся мощные многоступенчатые космические ракеты, способные разгонять космические корабли до больших скоростей, которые нужны для преодоления гравитации планеты. Значение этих скоростей и получили названия первая и вторая космические скорости.

Понятие первой космической скорости очень простое – это скорость, которую необходимо придать физическому объекту, чтобы он, двигаясь параллельно космическому телу, не смог на него упасть, но в то же время оставался бы на постоянной орбите.

Формула нахождения первой космической скорости не отличается сложностью: где V G M – масса объекта; R – радиус объекта;

Попробуйте подставить в формулу необходимые значения (G – гравитационная постоянная всегда равна 6,67; масса Земли равна 5,97·10 24 кг, а её радиус 6371 км) и найти первую космическую скорость нашей планеты.

В результате мы получим скорость, равную 7,9 км/с. Но почему, двигаясь именно с такой скоростью, космический аппарат не будет падать на Землю или улетать в космическое пространство? Улетать в космос он не будет из-за того, что данная скорость пока еще слишком мала, чтобы преодолеть гравитационное поле, а вот на Землю он как раз и будет падать. Но только из-за высокой скорости он все время будет «уходить» от столкновения с Землей, продолжая в то же время свое «падение» по круговой орбите, вызванной искривлением пространства.


Это интересно: по такому же принципу «работает» и Международная Космическая Станция. Находящиеся на ней космонавты все время проводят в постоянном и непрекращающемся падении, которое не заканчивается трагически вследствие высокой скорости самой станции, из-за чего та стабильно «промахивается» мимо Земли. Значение скорости рассчитывается исходя из .

Но что делать, если мы захотим, чтобы космический аппарат покинул пределы нашей планеты и не был зависим от ее гравитационного поля? Разогнать его до второй космической скорости! Итак, вторая космическая скорость – это минимальная скорость, которую необходимо придать физическому объекту, чтобы он преодолел гравитационное притяжение небесного тела и покинул его замкнутую орбиту.

Значение второй космической скорости тоже, зависит от массы и радиуса небесного тела, поэтому для каждого объекта она будет своей. Например, чтобы преодолеть гравитационное притяжение Земли, космическому аппарату необходимо набрать минимальную скорость 11.2 км/с, Юпитера — 61 км/с, Солнца — 617,7 км/с.


Вторую космическую скорость(V2) можно рассчитать, используя следующую формулу:

где V – первая космическая скорость; G – гравитационная постоянная; M – масса объекта; R – радиус объекта;

Но если известна первая космическая скорость исследуемого объекта (V1), то задача облегчается в разы, и вторая космическая скорость (V2) быстро находится по формуле:

Это интересно: вторая космическая формула черной дыры больше 299 792 км/ c , то есть больше скорости света. Именно поэтому ничто, даже свет не может вырваться за ее пределы.

Помимо первой и второй комических скоростей существуют третья и четвертая, достичь которых нужно для того, чтобы выйти за пределы нашей Солнечной системы и галактики соответственно.

Иллюстрация: bigstockphoto | 3DSculptor

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Минимальную скорость, которую нужно сообщить физическому телу (например, космическому аппарату), чтобы оно могло преодолеть гравитационное притяжение небесного объекта (например, планеты или звезды) и навсегда покинуть сферу его гравитационного действия, называют параболической скоростью (тело, имеющее такую скорость, движется по параболической траектории). Параболическая скорость уменьшается с увеличением расстояния от небесного объекта. Параболическую скорость у поверхности небесного объекта называют второй космической скоростью. Для Земли вторая космическая скорость равна 11,18 километра в секунду. Параболическая скорость на высоте 300 километров над поверхностью Земли (уровнем моря) равна 10,93 километра в секунду, на высоте 1000 километров – 6,98 километра в секунду. Для Солнца вторая космическая скорость равна 617,7 километра в секунду, а параболическая скорость на расстоянии 1 астрономической единицы от нашего светила (средний радиус земной орбиты) – 42,1 километра в секунду. Для самой большой планеты Солнечной системы (Юпитера) вторая космическая скорость равна 59,5 километра в секунду, для самой маленькой (Меркурия) – 4,2 километра в секунду.

Чему равна третья космическая скорость?

Третьей космической называют минимальную скорость, которую нужно сообщить телу (например, космическому аппарату) вблизи поверхности Земли, чтобы оно могло, преодолев гравитационное притяжение Земли и Солнца, навсегда покинуть Солнечную систему. Третья космическая скорость равна приблизительно 16,6 километра в секунду (при запуске на высоте 200 километров над земной поверхностью), при этом направление скорости тела относительно Земли должно совпадать с направлением скорости орбитального движения Земли.

Что изучает классическая механика?

Классическая механика изучает движение макроскопических тел со скоростями, малыми по сравнению со скоростью света. В основе классической механики лежат законы Ньютона. Движение микрочастиц (способ описания и законы движения) в заданных внешних полях изучает квантовая механика, а законы механического движения тел (частиц) при скоростях, сравнимых со скоростью света, изучает релятивистская механика, основанная на специальной теории относительности.

Что удерживает Луну на околоземной орбите?

Упасть на Землю нашему естественному спутнику не позволяет его орбитальная скорость, превышающая первую космическую. А вырваться из гравитационных объятий Земли и навсегда покинуть ее окрестности мешает земное притяжение, для преодоления которого орбитальная скорость Луны недостаточно велика (меньше второй космической ).