Особенности восприятия звука человеком. Механизм передачи и восприятия звука Механизм передачи и восприятия звука

Оборудование.

Таблица “Орган слуха”, модель “0рган слуха”, самодельные таблицы “Источник звука”, “Приемник звука”, “Шумы”, “Диапазон слышимости”. Генератор, камертон, камертон с резонаторным ящиком, микрофон, осциллограф, магнитофон (запись с планеты Земля).

Цели урока:

1. Развивающие цели.

  • Развивать у школьников логическое мышление, рассматривать звук, его источники, восприятию и передачу с точки зрения биологии, физики, астрономии, географии, биологии и экологии.
  • Формирование у детей целостности естественно-научной картины мира.
  • Развивать волю и самостоятельность. Развивать умение владеть собой: уверенность в своих силах, умение преодолевать трудности в учении естествознания.
  • Формировать интеллектуальные умения: умения анализировать, сопоставлять органы слуха с микрофоном.

2. Образовательные цели.

  • Обеспечить усвоение учащимися основ науки.
  • Обобщить и закрепить, систематизировать ранее полученные знания по предметам биологии, физики, астрономии, химии, экологии, географии.
  • Формировать навыки работы с игровыми элементами, видеофрагментами, иллюстративными материалами.
  • Формировать культуру здоровья на уроках биологии.
  • Формировать целостное представление о природе и человеке, как важный компонент природы и как разумном существе, воздействующей на природу.

3. Воспитательные цели.

  • Воспитывать самостоятельного, свободного человека, имеющее чувственное восприятие природы, владеющего различными способами познания.
  • Воспитать экологическую культуру и мышление учащихся.

Тип урока: изучение нового материала.

Вид урока: комбинированный урок.

Средства обучения: компьютер, проектор, мультимедиа- средств обучения, слайды с иллюстрациями, терминами, понятиями, опытами, демонстрациями на видео.

План урока: (слайд -2)

Ход урока

I. Организационный момент.

II. Актуализация знаний.

Еще Г. Гельмгольц считал, что фотокамера представляет модель человеческого глаза. Найдите аналогичные образования в глазу и в фотокамере и соедините их линиями.

III. Изучение нового материала.

1. Характеристика планеты Земли.

Земля – голубая планета, ее форма – эллипсоид вращения, а точнее – кардиоида. Средний радиус R= 6400 км, масса планеты m=6* 10 24 кг. (слайд-3). В этом мире есть краски и звуки, но самое главное – Земле есть разумная жизнь.

Человек живет в мире звуков: пение птиц, звуки музыки, шум леса, транспорта, …

2. Что же является источником звука?

Источниками звука являются колеблющиеся тела, докажем это на опыте. Соберем установку, изображенную на слайде.

Демонстрация: С Земли мы привезли камертон – устройство, представляющее собой изогнутый металлический стержень на ножке (рисунок 1). Если ударить по ножке камертона молоточком, то мы услышим звук, который издает колеблющийся стержень. Звук негромок, так как площадь поверхности ветвей стержня мала. Для усиления звука ножку камертона укрепляют на деревянном ящике, подобранном так, чтобы частота его собственных колебаний совпадала с частотой колебания камертона. Возникает резонанс, стенки ящика начинают интенсивно колебаться с частотой камертона, и звук становится громче. Ящик называют резонатором (слайд). У лягушки резонатор какую функцию выполняет?

Колебания звучащего камертона можно наблюдать иным способом. Для этого к одной ветви камертона прикрепим иголку и быстро проведем ее острием по закопченной стеклянной пластинке. Если камертон не звучал, на пластинке увидим прямую линию (рисунок 2). Звучащий же камертон оставляет на пластинке след в виде волнистой линии. Одно полное колебание соответствует одному выступу и одной впадине этой линии (рисунок 2) (слайд-4).

Выводы из опыта: Любой источник звука обязательно колеблется (чаще всего эти колебания незаметны для глаза).

3. Рассмотрим теперь, как распространяется звук.

Пояснение учащихся: колеблющийся поршень – диффузор, толкая молекулы воздуха, создает области сгущения и разрежения. Направления распространения звука и движения молекул воздуха совпадают, поэтому звук - продольная волна.

Волны-возмущения, распространяющиеся в какой-либо среде или пространстве с течением времени (слайд-5). Наиболее важные и часто встречающиеся виды волн – упругие волны, волны на поверхности жидкости и электромагнитные волны.

4. Что является проводником звука?

Вывод учащихся из опыта: для распространения звука нужна упругая среда, как воздух. На Луне нет атмосферы, поэтому там нет и звуков – это мир безмолвия. Упругие тела – хорошие проводники звука. Большинство металлов, дерево, газы, а также жидкости являются упругими телами и поэтому хорошо проводят звук.

Звук может распространяться в жидкой и твердой среде. Высвечивается таблица “Скорость звука в различных средах” из учебника физики, стр. 125 (слайд- 7)

Скорость звука в различных средах, м/с (при t=20 C)

Из таблицы видно, что в металле скорости распространения звуковых волн больше, чем в жидкостях, а в жидкостях больше, чем газах. Поэтому под водой хорошо слышны звуки гребных винтов, удары камней… Рыбы слышат шаги и голоса людей на берегу, это хорошо известно рыболовам. Звук движущего поезда можно услышать, если приложить ухо к рельсам, так как по ним звук распространяется лучше, чем по воздуху. Прикладывая ухо к земле, можно услышать топот скачущей лошади.

Выводы учащихся:

  1. Источником звука являются колеблющиеся тела.
  2. Звук распространяется по упругой среде.
  3. Мягкие и пористые тела - плохие проводники звука.
  4. В безвоздушном пространстве звук распространяться не может.
  5. Громкость звука зависит от площади поверхностей колеблющихся тел.

5. Люди общаются с помощью речи - модулированных звуковых колебаний. Рассмотрим, как устроен источник звука у человека (слайд-8).

Звук возникает при прохождении воздуха через голосовые связки, которые находятся между хрящами гортани и образованы складками слизистой (объяснение идет по таблице). Пространство между голосовыми связками называют голосовой щелью. Когда земляне молчат, голосовые связки расходятся и голосовая щель имеет вид равнобедренного треугольника. При разговоре, пении голосовые связки смыкаются. Выдыхаемый воздух давит на складки, они начинают колебаться – рождается звук. При шепоте они сомкнуты полностью. Голосовыми связками управляет головной мозг, посылая по нервам соответствующие сигналы.

Высота голоса человека связана с длиной голосовых связок: чем короче голосовые связки, тем больше частота их колебаний и тем выше голос. У женского пола голосовые связки короче, чем у мужских особей, поэтому женский голос выше. Голосовые связки могут совершать от 80 – 10 000 колебаний в секунду. Окончательное формирование звука происходит в полостях носоглотки – своеобразных резонаторах.

6. Как звук воспринимается?

Мы знаем, что источником звука является колеблющееся тело и что звук распространяется в упругой среде. А теперь выясним, как звук воспринимается.

Приемником звука может быть микрофон . Микрофон преобразует звуковые механические колебания в электрические. Улавливаемые сигналы слабы и преобразуемая микрофоном энергия очень мала. Поэтому электрические сигналы микрофона усиливают.

- Приемником звука является у землян слуховой аппарат, или орган слуха . Между звучащим телом (источником звука) и ухом (приемником звука) находится вещество, передающее звуковые колебания от источника к приемнику. Чаще всего таким веществом оказывается воздух.

Орган слуха у землян состоит из трех отделов: наружного уха, среднего уха, и внутреннего уха. Наружное ухо образуется ушной раковиной, наружным слуховым проходом и барабанной перепонкой. Его функция – улавливание звука и его проведение. Среднее ухо представлено заполненной воздухом камерой с объемом 1-2 мл. В этой камере имеются три подвижные друг с другом косточки: молоточек, наковальня, и стремечко. Молоточек соединен с барабанной перепонкой, а стремечко через овальное окошко с внутренним ухом. Среднее ухо через евстахиевою трубу соединяется с носоглоткой. При резких перепадах давления (взлет и посадка самолета, подъем подводной лодки) рекомендуется разговаривать, открыть рот, совершать глотательные движения, так как при этом открывается евстахиева труба, и давление на барабанную перепонку с обеих сторон выравнивается (слайд -9).

Внутреннее ухо находится в толще височной кости (слайд-10), внутри которого находится перепончатый лабиринт. Внутреннее ухо заполнено жидкостью. В его состав входят три полукружных канала – это вестибулярный аппарат, не имеющий отношения к восприятию звука, и улитка, имеющая вид спирального канала. Вдоль улиткового канала тянется основная мембрана, поперек которой наподобие лестницы натянуты волокна. На этих волокнах расположены клетки цилиндрического эпителия, которые образуют кортиев орган. На эпителиальных клетках оканчиваются чувствительные волокна слухового нерва. В улитке звуковая энергия преобразуется в энергию нервных импульсов, которая по слуховому нерву передается в слуховой центр, находящийся в височной доле коры больших полушарий головного мозга.

Принцип действия его такой же, как и у микрофона.

7. Как происходит передача звука?

Звуковые колебания воздуха вызывают колебания барабанной перепонки, соответствующей мембране микрофона, и через слуховые косточки передаются к внутреннему уху, где вызывают колебания жидкости, заполняющей канал улитки. При этом начинают колебаться волокна основной мембраны и так называемые волосковые клетки кортиева органа. При каждом подъеме они волосками упираются в покровную мембрану, волоски при этом сгибаются, мембранный потенциал клеток изменяется и в нервных волокнах возникает возбуждение (слайд-11).

Головной мозг постоянно обрабатывает поступающие импульсы, в результате чего создаются звуковые ощущения.

8. Экология слуха.

На приемник звука человека отрицательное влияние оказывает шум. Шум- это звук любого рода, воспринимаемый как неприятный, мешающий или даже вызывающий болезненные ощущения. Характерные примеры шума - свист, треск, шипение. (Рассказ сопровождается звуковыми шумами).

Под постоянными резкими ударами звуковых волн барабанная перепонка колеблется большой амплитудой. Из-за этого она постепенно теряет свою эластичность, и у землян притупляется слух. Помимо этого через орган слуха шум действует на центральную нервную систему. И может вызвать разнообразные физиологические (усиленное сердцебиение, повышение давления) и психические нарушения (ослабление внимания, нервозность). Длительное воздействие шума является одним из факторов, способствующих развитию язв и даже инфекционных заболеваний. Вследствие этого сокращается продолжительность жизни землян и уменьшается генофонд человечества.

Как правило, шум нас раздражает: мешает работать, отдыхать, думать. Но шум может действовать и успокаивающе. Такое влияние на человека оказывают, например, шелест листьев, рокот морского прибоя. (Рассказ сопровождается записями звуков).

Что такое шум? Под ним понимают беспорядочные сложные колебания различной физической природы.

Шумовое загрязнения окружающей среды все время растет.

9. Количественная характеристика звука. Слайд-12.

Шум - один из видов звука, правда, его часто называют “нежелательным звуком”. Человек слышит звуки с частотой колебаний в пределах 16-20 000 Гц. При распространении звуковой волны, стоящей из сгущений и разрежений воздуха, давление на барабанную перепонку меняется. Единицей измерения давления является 1Н/м 2 , а единицей мощности звука - 1Вт/ м 2 .

Минимальную громкость звука, которую человек воспринимает, называют порогом слышимости. У разных людей он различен, и поэтому условно за порог слышимости принято считать звуковое давление, равное 2* 10 -5 Н/м 2 , при 1000 Гц, соответствующее мощности 10 -12 Вт/ м 2 . Именно с этими величинами сравнивают измеряемый звук.

Единица громкости называется Белом - по имени изобретателя телефона А.Бела (1847-1922). Громкость измеряют в децибелах: 1дБ= 1,1 Б (Бел).

Восприятие звука не только зависит не только от его количественных характеристик (давление и мощность). Но и от его качества- частоты. Один и тот же по силе звук на разных частотах отличается по громкости. Некоторые люди не слышат звуков высокой частоты. Так, у пожилых людей верхняя граница восприятия звука понижается до 6000 Гц. Они не слышат, например, писка комара, которые издают звуки с частотой около 20 000 Гц

Рассмотрим таблицу “Шум”. На ней представлены различные источники шума. Звуки в пределах от 0 до 80 дБ приятны для восприятия и отрицательных эмоций не вызывают. (Включается магнитофонная запись: пение птиц, приятная музыка, шепот…)

Если громкость превышает 80 дБ, шум вредно влияет на здоровье: повышает кровяное давление, вызывает нарушение ритма сердца, а продолжительное воздействие интенсивного шума ведет к глухоте.

Очень сильный звук (с громкостью выше 180 дБ) в состоянии даже вызвать разрыв барабанной перепонки. С шумом необходимо бороться. Умение соблюдать тишину – показатель культуры человека и его доброго отношения к окружающим. Тишина нужна землянам так же, как солнце и свежий воздух.

10. Шумовое загрязнения в городе Набережные Челны.

В нашем городе основным источником шума является автомобильный транспорт. У нас нет заводов, фабрик. Источниками шума в жилых и общественных помещениях являются, в первую очередь, жизнедеятельность людей (разговор, крики, игра на музыкальных инструментах, ходьба, передвижение мебели) и связанная с ней работа радио- и телеприемников, магнитофонов, электромеханических бытовых приборов, а также эксплуатация санитарно-технического оборудования.

Экология и гигиена слуха (рассказ по слайду -13).

Нарушение и ослабление слуха может быть вызвано:

1. Внутренними изменениями (по таблице)

  • Повреждение слухового нерва -> нарушение передачи импульса в слуховую зону коры.
  • Образование “серной пробки”в наружном слуховом проходе -> нарушение передачи звуковых колебаний к внутреннему уху.

2. Внешними факторами (слайд-14)

Нельзя: (слайд-15)

  • Слушать очень громкую музыку.
  • При сильных, резких звуках держать рот открытым.
  • При сильном ветре и минусовой температуре ходить без головного убора.
  • Пытаться достать посторенние предметы из ушного прохода самостоятельно.

IV. Заключение.

Но и абсолютная тишина угнетает человека. В полной тишине, например в сурдокамере, сразу начинают беспокоить звуки и шорохи, в обычных условиях остающиеся незамеченными, - удары сердца, пульса, дыхание и даже шорох ресниц. Эти обычно неслышимые звуки в условиях абсолютной тишины воспринимаются человеком с такой интенсивностью, что у лиц, долгое время находившихся в сурдокамере, могут стать причиной серьезных психических расстройств. Как видим, природа шума двойственна: он вреден и необходим одновременно. Потому, говоря о борьбе с шумом, нужно помнить, что речь идет не обо всех звуках вообще, а лишь о нежелательных, раздражающих, вредно влияющих на организм. Установлено, например, что люди умственного труда, люди с развитой чувствительностью (ученые, представители творческих профессий) ощущают воздействие шума острее, чем представители других форм занятости. Поэтому, с субъективной точки зрения, шум можно определить как всякий нежелательный, мешающий, вредный звук.

Особенно вредны шумы резкие, нестабильные, неожиданные, неритмично повторяющиеся. Люди живут в мире звуков. Звук - механическая волна. Человеческим приемником звука - ухом – как звуки воспринимаются только волны частотой от 16 до 20 000 Гц. Голосом люди могут передавать не только информацию, но и чувства, настроение: радость, гнев, угрозу, насмешку.

V. Домашняя работа: Слайд-16, 17.

  • 1 уровень (по программе): Работа по учебнику.
  • 2 уровень (полутворческий уровень):

Ответить на следующие вопросы:

  1. Зачем при проверке колес вагонов во время стоянки поезда простукивают молоточком?
  2. Как Вы считаете, будут ли восприниматься звуковые волны из окружающей среды человеком, если повреждена какая-либо часть слухового анализатора (ответ обоснуйте)?
  3. Как Вы считаете, каким образом происходит передача звуковых колебаний из окружающей среды к слуховым рецепторам у землян?
  4. Частота колебаний крыльев колибри равна 35-50Гц. Будет ли слышен полет колибри?
  5. Два человека прислушиваются, надеясь услышать шум приближающегося поезда. Один из них приложил ухо к рельсам, другой - нет. Кто из них раньше узнает о приближении поезда и почему?
  • 3 уровень. Найдите аналогичные образования в строении микрофона и органа слуха.

Сравните строение микрофона и органа слуха (слайд-18).

ЛИТЕРАТУРА (слайд-19-20)

  1. Резанова Е.А., Антонова И.П. Биология человека в таблицах, рисунках и схемах.– М..: Издат - школа,1998.
  2. Перевод с англ. О.В. Ивановой. Анатомия человека. Как работает ваше тело. - М.: ООО ТД “Издательство Мир книги”, 2007.- 80-83 с., ил.
  3. Перышкин А.В., Гутник Е.,М. Физика, 9 класс. - М.: Дрофа, 2001.
  4. Мангутова Л.А.,Зефирова Т. П. Популярная экология. – Казань: Экологический фонд Республики Татарстан, 1997.
  5. Цузмет А.М., Петришина О.Л., Биология. Человек и его здоровье. 9 класс. - М.: Просвещение, 1990.
  6. Сонин Н.И., Сапин М. Р. Биология. Человек. 8 класс. – М.: Дрофа, 2001.
  7. Сапин М.Р., Билич Г. Л. Анатомия человека.- М.: Высшая школа, 1989.
  8. Бордовский Г.А. Физические основы естествознания. - М.: Дрофа, 2004.
  9. Богданова Т.Л., Солодова Е. А. Биология. Справочник для старшеклассников и поступающих в ВУЗы. – М.: АСТ – ПРЕСС ШКОЛА, 2004.
  10. Добреньков Г.А. Мировоззренческие функции физической химии // Химия и мировоззрение / Отв. ред. Ю.А. Овчинников. – М.: Наука. – 1986.
  11. Кузьменко Н.Е., Еремин В.В, Начала химии. – М.: Экзамен, 2001.
  12. Кутьина И.В. Формирование научного мировоззрения. Взаимосвязь физики, химии, биологии. // Биология. Еженедельное приложение к газете “Первое сентября”. – 1998. – № 1-10.
  13. Ожерельев Д.И. Формирование научного мировоззрения в преподавании химии. – М.: Высшая школа, 1982.
  14. Чернова Н.М. Экология. - М.: Просвещение, 1988.
  15. Рэймерс Н.П. Охрана природы и окружающей человека среды. - М.: Просвещение, 1992.

Психоакустика - область науки, граничащая между физикой и психологией, изучает данные о слуховом ощущении человека при действии на ухо физического раздражения - звука. Накоплен большой объем данных о реакциях человека на слуховые раздражения. Без этих данных трудно получить правильное представление о работе систем передачи сигналов звуковой частоты. Рассмотрим наиболее важные особенности восприятия звука человеком.
Человек ощущает изменения звукового давления, происходящие с частотой 20-20 000 Гц. Звуки с частотой ниже 40 Гц сравнительно редко встречаются в музыке и не существуют в разговорной речи. На очень высоких частотах музыкальное восприятие исчезает и возникает некое неопределенное звуковое ощущение, зависящее от индивидуальности слушателя, его возраста. С возрастом чувствительность слуха у человека уменьшается и прежде всего в области верхних частот звукового диапазона.
Но было бы неправильно делать на этом основании вывод, что для пожилых людей неважна передача звуковоспроизводящей установкой широкой полосы частот. Эксперименты показали, что люди, даже едва воспринимающие сигналы выше 12 кГц, очень легко распознают в музыкальной передаче недостаточность верхних частот.

Частотные характеристики слуховых ощущений

Область слышимых человеком звуков в диапазоне 20-20000 Гц ограничивается по интенсивности порогами: снизу - слышимости и сверху - болевых ощущений.
Порог слышимости оценивается минимальным давлением, точнее, минимальным приращением давления относительно границы чувствителен к частотам 1000-5000 Гц - здесь порог слышимости самой низкий (звуковое давление около 2- 10 Па). В сторону низших и высших звуковых частот чувствительность слуха резко падает.
Порог болевых ощущений определяет верхнюю границу восприятия звуковой энергии и соответствует примерно интенсивности звука 10 Вт/м или 130 дБ (для опорного сигнала с частотой 1000 Гц).
При увеличении звукового давления увеличивается и интенсивность звука, причем слуховое ощущение нарастает скачками, называемыми порогом различения интенсивности. Число этих скачков на средних частотах примерно 250, на низких и высоких частотах оно уменьшается и в среднем по частотному диапазону составляет около 150.

Поскольку диапазон изменения интенсивностей 130 дБ, то элементарный скачок ощущений в среднем по диапазону амплитуд равен 0,8 дБ, что соответствует изменению интенсивности звука в 1,2 раза. При низких уровнях слуха эти скачки достигают 2-3 дБ, при высоких уровнях они уменьшаются до 0,5 дБ (в 1,1 раза). Увеличение мощности усилительного тракта меньше чем в 1,44 раза практически не фиксируется ухом человека. При более низком звуковом давлении, развиваемом громкоговорителем, даже двукратное увеличение мощности выходного каскада может не дать ощутимого результата.

Субъективные характеристики звука

Качество звукопередачи оценивается на основе слухового восприятия. Поэтому правильно определить технические требования к тракту звукопередачи или отдельным его звеньям можно, только изучив закономерности, связывающие субъективно воспринимаемое ощущение звука и объективными характеристиками звука являются высота, громкость и тембр.
Понятие высоты звука подразумевает субъективную оценку восприятия звука по частотному диапазону. Звук принято характеризовать не частотой, а высотой тона.
Тон - это сигнал определенной высоты, имеющий дискретный спектр (музыкальные звуки, гласные звуки речи). Сигнал, обладающий широким непрерывным спектром, все частотные составляющие которого имеют одинаковую среднюю мощность, называется белым шумом.

Постепенное увеличение частоты звуковых колебаний от 20 до 20 000 Гц воспринимается как постепенное изменение тона от самого низкого (басового) до наиболее высокого.
Степень точности, с которой человек определяет высоту звука на слух, зависит от остроты, музыкальности и тренировки его слуха. Следует отметить, что высота звука в какой-то степени зависит от интенсивности звука (при больших уровнях звуки большей интенсивности кажутся ниже, чем слабые..
Ухо человека хорошо различает два близких по высоте тона. Например, в области частот примерно 2000 Гц человек может различать два тона, которые отличаются друг от друга по частоте на 3-6 Гц.
Субъективный масштаб восприятия звука по частоте близок к логарифмическому закону. Поэтому увеличение частоты колебаний вдвое (независимо or начальной частоты) всегда воспринимается как одинаковое изменение высоты тона. Интервал высоты, соответствующий изменению частоты в 2 раза, называется октавой. Диапазон частот, воспринимаемых человеком, 20-20 000 Гц, он охватывает приблизительно десять октав.
Октава - достаточно большой интервал изменения высоты тона; человек различает значительно меньшие интервалы. Так, в десяти октавах, воспринимаемых ухом, можно различить более тысячи градаций высоты тона. В музыке используются меньшие интервалы, называемые полутонами и соответствующие изменению частоты приблизительно в 1,054 раза.
Октаву делят на полуоктавы и треть октавы. Для последних стандартизован следующий ряд частот: 1; 1,25; 1,6; 2; 2,5; 3; 3,15; 4; 5; 6,3: 8; 10, являющихся границами третьоктав. Если эти частоты расположить на равных расстояниях по оси частот, то получится логарифмический масштаб. Исходя из этого все частотные характеристики устройств передачи звука строят в логарифмическом масштабе.
Громкость передачи зависит не только от интенсивности звука, но и от спектрального состава, условий восприятия и длительности воздействия. Так, два звучащих тона средней и низкой частоты, имеющие одинаковую интенсивность (или одинаковое звуковое давление), воспринимаются человеком не как одинаково громкие. Поэтому введено понятие уровня громкости в фонах для обозначения звуков одинаковой громкости. За уровень громкости звука в фонах принимают уровень звукового давления в децибелах такой же громкости чистого тона частотой 1000 Гц, т.е для частоты 1000 Гц уровни громкости в фонах и децибелах совпадают. На других частотах при одном и том же звуковом давлении звуки могут казаться более громкими или более тихими.
Опыт работы звукорежиссеров по записи и монтажу музыкальных произведений показывает, что для лучшего обнаружения дефектов звучания, которые могут возникнуть в процессе работы, уровень громкости, при контрольном прослушивании следует поддерживать высоким, примерно соответствующим уровню громкости в зале.
При длительном воздействии интенсивного звука чувствительность слуха постепенно снижается, и тем больше, чем выше громкость звука. Обнаруживаемое снижение чувствительности связано с реакцией слуха на перегрузку, т.е. с естественной его адаптацией, После некоторого перерыва в прослушивании чувствительность слуха восстанавливается. К этому следует добавить, что слуховой аппарат при восприятии сигналов высокого уровня привносит свои, так называемые субъективные, искажения (что свидетельствует о нелинейности слуха). Так, при уровне сигнала 100 дБ первая и вторая субъективные гармоники достигают уровня 85 и 70 дБ.
Значительный уровень громкости и длительность его воздействия вызывают необратимые явления в слуховом органе. Отмечено, что у молодежи за последние годы резко возросли пороги слышимости. Причиной этого явилось увлечение поп-музыкой, отличающейся высокими уровнями громкости звучания.
Уровень громкости измеряют с помощью электроакустического прибора - шумомера. Измеряемый звук сначала преобразуется микрофоном в электрические колебания. После усиления специальным усилителем напряжения этих колебаний измеряют стрелочным прибором, отрегулированным в децибелах. Чтобы показания прибора как можно более точно соответствовали субъективному восприятию громкости, прибор снабжен специальными фильтрами, изменяющими его чувствительность к восприятию звука разных частот в соответствии с характеристикой чувствительности слуха.
Важной характеристикой звука является тембр. Способность слуха различать его позволяет воспринимать сигналы с большим разнообразием оттенков. Звучание каждого из инструментов и голосов благодаря характерным для них оттенкам становится многокрасочным и хорошо узнаваемым.
Тембр, являясь субъективным отображением сложности воспринимаемого звучания, не имеет количественной оценки и характеризуется терминами качественного порядка (красивый, мягкий, сочный и др.). При передаче сигнала по электроакустическому тракту возникающие искажения в первую очередь влияют на тембр воспроизводимого звука. Условием правильной передачи тембра музыкальных звуков является неискаженная передача спектра сигнала. Спектром сигнала называют совокупность синусоидальных составляющих сложного звука.
Простейшим спектром обладает так называемый чистый тон, в нем присутствует только одна частота. Более интересным оказывается звук музыкального инструмента: его спектр состоит из частоты основного тона и нескольких ""примесных" частот, называемых обертонами (высшими тонами). Обертоны кратны частоте основного тона и обычно меньше его по амплитуде.
От распределения интенсивности по обертонам зависит тембр звука. Звуки разных музыкальных инструментов различаются по тембру.
Более сложным оказывается спектр сочетания музыкальных звуков, называемый аккордом. В таком спектре присутствуют несколько основных частот вместе ссоответствуюшими обертонами
Различия в тембре onpeделяются в основном низко-средне частотными составляющими сигнала, следовательно, и большое разнообразие тембров связано с сигналами, лежащими в нижней части частотного диапазона. Сигналы же, относяшиеся к верхней его части, по мере повышения все больше теряют свою окраску тембра, что обусловлено постепенным уходом их гармонических составляющих за пределы слышимых частот. Это можно объяснить тем, что в образовании тембра низких звуков активно участвуют до 20 и более гармоник, средних 8 - 10, высоких 2 - 3, так как остальные либо слабы, либо выпадают из области слышимых частот. Поэтому высокие звуки, как правило, по тембру беднее.
Практически у всех естественных источников звука, в том числе и у источников музыкальных звуков, наблюдается специфическая зависимость тембра от уровня громкости. К такой зависимости приспособлен и слух - для него является естественным определение интенсивности источника по окраске звука. Громкие звуки обычно являются и более резкими.

Музыкальные источники звука

Большое влияние на качество звучания электроакустических систем оказывает ряд факторов, характеризующих первичные источники звуков.
Акустические параметры музыкальных источников зависят от состава исполнителей (оркестр, ансамбль, группа, солиста и типа музыки: симфоническая, народная, эстрадная и пр.).

Зарождение и формирование звука на каждом музыкальном инструменте имеет свою специфику, связанную с акустическими особенностями звукообразования в том или ином музыкальном инструменте.
Важным элементом музыкального звука является атака. Это - специфический переходный процесс, в течение которого устанавливаются стабильные характеристики звука: громкость, тембр, высота. Любой музыкальный звук проходит три стадии -начало, середину и конец, причем и начальная, и конечная стадии имеют некоторую продолжительность. Начальная стадия называется атакой. Длится она по-разному: у щипковых, ударных и некоторых духовых инструментов 0-20 мс, у фагота 20-60 мс. Атака - это не просто нарастание громкости звука от нуля до некоторого установившегося значения, она может сопровождаться таким же изменением высоты звука и его тембра. Причем характеристики атаки инструмента неодинаковы в разных участках его диапазона при разной манере игры: скрипка по богатству возможных выразительных способов атаки - наиболее совершенный инструмент.
Одна из характеристик любого музыквльного инструмента - это частотный диапазон звучания. Кроме основных частот каждый инструмент характеризуется дополнительными высококачественными составляющими - обертонами (или, как принято в электроакустике, - высшими гармониками), определяющими его специфический тембр.
Известно, что звуковая энергия неравномерно распределяется по всему спектру звуковых частот, излучаемых источником.
Большинство инструментов характеризуется усилением основных частот, а также отдельных обертонов в определенных (одной или нескольких) относительно узких полосах частот (формантах), различных для каждого инструмента. Резонансные частоты (в герцах) формантной области составляют: для трубы 100-200, валторны 200-400, тромбона 300-900, трубы 800-1750, саксофона 350-900, гобоя 800-1500, фагота 300-900, кларнета 250-600.
Другое характерное свойство музыкальных инструментов - сила их звука, обусловливается большей или меньшей амплитудой (размахом) их звучащего тела или воздушного столба (большей амплитуде соответствует более сильное звучание и наоборот). Значение пиковых акустических мощностей (в ваттах) составляет: для большого оркестра 70, большого барабана 25, литавр 20, малого барабана 12, тромбона 6, фортепиано 0,4, трубы и саксофона 0,3, трубы 0,2, контрабаса 0.(6, малой флейты 0,08, кларнета, валторны и треугольника 0,05.
Отношение мощности звука, извлекаемого из инструмента при исполнении "фортиссимо", к мощности звука при исполнении "пианиссимо" принято называть динамическим диапазоном звучания музыкальных инструментов.
Динамический диапазон музыкального источника звука зависит от вида исполнительского коллектива и характера исполнения.
Рассмотрим динамический диапазон отдельных источников звука. Под динамическим диапазоном отдельных музыкальных инструментов и ансамблей (различные по составу оркестры и хоры), а также голосов понимают отношение максимальных звуковых давлений, создаваемых данным источником, к минимальным, выраженное в децибелах.
На практике при определении динамического диапазона источника звука обычно оперируют только уровнями звукового давления, вычисляя или измеряя соответствующую их разность. Например, если максимальный уровень звучания оркестра составляет 90, а минимальный 50 дБ, то говорят, что динамический диапазон равен 90 - 50= = 40 дБ. При этом 90 и 50 дБ - это уровни звукового давления относительно нулевого акустического уровня.
Динамический диапазон для данного источника звука - величина непостоянная. Она зависит от характера исполняемого произведения и от акустических условий помещения, в котором происходит исполнение. Реверберация расширяет динамический диапазон, который обычно достигает максимального значения в помещениях, имеющих большой объем и минимальное звукопоглощение. Почти у всех инструментов и человеческих голосов динамический диапазон неравномерен по регистрам звучания. Например, уровень громкости самого низкого звука на "форте" у вокалиста равен уровню самого высокого звука на "пиано".

Динамический диапазон той или иной музыкальной программы выражается таким же образом, как и для отдельных источников звука, но максимальное звуковое давление отмечается при динамическом ff (фортиссимо) оттенке, а минимальное при рр (пианиссимо).

Наибольшей громкости, обозначаемой в нотах fff (форте-, фортиссимо), соответствует акустический уровень звукового давления примерно 110 дБ, а наименьшей громкости, обозначаемой в нотах ррр (пиано-пианиссимо), примерно 40 дБ.
Следует отметить, что динамические оттенки исполнения в музыке относительны и их связь с соответствующими уровнями звукового давления до некоторой степени условна. Динамический диапазон той или иной музыкальной программы зависит от характера сочинения. Так, динамический диапазон классических произведений Гайдна, Моцарта, Вивальди редко превышает 30-35 дБ. Динамический диапазон эстрадной музыки обычно не превышает 40 дБ, а танцевальной и джазовой - всего около 20 дБ. Большинство произведений для оркестра русских народных инструментов также имеют небольшой динамический диапазон (25-30 дБ). Это справедливо и для духового оркестра. Однако максимальный уровень звучания духового оркестра в помещении может достигать достаточно большого уровня (до 110 дБ).

Эффект маскировки

Субъективная оценка громкости зависит от условий, в которых звук воспринимается слушателем. В реальных условиях акустический сигнал не существует в абсолютной тишине. Одновременно с ним воздействуют на слух посторонние шумы, затрудняющие звуковое восприятие, маскируюшие в определенной мере основной сигнал. Эффект маскировки чистого синусоидального тона посторонним шумом оценивается величиной, указываюшей. на сколько децибел повышается порог слышимости маскируемого сигнала над порогом его восприятия в тишине.
Опыты по определению степени маскировки одного звукового сигнала другим показывают, что тон любой частоты маскируется более низкими тонами значительно эффективнее, чем более высокими. Например, если два камертона (1200 и 440 Гц) излучают звуки с одинаковой интенсивностью, то мы перестаем слышать первый тон, он замаскирован вторым (погасив вибрацию второго камертона, мы снова услышим первый).
Если одновременно существуют два сложных звуковых сигнала, состоящих из определенных спектров звуковых частот, то возникает эффект взаимной маскировки. При этом если основная энергия обоих сигналов лежит в одной и той же области диапазона звуковых частот, то эффект маскировки будет наиболее сильным, Так, при передаче оркестрового произведения из-за маскировки аккомпанементом партия солиста может стать плохо разборчивой, невнятной.
Достижение четкости или, как принято говорить, "прозрачности" звучания при звукопередаче оркестров или эстрадных ансамблей становится весьма трудным, если инструмент или отдельные группы инструментов оркестра играют в одном или близких регистрах одновременно.
Режиссер, производя запись оркестра, обязательно учитывает особенности маскировки. На репетициях он с помощью дирижера устанавливает баланс между силой звучания инструментов одной группы, а также между группами всего оркестра. Ясность основных мелодических линий и отдельных музыкальных партий достигается в этих случаях близким расположением микрофонов к исполнителям, умышленным выделением звукорежиссером наиболее важных в данном месте произведения инструментов и другими специальными приемами звукорежиссуры.
Явлению маскировки противостоит психофизиологическоя способность органов слуха выделять из обшей массы звуков один или несколько, несущих наиболее важную информацию. Например, при звучании оркестра дирижер замечает малейшие неточности в исполнении партии на каком-либо инструменте.
Маскировка может существенно влиять на качество передачи сигнала. Четкое восприятие принимаемого звука возможно в том случае, если его интенсивность существенно превышает уровень составляющих помех, находящихся в той же полосе, что и принимаемый звук. При равномерной помехе превышение сигнала должно быть 10- 15 дБ. Эта особенность слухового восприятия находит практическое применение, например, при оценке электроакустических характеристик носителей. Так, если отношение сигнал-шум аналоговой грампластинки 60 дБ, то динамический диапазон записанной программы может быть не более 45- 48 дБ.

Временные характеристики слухового восприятия

Слуховой аппарат, как и любая другая колебательная система, инерционен. При исчезновении звука слуховое ощущение исчезает не сразу, а постепенно, уменьшаясь до нуля. Время, в течение которого ошущение по уровню громкости уменьшается на 8- 10 фон, называется постоянной времени слуха. Эта постоянная зависит от ряда обстоятельств, а также от параметров воспринимаемого звука. Если к слушателю приходят два коротких звуковых импульса, одинаковых пи частотному составу и уровню, но один из них запаздывает, то они будут восприниматься слитно при запаздывании, не превышающем 50 мс. Пои больших интервалах запаздывания оба импульса воспринимаются раздельно, возникает эхо.
Эта особенность слуха учитывается при конструировании некоторых приборов обработки сигналов, например электронных линий задержки, ревербератов и др.
Следует отметить, что благодаря особому свойству слуха ощушение громкости кратковременного звукового импульса зависит не только от его уровня, но и от продолжительности воздействия импульса на ухо. Так, кратковременный звук, длящийся всего 10-12 мс, воспринимается ухом тише, чем звук такой же но уровню, но воздействующий на слух в течение, например 150-400 мс. Поэтому при прослушивании передачи громкость является результатом усреднения энергии звуковой волны в течение некоторого интервала. Кроме того, слух человека обладает инерцией, в частности, при восприятии нелинейных искажений он не ощущает таковых, если продолжительность звукового импульса меньше 10-20 мс. Именно поэтому в индикаторах уровня звукозаписывающей бытовой радиоэлектронной аппаратуры осуществляется усреднение мгновенных значений сигнала за промежуток, выбираемый в соответствии с временными характеристиками органов слуха.

Пространственное представление о звуке

Одной из важных способностей человека является возможность определять направление источника звука. Эта способность называется бинауральным эффектом и объясняется тем, что человек имеет два уха. Данные экспериментов показывают, откуда приходит звук: один для высокочастотных тонов, другой для низкочастотных.

До уха, обращенного к источнику, звук проходит более короткий по времени путь, чем до второго уха. Вследствие этого давление звуковых волн в ушных каналах различается по фазе и амплитуде. Амплитудные различия значительны только на высоких частотах, когда длина звуковой волны становится сравнимой с размерами головы. Когда разница в амплитудах превышает пороговое значение, равное 1 дБ, то кажется, что источник звука находится на той стороне, где амплитуда больше. Угол отклонения источника звука от средней линии (линии симметрии) приблизительно пропорционален логарифму отношения амплитуд.
Для определения направления источника звука с частотами ниже 1500-2000 Гц существенны фазовые различия. Человеку кажется, что звук приходит с той стороны, с которой волна, опережаюшая по фазе, достигает уха. Угол отклонения звука от средней линии пропорционален разности времени прихода звуковых волн к обоим ушам. Тренированный человек может заметить разность фаз при разннице во времени 100 мс.
Способность определять направление звука в вертикальной плоскости развита значительно слабее (примерно в 10 раз). Эту особенность физиологии связывают с ориентацией органов слуха в горизонтальной плоскости.
Специфическая особенность пространственного восприятия звука человеком проявляется в том, что органы слуха способны ощушать суммарную, интегральную локализацию, создаваемую с помошью искусственных средств воздействия. Например, в помещении по фронту на расстоянии 2-3 м друг от друга установлены две АС. На таком же расстоянии от оси соединяющей системы строго по центру находится слушатель. В помешении через АС излучаются два одинаковых по фазе, частоте и интенсивности звука. В результате идентичности звуков, проходящих в орган слуха, человек не может их разделить, его ощущения дают представления о едином, кажущемся (виртуальном) источнике звука, который находится строго по центру на оси симметрии.
Если теперь уменьшить громкость одной АС, то кажущийся источник переместится в сторону более громко работающего громкоговорителя. Иллюзию перемещения источника звука можно получить не только изменением уровня сигнала, но и искусственной задержкой одного звука относительно другого; в этом случае кажущийся источник сместится в сторону АС, излучающей сигнал с опережением.
Для иллюстрации интегральной локализации приведем пример. Расстояние между АС 2м, расстояние от фронтальной линии до слушателя 2 м; для того чтобы источник как бы сместился на 40 см влево или вправо, необходимо подать два сигнала с разностью по уровню интенсивности в 5 дБ или с временным запаздыванием в 0,3 мс. При разности уровней в 10 дБ или задержке по времени 0,6 мс источник "переместится" на 70 см от центра.
Таким образом, если изменять создаваемое АС звуковое давление, то возникает иллюзия перемещения источника звука. Это явление называется суммарной локализацией. Для создания суммарной локализации применяется двухканальная стереофоническая система звукопередачи.
В первичном помешении устанавливаются два микрофона, каждый из которых работает на свой канал. Во вторичном - два громкоговорителя. Микрофоны располагаются на определенном расстоянии друг от друга по линии, параллельной размещению излучателя звука. При перемещении излучателя звука на микрофон будет действовать разное звуковое давление и время прихода звуковой волны будет различно из-за неодинакового расстояния между излучателем звуха и микрофонами. Эта разница и создает во вторичном помешении эффект суммарной локализации, в результате чего кажущийся источник локализуется в определенной точке пространства, находящейся между двумя громкоговорителями.
Следует сказать о биноуральной системе звукопередачи. При использовании этой системы, называемой системой "искусственной головы", в первичном помешении размещают два отдельных микрофона, располагая их на расстоянии друг от друга, равном расстоянию между ушами человека. Каждый из микрофонов имеет независимый канал звукопередачи, на выходе которого во вторичном помещении включены телефоны для левого и правого уха. При идентичности каналов звукопередачи такая система точно передает бинауральный эффект, создаваемый около ушей "искусственной головы" в первичном помещении. Наличие головных телефонов и необходимость пользования ими в течение длительного времени является недостатком.
Орган слуха определяет расстояние до источника звука по ряду косвенных признаков и с некоторыми погрешностями. В зависимости от того, мало или велико расстояние до источника сигнала, субъективная его оценка меняется под воздействием различных факторов. Было установлено, что если определяемые расстояния невелики (до 3 м), то их субъективная оценка почти линейно связана с изменением громкости перемещающегося по глубине источника звука. Дополнительным фактором для сложного сигнала является его тембр, который становится все более "тяжелым"" по мере приближения источника к слушателю. Это связано со все большим усилением обертонов низкого по сравнению с обертонами высокого регистра, вызванным происходящим при этом повышением уровня громкости.
Для средних расстояний 3-10 м. удаление источника от слушателя будет сопровождаться пропорциональным уменьшением громкости, причем это изменение будет одинаково относиться к основной частоте и к гармоническим составляюшим. В результате происходит относительное усиление высокочастотной части спектра и тембр становится более ярким.
С ростом расстояния потери энергии в воздухе будут расти пропорционально квадрату частоты. Увеличенная потеря обертонов высокого регистра приведет к снижению тембральной яркости. Таким образом, субъективная оценка расстояний связана с изменением его громкости и тембра.
В условиях закрытого помещения сигналы первых отражений, запаздывающие относительно прямого на 20-40 мс, воспринимаются органом слуха как приходящие с различных направлений. Вместе с этим все большее их запаздывание создает впечатление о значительном удалении точек, от которых происходят эти отражения. Таким образом, по времени запаздывания можно судить об относительной удаленности вторичных источников или, что то же, о размерах помещения.

Некоторые особенности субъективного восприятия стереофонических передач.

Стереофоническая система звукопередачи имеет ряд существенных особенностей по сравнению с обычной монофонической.
Качество, отличающее стереофоническое звучание, объемность, т.е. естественную акустическую перспективу, можно оценить с помощью некоторых дополнительных показателей, не имеющих смысла при монофонической технике передачи звука. К таким дополнительным показателям следует отнести: угол слышимости, т.е. угол, под которым слушатель воспринимает звуковую стереофоническую картину; стереофоническую разрешающую способность, т.е. определяемую субъективно локализацию отдельных элементов звукового образа в определенных точках пространства в пределах угла слышимости; акустическую атмосферу, т.е. эффект возникновения у слушателя ощущения присутствия в первичном помещении, где происходит передаваемое звуковое событие.

О роли акустики помещения

Красочность звучания достигается не только с помощью аппаратуры воспроизведения звука. Даже при достаточно хорошей аппаратуре качество звучания может оказаться низким, если помещение, предназначенное для прослушивания, не обладает определенными свойствами. Известно, что в закрытом помешении возникает явление нослезвучания, называемое реверберацией. Воздействуя на органы слуха, реверберация (в зависимости от ее длительности) может улучшать или ухудшать качество звучания.

Человек, находящийся в помещении, воспринимает не только прямые звуковые волны, создаваемые непосредственно источником звука, но и волны, отраженные потолком и стенами помещения. Отраженные волны слышны еше некоторое время после прекращения действия источника звука.
Иногда считают, что отраженные сигналы играют только отрицательную роль, создавая помехи восприятию основного сигнала. Однако такое представление неправильно. Определенная часть энергии начальных отраженных эхосигналов, достигая ушей человека с малыми задержками, усиливает основной сигнал и обогашает его звучание. Напротив, более поздние отраженные эхосигналы. время задержки которых превышает некоторое критическое значение, образуют звуковой фон, затрудняющий восприятие основного сигнала.
Помещение прослушивания не должно иметь большое время реверберации. Жилые комнаты, как правило, имеют малое воемя реверберации в силу ограниченности своих размеров и наличия звукопоглощающих поверхностей, мягкой мебели, ковров, занавесок и т. п.
Различные по характеру и свойствам преграды характеризуются коэффициентом поглощения звука, который представляет собой отношение поглощенной энергии к полной энергии падающей звуковой волны.

Для повышения звукопоглощающих свойств ковра (и снижения шумов в жилом помещении) ковер желательно вешать не вплотную к стене, а с зазором 30-50 мм).

Слуховой анализатор человека представляет собой специализированную систему для восприятия звуковых колебаний, формирования слуховых ощущений и опознавания звуковых образов. Вспомогательный аппарат периферической части анализатора — это ухо (рисунок 15).

Различают наружное ухо, в состав которого входят ушная раковина, наружный слуховой проход и барабанная перепонка; среднее ухо, состоящее из системы соединенных между собой слуховых косточек — молоточка, наковальни и стремени, и внутреннее ухо, которое включает улитку, где расположены рецепторы, воспринимающие звуковые колебания, а также преддверие и полукружные каналы. Полукружные каналы представляют собой периферическую рецепторную часть вестибулярного анализатора, о котором пойдет отдельный разговор.

Наружное ухо устроено таким образом, что обеспечивает подведение звуковой энергии к барабанной перепонке. При помощи ушных раковин происходит относительно небольшое концентрирование этой энергии, а наружный слуховой проход обеспечивает поддержание постоянной температуры и влажности как факторов, обусловливающих стабильность работы звукопередающего аппарата.

Барабанная перепонка представляет собой тонкую перегородку толщиной около 0,1 миллиметра, состоящую из волокон, идущих в различных направлениях. Функция барабанной перепонки хорошо отражена в ее названии — она начинает колебаться, когда на нее падают звуковые колебания воздуха со стороны наружного слухового прохода. При этом ее строение позволяет ей передавать практически без искажения все частоты звукового диапазона. Система слуховых косточек обеспечивает передачу колебаний от барабанной перепонки к улитке.

Рецепторы, которые обеспечивают восприятие звуковых колебаний, расположены во внутреннем ухе — в улитке (рисунок 16). Это название связано со спиралеобразной формой данного образования, состоящего из 2,5 витков.

В среднем канале улитки на основной мембране расположен кортиев орган (по имени итальянского анатома Корти, 1822-1888 годы). В этом органе и находится рецепторный аппарат слухового анализатора (рисунок 17).

Как же происходит формирование ощущений звука? Вопрос, который и в настоящее время привлекает пристальное внимание исследователей. Впервые (1863 год) весьма убедительное толкование процессов во внутреннем ухе представил немецкий физиолог Герман Людвиг Фердинанд Гельмгольц, разработавший так называемую резонансную теорию. Он обратил внимание, что основную мембрану улитки образуют волокна, идущие в поперечном направлении. Длина таких волокон увеличивается к вершине улитки. Отсюда понятна аналогия работы этого органа с арфой, у которой различная тональность достигается разной длиной струн. По представлению Гельмгольца, при воздействии звуковых колебаний вступает в резонанс какое-то определенное волокно, ответственное за восприятие данной частоты. Очень подкупающая своей простотой и завершенностью теория, но которую, увы, пришлось оставить, поскольку оказалось, что струн — волокон — в основной мембране слишком мало, чтобы воспроизводить все слышимые человеком частоты, натянуты эти струны слишком слабо, да и кроме того, их изолированные колебания невозможны. Эти трудности для резонансной теории оказались непреодолимы, но они послужили импульсом для последующих исследований.

По современным представлениям, передача и воспроизведение звуковых колебаний обусловлены частотно-резонансными свойствами всех сред улитки. При помощи весьма остроумных экспериментов было обнаружено, что при низких частотах колебаний (100-150 герц, может быть несколько выше, но не более 1000 герц) волновой процесс охватывает всю основную мембрану, возбуждаются все рецепторы кортиева органа, расположенного на этой мембране. При возрастании частоты звуковых волн в колебательный процесс вовлекается только часть основной мембраны, и тем меньше, чем выше звук. При этом максимум резонанса сдвигается по направлению к основанию улитки.

Однако мы пока еще не рассмотрели вопрос, каким же образом происходит трансформация энергии механических колебаний в процесс нервного возбуждения. Рецепторный аппарат слухового анализатора представлен своеобразными волосковыми клетками, которые являются типичными механорецепторами, то есть для которых адекватным раздражителем служит механическая энергия, в данном случае колебательные движения. Специфической особенностью волосковых клеток является наличие на их вершине волосков, которые находятся в непосредственном соприкосновении с покровной мембраной. В кортиевом органе различают один ряд (3,5 тысячи) внутренних и 3 ряда (12 тысяч) наружных волосковых клеток, которые различаются по уровню чувствительности. Для возбуждения внутренних клеток требуется больше энергии, и это является одним из механизмов органа слуха воспринимать звуковые раздражители в широком диапазоне интенсивностей.

При возникновении колебательного процесса в улитке в результате движений основной мембраны, а вместе с ней и кортиева органа происходит деформация волосков, упирающихся в покровную мембрану. Эта деформация и служит пусковым моментом в цепи явлений, приводящих к возбуждению рецепторных клеток. В специальном эксперименте было обнаружено, что если во время подачи звукового сигнала от поверхности волосковых клеток отводить биотоки и затем, усилив их, подвести к громкоговорителю, то мы обнаружим достаточно точное воспроизведение звукового сигнала. Это воспроизведение распространяется на все частоты, в том числе и на человеческий голос. Не правда ли, достаточно близкая аналогия с микрофоном? Вот отсюда и название — микрофонный потенциал. Доказано, что этот биоэлектрический феномен и представляет собой рецепторный потенциал. Отсюда следует, что волосковая рецепторная клетка достаточно точно (до определенного предела по интенсивности) через параметры рецепторного потенциала отражает параметры звукового воздействия — частоту, амплитуду и форму.

При электрофизиологическом исследовании волокон слухового нерва, которые подходят непосредственно к структурам кортиева органа, регистрируются нервные импульсы. Примечательно то, что частота такой импульсации зависит от частоты воздействующих звуковых колебаний. При этом до 1000 герц отмечается практически их совпадение. Хотя более высокие частоты в нерве не регистрируются, но сохраняется определенная количественная зависимость между частотами звукового раздражителя и афферентной импульсации.

Итак, мы ознакомились со свойствами человеческого уха и механизмами функционирования рецепторов слухового анализатора при воздействии звуковых колебаний воздуха. Но возможна передача и не только через воздух, а посредством так называемой костной проводимости. В последнем случае колебания (например, камертона) передаются костями черепа и затем, минуя среднее ухо, попадают непосредственно в улитку. Хотя в данном случае способ подведения акустической энергии иной, но механизм взаимодействия ее с рецепторными клетками остается тот же самый. Правда, при этом несколько различны и количественные отношения. Но в том и в другом случае возбуждение, первично возникшее в рецепторе и несущее определенную информацию, передается по нервным структурам до высших слуховых центров.

Каким же образом кодируется информация о таких параметрах звуковых колебаний, как частота и амплитуда? Сначала о частоте. Вы, очевидно, обратили внимание на своеобразный биоэлектрический феномен — микрофонный потенциал улитки. Он ведь по существу свидетельствует о том, что в значительном диапазоне колебания рецепторного потенциала (а они отражают работу рецептора и по восприятию, и последующей передаче) практически точно соответствуют по частоте звуковым колебаниям. Однако, как уже тоже отмечалось, в волокнах слухового нерва, то есть в тех волокнах, которые воспринимают информацию от рецепторов, частота нервных импульсов не превышает 1000 колебаний в секунду. А это значительно меньше, чем частоты воспринимаемых звуков в реальных условиях. Как же эта задача решается в слуховой системе? Ранее мы с вами, когда рассматривали работу кортиева органа, отмечали, что при низких частотах звукового воздействия колеблется вся основная мембрана. Следовательно, возбуждаются все рецепторы, и частота колебаний без изменения передается волокнам слухового нерва. При больших же частотах в колебательный процесс вовлекается только часть основной мембраны и, следовательно, только часть рецепторов. Они передают возбуждение соответствующей части нервных волокон, но уже с трансформацией ритма. В этом случае определенной частоте соответствует определенная часть волокон. Такой принцип обозначают как пространственный способ кодирования. Таким образом, информация о частоте обеспечивается частотно-пространственным кодированием.

Однако хорошо известно, что подавляющее большинство реальных звуков, воспринимаемых нами, в том числе и речевые сигналы, представляют собой не правильные синусоидальные колебания, а процессы, имеющие гораздо более сложную форму. Как же в этом случае обеспечивается передача информации? Еще в начале 19-го века выдающийся французский математик Жан Батист Фурье разработал оригинальный математический метод, позволяющий любую периодическую функцию представить в виде суммы ряда синусоидальных составляющих (ряда Фурье). Строгими математическими методами доказывается, что эти составляющие имеют периоды, равные Т, Т/2, Т/3 и так далее, или, иначе говоря, имеют частоты, кратные основной частоте. И немецкий физик Георг Симон Ом (которого все очень хорошо знают по его закону в электротехнике) в 1847 году выдвинул идею, что в кортиевом органе происходит именно такое разложение. Так появился еще один закон Ома, который отражает очень важный механизм звуковосприятия. Благодаря своим резонансным свойствам основная мембрана разлагает сложный звук на его составляющие, каждая из которых воспринимается соответствующим нервно-рецепторным аппаратом. Таким образом, пространственный рисунок возбуждения несет информацию о частотном спектре сложного звукового колебания.

Для передачи информации об интенсивности звука, то есть амплитуде колебаний, в слуховом анализаторе имеется механизм, также отличный от способа работы других афферентных систем. Чаще всего информация об интенсивности передается частотой нервной импульсации. Однако в слуховой системе, как это следует из только что рассмотренных процессов, такой способ невозможен. Оказывается, что и в данном случае используется принцип пространственного кодирования. Как уже отмечалось, внутренние волосковые клетки имеют чувствительность ниже, чем наружные. Таким образом, различной интенсивности звука соответствует разное сочетание возбужденных рецепторов двух этих видов, то есть специфическая форма пространственного рисунка возбуждения.

В слуховом анализаторе вопрос о специфических детекторах (как это хорошо выражено в зрительной системе) остается все еще открытым, тем не менее и здесь имеются механизмы, которые позволяют выделять все более и более сложные признаки, что в конечном итоге завершается формированием такого рисунка возбуждения, который соответствует определенному субъективному образу, опознаваемому по соответствующему «эталону».

Понятие звука и шума. Сила звука.

Звук - физическое явление, представляющее собой распространение в виде упругих волн механических колебаний в твёрдой, жидкой или газообразной среде. Как и любая волна, звук характеризуется амплитудой и спектром частот. Амплитудой звуковой волны называется разница между самым высоким и самым низким значением плотности. Частотой звука называется количество колебаний воздуха в секунду. Частота измеряется в Герцах (Гц).

Волны с разной частотой воспринимаются нами как звук разной высоты. Звук частотой ниже 16 – 20 Гц (диапазона слышимости человека) называют инфразвуком; от 15 – 20 кГц до 1 ГГц, – ультразвуком, от 1 ГГц – гиперзвуком. Среди слышимых звуков можно выделить фонетические (речевые звуки и фонемы, из которых состоит устная речь) и музыкальные звуки (из которых состоит музыка). Музыкальные звуки содержат не один, а несколько тонов, а иногда и шумовые компоненты в широком диапазоне частот.

Шум является разновидностью звука, он воспринимается людьми как неприятный, мешающий или даже вызывающий болезненные ощущения фактор, создающие акустический дискомфорт.

Для количественной оценки звука используют усредненные параметры, определяемые на основании статистических законов. Сила звука - устаревший термин, описывающий величину, подобную интенсивности звука, но не идентичную ей. Она зависит от длины волны. Единица измерения силы звука - бел (Б) . Уровень звука чаще всего измеряют в децибелах (это 0,1Б). Человек на слух может обнаружить разницу в уровне громкости приблизительно в 1 дБ.

Для измерения акустического шума, Стивеном Орфилдом, была основана в Южном Миннеаполисе «Лаборатория Орфилд». Чтобы достичь исключительной тишины, в комнате использованы стекловолоконные акустические платформы толщиной в метр, двойные стены из изолированной стали и бетон толщиной в 30 см. Комната блокирует 99,99 процентов внешних звуков и поглощает внутренние. Эта камера используется многими производителями для тестирования громкости своих продуктов, таких как клапаны сердца, звук дисплея мобильного телефона, звук переключателя на приборной панели автомобиля. Также её используют для определения качества звука.

Звуки различной силы оказывают на организм человека различные воздействия. Так звук силой до 40 дБ оказывает успокаивающее действие. От воздействия звука 60-90 дБ возникает чувство раздражения, утомляемость, головная боль. Звук силой 95-110 дБ вызывает постепенно ослабление слуха, нервно-психический стресс, различные заболевания. Звук от 114 дБ вызывает звуковое опьянение наподобие алкогольного опьянения, нарушает сон, разрушает психику, приводит к глухоте.

В России действуют санитарные нормы допустимого уровня шума, где для различных территорий и условий нахождения человека даны предельные значения уровня шума:

· на территории мкр-она 45-55 дБ;

· в школьных классах 40-45 дБ;

· больницы 35-40 дБ;

· в промышленности 65-70 дБ.

В ночное время (23:00-7:00) уровни шума должны быть на 10 дБ меньше.

Примеры силы звука в децибелах:

· Шорох листьев: 10

· Жилое помещение: 40

· Разговор: 40–45

· Офис: 50–60

· Шум в магазине: 60

· Телевизор, крик, смех на расстоянии 1 м: 70–75

· Улица: 70–80

· Фабрика (тяжелая промышленность): 70–110

· Цепная пила: 100

· Старт реактивного самолёта: 120–130

· Шум на дискотеке: 175

Восприятие звуков человеком

Слух - способность биологических организмов воспринимать звуки органами слуха. В основе возникновения звука лежат механические колебания упругих тел. В слое воздуха, непосредственно примыкающем к поверхности колеблющего тела, возникает сгущение (сжатие) и разрежения. Эти сжатия и разрежения чередуются во времени и распространяются в стороны в виде упругой продольной волны, которая достигает уха и вызывает вблизи него периодические колебания давления, воздействующие на слуховой анализатор.

Обычный человек способен слышать звуковые колебания в диапазоне частот от 16–20 Гц до 15–20 кГц. Способность различать звуковые частоты сильно зависит от конкретного человека: его возраста, пола, подверженности слуховым болезням, тренированности и усталости слуха.

У человека органом слуха является ухо, которое воспринимает звуковые импульсы, а также отвечает за положение тела в пространстве и способность удерживать равновесие. Это парный орган, который размещается в височных костях черепа, ограничиваясь снаружи ушными раковинами. Он представлен тремя отделами: наружным, средним и внутренним ухом, каждый из которых выполняет свои конкретные функции.

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Ушная раковина у живых организмов работает как приемник звуковых волн, которые затем передаются во внутреннюю часть слухового аппарата. Значение ушной раковины у человека намного меньше, чем у животных, поэтому у человека она практически неподвижна.

Складки человеческой ушной раковины вносят в поступающий в слуховой проход звук небольшие частотные искажения, зависящие от горизонтальной и вертикальной локализации звука. Таким образом, мозг получает дополнительную информацию для уточнения местоположения источника звука. Этот эффект иногда используется в акустике, в том числе для создания ощущения объёмного звука при использовании наушников или слуховых аппаратов. Наружный слуховой проход заканчивается слепо: от среднего уха он отделен барабанной перепонкой. Уловленные ушной раковиной звуковые волны ударяются в барабанную перепонку и вызывают ее колебания. В свою очередь, колебания барабанной перепонки передаются в среднее ухо.

Основной частью среднего уха является барабанная полость - небольшое пространство объемом около 1см³, находящееся в височной кости. Здесь находятся три слуховые косточки: молоточек, наковальня и стремечко - они соединяются между собой и с внутренним ухом (окно преддверия), они передают звуковые колебания из наружного уха во внутреннее, одновременно усиливая их. Полость среднего уха связана с носоглоткой посредством евстахиевой трубы, через которую выравнивается среднее давление воздуха внутри и снаружи от барабанной перепонки.

Внутреннее ухо из-за своей замысловатой формы называется лабиринтом. Костный лабиринт состоит из преддверия, улитки и полукружных каналов, но непосредственное отношение к слуху имеет только улитка, внутри которой находится перепончатый канал, заполненный жидкостью, на нижней стенке которого расположен рецепторный аппарат слухового анализатора, покрытый волосковыми клетками. Волосковые клетки улавливают колебания жидкости, заполняющей канал. Каждая волосковая клетка настроена на определенную звуковую частоту.

Слуховой орган человека работает следующим образом. Ушные раковины улавливают колебания звуковой волны и направляют их в слуховой проход. По нему колебания направляются в среднее ухо и, достигнув барабанной перепонки, вызывают ее колебания. Через систему слуховых косточек колебания передаются дальше – во внутреннее ухо (звуковые колебания передаются перепонке овального окна). Колебания перепонки вызывают движение жидкости в улитке, она, в свою очередь, заставляет колебаться базальную мембрану. При движении волоконец волоски рецепторных клеток касаются покровной мембраны. В рецепторах возникает возбуждение, которое по слуховому нерву в конечном итоге передается в головной мозг, где через средний и промежуточный мозг возбуждение попадает в слуховую зону коры больших полушарий, расположенную в височных долях. Здесь происходит окончательное различение характера звука, его тона, ритма, силы, высоты и его смысла.

Влияние шума на человека

Сложно переоценить воздействие шума на состояние здоровья людей. Шум относится к тем факторам, к которым нельзя привыкнуть. Человеку лишь кажется, что он привык к шуму, но акустическое загрязнение, действуя постоянно, разрушает здоровье человека. Шум вызывает резонанс внутренних органов, постепенно изнашивая их незаметно для нас. Недаром в средние века существовала казнь "под колокол". Гул колокольного звона мучил и медленно убивал осужденного.

Долгое время влияние шума на организм человека специально не изучалось, хотя уже в древности знали о его вреде. В настоящее время ученые во многих странах мира ведут различные исследования с целью выяснения влияния шума на здоровье человека. В первую очередь от шума страдают нервная, сердечно-сосудистая системы и органы пищеварения. Существует зависимость между заболеваемостью и длительностью проживания в условиях акустического загрязнения. Рост болезней наблюдается после проживания в течение 8-10 лет при воздействии шума с интенсивностью выше 70 дБ.

Длительный шум неблагоприятно влияет на орган слуха, понижая чувствительность к звуку. Регулярное и длительное воздействие производственного шума в 85-90 дБ приводит к появлению тугоухости (постепенной потере слуха). Если сила звука выше 80 дБ, появляется опасность потери чувствительности находящихся в среднем ухе ворсинок – отростков слуховых нервов. Отмирание половины из них еще не ведет к ощутимой потере слуха. А если погибает больше половины - человек погрузится в мир, в котором не слышно шелеста деревьев, жужжания пчел. С потерей всех тридцати тысяч слуховых ворсинок человек попадает в мир безмолвия.

Шум обладает аккумулятивным эффектом, т.е. акустические раздражение, накапливаясь в организме, все сильнее угнетают нервную систему. Поэтому перед потерей слуха от воздействия шумов возникает функциональное расстройство центральной нервной системы. Особенно вредное влияние шум оказывает на нервно-психическую деятельность организма. Процесс нервно-психических заболеваний выше среди лиц, работающих в шумных условиях, нежели у лиц, работающих в нормальных звуковых условиях. Поражаются все виды интеллектуальной деятельности, ухудшаются настроение, иногда появляется ощущение растерянности, тревоги, испуга, страха , а при высокой интенсивности - чувство слабости, как после сильного нервного потрясения. В Великобритании, например, один из четырёх мужчин и одна из трёх женщин больны неврозами из-за высокого уровня шума.

Шумы вызывают функциональные расстройства сердечно-сосудистой системы. Изменения, происходящие в сердечнососудистой системе человека под воздействием шума, имеют следующие симптомы: болевые ощущения в области сердца, сердцебиение, неустойчивость пульса и артериального давления, иногда наблюдается наклонность к спазмам капилляров конечностей и глазного дна. Функциональные сдвиги, возникающие в системе кровообращения под влиянием интенсивного шума, со временем могут привести к стойким изменениям сосудистого тонуса, способствующим развитию гипертонической болезни.

Под влиянием шума изменяются углеводный, жировой, белковый, солевой обмены веществ, что проявляется в изменении биохимического состава крови (снижается уровень сахара в крови). Шум оказывает вредное влияние на зрительные и вестибулярные анализаторы, снижает рефлекторную деятельность , что часто становится причиной несчастных случаев и травм. Чем выше интенсивность шума, тем хуже человек видит и реагирует на происходящее.

Шум также влияет на способность к интеллектуальной и учебной деятельности. Например, на успеваемость учеников. В 1992 году в Мюнхене аэропорт перенесли в другую часть города. И выяснилось, что проживавшие рядом со старым аэропортом ученики, которые до его закрытия демонстрировали плохие показатели по чтению и запоминанию информации, в тишине стали показывать намного лучшие результаты. Зато в школах того района, куда аэропорт перенесли, успеваемость, наоборот, ухудшилась, а дети получили новое оправдание для плохих оценок.

Исследователи установили, что шум может разрушать растительные клетки. Например, эксперименты показали, что растения, подверженные обстрелу звуками, засыхают и гибнут. Причиной гибели является чрезмерное выделение влаги через листья: когда уровень шума превышает определённый предел, цветы буквально исходят слезами. Пчела теряет способность ориентироваться и перестаёт работать при шуме реактивного самолёта.

Очень шумная современная музыка также притупляет слух, вызывает нервные заболевания. У 20 процентов юношей и девушек, часто слушающих модную современную музыку, слух оказался притупленным в такой степени, как у 85 летних стариков. Особую опасность представляют плееры и дискотеки для подростков. Обычно уровень шума на дискотеке составляет 80–100 дБ, что сравнимо с уровнем шума интенсивного уличного движения или взлетающего в 100 м турбореактивного самолёта. Громкость звука плеера составляет 100–114 дБ. Почти так же оглушительно работает отбойный молоток. Здоровые барабанные перепонки без ущерба могут переносить громкость плеера в 110 дБ максимум в течение 1,5 мин. Французские учёные отмечают, что нарушения слуха в наш век активно распространяются среди молодых людей; с возрастом они, скорее всего, будут вынуждены пользоваться слуховыми аппаратами. Даже низкий уровень громкости мешает концентрации внимания во время умственной работы. Музыка, пусть даже совсем тихая, снижает внимание – это следует учитывать при выполнении домашней работы. Когда звук нарастает, организм производит много гормонов стресса, например, адреналин. При этом сужаются кровеносные сосуды, замедляется работа кишечника. В дальнейшем всё это может привести к нарушениям работы сердца и кровообращения. Ухудшение слуха из-за шума относится к неизлечимым заболеваниям. Восстановить поврежденный нерв хирургическим путем практически невозможно.

Негативно влияют на нас не только те звуки, которые мы слышим, но и те, которые находятся за пределами диапазона слышимости: прежде всего – инфразвук. Инфразвук в природе возникает при землетрясениях, ударах молний, при сильном ветре. В городе источники инфразвука - тяжелые станки, вентиляторы и любое оборудование, которое вибрирует. Инфразвук с уровнем до 145 дБ вызывает физическое напряжение, переутомление, головные боли, нарушения работы вестибулярного аппарата. Если инфразвук более сильный и длительный, то человек может ощущать вибрации в грудной клетке, сухость во рту, нарушения зрения, головную боль и головокружение.

Опасность инфразвука в том, что от него сложно защититься: в отличие от обычного шума, он практически не поддается поглощению и распространяется намного дальше. Для его подавления необходимо снизить звук в самом источнике с помощью специального оборудования: глушителей реактивного типа.

Полная тишина также оказывает вред на организм человека. Так, сотрудники одного конструкторского бюро, имевшего прекрасную звукоизоляцию, уже через неделю стали жаловаться на невозможность работы в условиях гнетущей тишины. Они нервничали, теряли работоспособность.

Конкретным примером воздействия шума на живые организмы, можно считать следующее событие. Тысячи не вылупившихся птенцов погибли в результате дноуглубительных работ, ведущихся немецкой компанией «Мебиус» по распоряжению Минтранса Украины. Шум от работающей техники разносился на 5-7км, оказывая негативное влияние на прилегающие территории Дунайского биосферного заповедника. Представители Дунайского биосферного заповедника и еще 3 организаций вынуждены были с болью констатировать гибель всей колонии пестроносой крачки и речной крачки, которые располагались на косе Птичья. Дельфины и киты выбрасываются на берег из-за сильных звуков военных гидролокаторов.

Источники шума в городе

Самое вредное воздействие оказывают звуки на человека в больших городах. Но даже в загородных поселках можно страдать от шумового загрязнения, вызванного работающими техническими приспособлениями у соседей: газонокосилкой, токарным станком или музыкальным центром. Шум от них может превышать предельно допустимые нормы. И все же основное загрязнение шумовое происходит в городе. Источником его в большинстве случаев являются транспортные средства. Самая большая интенсивность звуков исходит от автомагистралей, метро и трамваев.

Автотранспорт . Наибольшие уровни шума отмечаются на магистральных улицах городов. Средняя интенсивность движения достигает 2000-3000 транспортных единиц в час и больше, а максимальные уровни шума – 90-95 дБ.

Уровень уличных шумов определяется интенсивностью, скоростью и составом транспортного потока. Кроме того, уровень уличных шумов зависит от планировочных решений (продольный и поперечный профиль улиц, высота и плотность застройки) и таких элементов благоустройства, как покрытие проезжей части и наличие зелёных насаждений. Каждый из этих факторов способен изменить уровень транспортного шума до 10 дБ.

В промышленном городе обычен высокий процент грузового транспорта на магистралях. Увеличение, в общем потоке автотранспорта, грузовых автомобилей, особенно большегрузных с дизельными двигателями, приводит к росту уровней шума. Шум, возникающий на проезжей части магистрали, распространяется не только на примагистральную территорию, но вглубь жилой застройки.

Рельсовый транспорт. Повышение скорости движения поездов также приводит к значительному росту уровня шума в жилых зонах, расположенных вдоль железнодорожных путей или близ сортировочных станций. Максимальный уровень звукового давления на расстоянии 7,5 м от движущегося электропоезда достигает 93 дБ, от пассажирского – 91, от товарного состава –92 дБ.

Шум, возникающий при прохождении электропоездов, легко распространяется на открытой территории. Наиболее значительно звуковая энергия снижается на расстоянии первых 100 м от источника (в среднем на 10 дБ). На расстоянии 100-200 снижение шума равно 8 дБ, а расстоянии от 200 до 300 всего на 2-3 дБ. Основной источник железнодорожного шума – удары вагонов при движении на стыках и неровностях рельсов.

Из всех видов городского транспорта наиболее шумный трамвай . Стальные колёса трамвая при движении по рельсам создают уровень шума на 10 дБ выше, чем колёса автомобилей при соприкосновении с асфальтом. Трамвай создаёт шумовые нагрузки при работе двигателя, открывании дверей, подаче звуковых сигналов. Высокий уровень шума от движения трамвая – одна из основных причин сокращения трамвайных линий в городах. Однако трамвай обладает и целым рядом преимуществ, поэтому при снижении создаваемого им шума он может выиграть в соревновании с другими видами транспорта.

Большое значение имеет скоростной трамвай. Он может с успехом использоваться как основной вид транспорта в малых и средних городах, а в крупных – как городской, пригородный и даже как междугородный, для связи с новыми жилыми массивами, промышленными зонами, аэропортами.

Воздушный транспорт. Значительный удельный вес в шумовом режиме многих городов занимает воздушный транспорт. Нередко аэропорты гражданской авиации оказываются расположенными в непосредственной близости от жилой застройки, а воздушные трассы проходят над многочисленными населёнными пунктами. Уровень шума зависит от направления взлётно-посадочных полос и трасс пролётов самолётов, интенсивности полётов в течение суток, сезонов года, от типов самолётов, базирующихся на данном аэродроме. При круглосуточной интенсивной эксплуатации аэропортов эквивалентные уровни звука на жилой территории достигают в дневное время 80 дБ, в ночное – 78 дБ, максимальные уровни шума колеблются от 92 до 108 дБ.

Промышленные предприятия. Источником большого шума в жилых кварталах городов являются промышленные предприятия. Нарушение акустического режима отмечается в тех случаях, когда их территория непосредственно к жилым массивам. Изучение промышленного шума показало, что по характеру звучания он постоянный и широкополосный, т.е. звук различных тонов. Наиболее значительные уровни наблюдаются на частотах 500-1000 Гц, то есть в зоне наибольшей чувствительности органа слуха. В производственных цехах устанавливается большое количество разнотипного технологического оборудования. Так, ткацкие цехи могут быть охарактеризованы уровнем звука 90-95 дБ А, механические и инструментальные - 85-92, кузнечнопрессовые – 95-105, машинные залы компрессорных станций – 95-100 дБ.

Домашняя техника. С наступлением постиндустриальной эпохи всё больше и больше источников шумового загрязнения (а также электромагнитного) появляется и внутри жилища человека. Источником этого шума является бытовая и офисная техника.

Современная психология рассматривает всякое восприятие как действие, подчеркивая его активный характер. Это целиком относится к восприятию речи, в ходе которого слушающий не просто фиксирует и обрабатывает поступающую информацию, а, проявляя встречную активность, непрерывно прогнозирует, моделирует ее, сличает фактически услышанное с моделью, вносит необходимые поправки и, наконец, принимает окончательное решение относительно смысла, заключенного в прослушанной части сообщения

Чтобы правильно ориентироваться в окружающем мире, важно воспринимать не только каждый отдельный предмет (стол, цветок, радугу), но и ситуацию, комплекс каких-то предметов в целом (игровую комнату, картину, звучащую мелодию) Объединить отдельные свойства предметов и создать целостный образ помогает восприятие - процесс отражения человеком предметов и явлений окружающего мира при их непосредственном воздействии на органы чувств. Восприятие даже какого-нибудь простого предмета очень сложный процесс, который включает работу сенсорных (чувствительных), двигательных и речевых механизмов. Восприятие опирается не только на ощущения, которые каждое мгновение позволяют чувствовать окружающий мир, но и на предыдущий опыт растущего человека

Ребенок не рождается с готовым умением воспринимать окружающий мир, а учится этому. В младшем дошкольном возрасте образы воспринимаемых предметов отличаются большой смутностью и нечеткостью. Так, дети трех-четырех лет не узнают на утреннике переодетую в костюм лисицы воспитательницу, хотя ее лицо и открыто. Если детям попадается изображение незнакомого объекта, они выхватывают из изображения какую-то деталь и, опираясь на нее, осмысливают весь изображенный предмет. Например, впервые увидев монитор компьютера, ребенок может воспринять его как телевизор.

Несмотря на то, что ребенок с самого рождения может видеть, улавливать звуки, его необходимо систематически учить рассматривать, слушать и понимать то, что он воспринимает. Механизм восприятия готов, но пользоваться им ребенок еще только учится

Слуховые реакции в младенческом возрасте отражают активный процесс реализации языковой способности и приобретения слухового опыта, а не пассивные реакции организма на звук.

Уже в течение первого месяца жизни происходит совершенствование слуховой системы и выявляется врожденная приспособленность слуха человека к восприятию речи. В первые месяцы жизни ребенок реагирует на голос матери, выделяя его среди других звуков и незнакомых голосов.

У новорожденных детей, даже недоношенных, в ответ на громкий голос или звук погремушки появляются различные двигательные реакции: ребенок закрывает глаза, наморщивает лоб, у него появляется гримаса плача, учащается дыхание. Иногда реакции могут быть другими: ребенок вытягивает ручки, растопыривает пальцы, открывает рот, делает сосательные движения. Реакция на громкий звук может также сопровождаться подергиванием глазных яблок, сужением, а затем расширением зрачков. На 2-й неделе жизни появляется слуховое сосредоточение -- плачущий ребенок умолкает при сильном слуховом раздражителе и прислушивается.

Развитие восприятия младших дошкольников непосредственно связано с сенсорным воспитанием. Сенсорное воспитание направлено на то, чтобы научить детей более полному, точному и детальному восприятию таких свойств предметов как цвет, форма и величина. Именно младший дошкольный возраст является наиболее благоприятным для совершенствования деятельности органов чувств ребенка. Хорошо развитое восприятие является залогом успешного обучения ребенка в школе, а также необходимо для многих видов профессиональной деятельности взрослого человека.

Успешность сенсорного развития ребенка во многом зависит от грамотного проведения взрослым специальных игр-занятий. Без подобных занятий восприятие детей долго остается поверхностным, отрывочным, что, в свою очередь, затрудняет последующее развитие их мышления, памяти, воображения.

Восприятие формируется в связи с развитием, усложнением деятельности анализаторов. Сталкиваясь ежедневно с определёнными людьми и с окружающими предметами, ребёнок постоянно испытывает зрительные, слуховые, кожные и другие раздражения. Постепенно раздражения, вызываемые данным предметом, выделяются из всех воздействий окружающих предметов и явлений, связываются между собой, что приводит к возникновению восприятия особенностей данного предмета.

Важнейшее значение для формирования восприятия, как и других психических процессов, имеет подкрепление.

Выделение комплекса раздражителей, относящихся к данному предмету, и образование связей между ними проходит успешно в том случае, если этот предмет приобрёл какое-либо важное значение для ребёнка или же в силу своей необычности вызывает ориентировочно-исследовательский рефлекс.

В таком случае правильное выделение комплекса раздражителей и формирование соответствующих связей подкрепляется достижением необходимого результата, вследствие чего и происходит развитие, совершенствование восприятия

Характерно, что ребёнок начинает воспринимать первым то, что имеет для него наибольшее жизненное значение, то, что связано с удовлетворением его жизненных потребностей. Так, из всех окружающих людей и предметов младенец раньше всего выделяет и узнаёт заботящуюся о нём мать. В дальнейшем круг воспринимаемых предметов и явлений всё более расширяется.

Больших успехов достигает преддошкольник в восприятии слов родного языка, а также в различении простых мелодий.

Вместе с тем называние взрослым, а затем и самим ребёнком воспринимаемых предметов и явлений привлекает прошлый опыт, связанный с данным словом, что придаёт восприятию осмысленный, сознательный характер.

В условиях правильно организованного педагогического процесса дошкольник постепенно научается не довольствоваться первыми впечатлениями, но более тщательно и планомерно исследовать, рассматривать, ощупывать окружающие предметы, более внимательно выслушивать то, что ему говорят. В результате этого возникающие в его голове образы восприятия окружающей действительности становятся более точными и богатыми по содержанию.

Одновременно со зрительным у них развиваются также другие виды восприятия, среди которых нужно в первую очередь отметить осязательные и слуховые

Ребенка окружает множество звуков: музыка, щебетание птиц, шелест травы, шум ветра, журчание воды...

Вслушиваясь в звуки, сопоставляя их звучание и пытаясь повторить их, ребенок начинает не только слышать, но и различать звуки родной природы

Слуху принадлежит ведущая роль в образовании звуковой речи. Он функционирует уже с первых часов жизни ребенка. Уже с первого месяца вырабатываются слуховые условные рефлексы, а с пяти месяцев этот процесс совершается достаточно быстро. Младенец начинает различать голос матери, музыку и т.п. Без подкрепления эти рефлексы скоро, угасают. Такое раннее участие коры в развитии слуха обеспечивает раннее развитие звуковой речи. Но хотя слух в своем развитии и опережает развитие движений органов речи, все же на первых порах и он недостаточно развит, что обусловливает ряд несовершенств речи.

Звуки, и слова окружающих воспринимаются недифференцированно (не осознается разница между ними), т.е. нечетко, искаженно. Поэтому дети смешивают один звук с другим, плохо понимают речь.

На протяжении дошкольного возраста, под влиянием соответствующей воспитательной работы, возрастает роль звуковых сигналов в организации детского восприятия.

Следует отметить, что работа, направленная на развитие слухового восприятия, имеет очень важное значение в общем развитии детской психики

Развитие слухового восприятия имеет большое значение для подготовки дошкольника к поступлению в школу.