Стероидные гликозиды растений. Сапонины - описание вещества. Распространение и биологические функции в растениях

Сапонины - это сложные органические соединения из гликозидов растительного происхождения. Элементы обладают сложной структурой и воздействуют на человеческий организм в широком спектре в зависимости от составляющих соединений.

Физические и химические свойства

Молекулярная формула такого соединения очень сложна и может распадаться на большое количество отдельных элементов. Сапонины можно условно разделить на два основные группы:

    Стероидные сапонины. Данный элемент относится к группе гликозидов и обладает сложной структурой, которая состоит моносахаридов;

    Тритерпеновые сапонины. В этом варианте цепь состоит из углеводных цепочек.

При растворении в воде элемент дает густую пену, поэтому часто входит в состав моющих средств и в пищевых продуктах. Однако применение внутрь обладает еще более широким эффектом, а извлекают из разнообразных растений.

Применение и особенности

Сапонины используют для лечения различных заболеваний. Вещество обладает широким спектром воздействия и может повлиять на организм следующим образом:

Отхаркивающее средство. Действует возбуждающе на дыхательную систему и усиливает выработку слизи, поэтому поможет быстрее прочистить бронхи и избавиться от очага инфекции.

    Мочегонное и слабительное средство. Элемент способен распадаться на отдельные соединения и стимулирует выработку ферментов.

    Гормональное воздействие. Стероидные сапонины активируют синтез кортикостериодов и стимулируют выработку гормонов, обладая эмульгирующим эффектом.

    Лечение атеросклероза. Сложные соединения распадаются на отдельные элементы и могут очищать кровь от жировых веществ, которые образуют артериальные бляшки.

По вкусовым ощущениям вещество обладает неприятным вкусом и может вызывать чихание. Прием внутрь возможен и в профилактических целях, а попадание в организм не несет прямой угрозы для человека. Однако передозировка препарата вызывает раздражение желудочно-кишечного тракта.

Разные типы могут иметь различный эффект на организм человека. К примеру, стероидная группа используется при гипертонии и лечит атеросклероз. Тритерпеноидные сапиноны воздействуют на выработку гормонов и активизируют работу секреций желез.

Стоит отметить и то, что эти растительные элементы можно получить из разных растений, и в зависимости от этого может поменяться и причина приема препарата. Если экстракт солодки с сапонинами лечит почечную недостаточность, то препарата на основе синюхи лазурной чаще используется в качестве отхаркивающего средства. В женьшене также содержится определенное количество этого полезного вещества.

ГЛИКОЗИДЫ (гетерозиды ) широко распространенные в природе, особенно в растительном мире, вещества, в молекулах которых остатки сахаров (гликозильные остатки) связаны через атом кислорода, серы или азота с молекулой вещества, не являющегося сахаром и называемого агликоном. Соответственно различают О-(I), S-(II) и N-(III) гликозиды. Термином «C-гликозиды» обозначают соединения, в которых гликозильный остаток связан непосредственно с атомом агликона (IV):

К Г. принадлежат многие лекарственные вещества, в т. ч. оказывающие избирательное действие на сердечную мышцу. Наибольшее значение и распространение в природе имеют О- и N-гликозиды.

Г. делятся на пиранозиды и фуранозиды в зависимости от наличия шести- или пятичленного кольца в остатке сахара (см. Моносахариды), а также на альфа-гликозиды и бета-гликозиды в зависимости от альфа- и бета-конфигурации C-атома, связанного через кислород с агликоновой частью молекулы.

O-Гликозиды

O-Гликозиды можно рассматривать как производные сахаров, в полуацетальном гидроксиле которых атом водорода заменен радикалом алифатического, карбоциклического или гетероциклического соединения. Хотя во многих O-гликозидах гликоновой частью молекулы являются остатки простых сахаров, однако ею могут быть и остатки олигосахаридов (ди-, три-и т. д. сахаридов). Встречающиеся в природе O-гликозиды в большинстве случаев являются бета-гликозидами. Наконец, в зависимости от природы сахарной компоненты различают пентозиды (О-гликозиды пентоз), напр, ксилозиды (O-гликозиды ксилозы), арабинозиды (O-гликозиды арабинозы) и др.; гексозиды (O-гликозиды гексоз), напр, глюкозиды (производные глюкозы), галактозиды (производные галактозы), фруктозиды, а также биозиды (O-гликозиды биоз - дисахаридов), напр, мальтозиды, лактозиды и т. д. По типу гликозидов построены олигосахариды (см.) и высшие полисахариды (см.).

По характеру агликона О-гликозиды делят на ряд групп, в т. ч. на цереброзиды (см.) - галактозиды сфингозина; стероидные О-гликозиды, напр, сердечные гликозиды (см.), сапонины (см.) и др.; азотсодержащие O-гликозиды, напр, амигдалин, индикан; гликоалкалоиды, соединения, в которых сахарная компонента соединена O-гликозидной связью с остатком алкалоида (соланин, демиссин) и др.

O-гликозиды могут быть получены синтетически или же выделены из природных источников. Так, алкилгликозиды получают при взаимодействии сахара с избытком спирта в присутствии каталитически действующего сухого хлористого водорода или ферментов альфа- и бета-глюкозидаз. Многие природные O-гликозиды сложного строения (флавонгликозиды, стероидные гликозиды и др.) экономически выгодно выделять из природных источников. Биосинтез O-гликозидов в растениях происходит преимущественно путем переноса гликозильного остатка с нуклеозиддифосфатсахара на фенол или спирт, напр, уридиндифосфатглюкоза + гидрохинон -> уридинфосфат + гидрохинон-бета-D-глюкозид (арбутин) .

О-Гликозиды представляют собой твердые кристаллические вещества, чаще всего обладающие разнообразным специфическим вкусом. Подавляющее большинство О-гликозидов не гидролизуется щелочами; исключение составляют лишь некоторые Г., агликонами которых являются фенолы, енолы и спирты, содержащие в β-положении отрицательно заряженные группы (напр., СО; NO 2). O-Гликозиды обычно не обладают восстанавливающей способностью, за исключением Г., чувствительных к щелочам, а также тех Г., агликоны которых сами обладают восстанавливающими свойствами.

Г. гидролизуются к-тами, причем фуранозиды гиролизуются во много раз быстрее пиранозидов. Характер агликона, а также конфигурация всех асимметрических атомов остатка сахара оказывают влияние на скорость гидролиза, альфа- и бета-гликозиды гидролизуются специфическими ферментами - альфа- и бета-глюкозидазами (см. Глюкозидазы).

Многие O-гликозиды находят применение В медицине как ценные лекарственные Средства, (см. ниже); некоторые имеют токсикол. значение (сапонины, соланин) или применяются как витамины (рутин - витамин P).

S-Гликозиды

S-Гликозиды (тиогликозиды) представляют собой производные циклических форм I-тиосахаридов, в меркаптогруппе (-SH) которых атом водорода замещен радикалом.

S-Гликозиды можно получить взаимодействием ацетатов гликозилбромидов с тиофенолами в присутствии щелочи с последующим омылением ацетильных групп образовавшегося S-гликозидяого ацетил производного. S-Гликозиды очень стойки по отношению к кислотному гидролизу, но Крепкие щелочи расщепляют их с образованием тиосахаров.

Важнейшим природным S-гликозидом является Г. черной горчицы - синигрин, расщепляющийся ферментом тиоглюкозидазой (мирозиназой, синигриназой; К Ф 3.2.3.1) с образованием аллилового горчичного масла; известно св. 40 природных S-гликозидов, близких синигрину.

N-Гликозиды

N-Гликозиды (вторичные или третичные гликозиламины) рассматриваются как производные гликозимина (первичного гликозиламина); они образуются в результате замещения одного или двух атомов водорода в аминогруппе остатками соединений алифатического или гетероциклического ряда.

Как и O-гликозиды, N-гликозиды могут быть построены как пиранозиды или фуранозиды и иметь альфа-(I) и бета-форму (II). В отличие от О-гликозидов, N-гликозиды в р-рах могут находиться частично в виде ациклических таутомерных форм (типа оснований Шиффа), являющихся промежуточными (III):

Впервые кристаллические N-гликозиды были получены взаимодействием анилина и сахаров, многие N-гликозиды получают непосредственным взаимодействием сахара и амина на холоду или при нагревании в спиртовой, спиртово-водной или водной среде, в отсутствие или в присутствии катализаторов - уксусной или соляной к-ты, хлористого аммония и т. д.

Свойства N-гликозидов зависят в значительной степени от природы агликонов. Алкил- и арил- N-гликозиды (напр., пурин- и пиримидин-N-гликозиды) устойчивы к действию к-т и щелочей.

К N-гликозидам принадлежат исключительно важные в обмене веществ продукты расщепления нуклеиновых к-т и нуклеопротеидов (нуклеотиды и нуклеозиды), некоторые важнейшие коферменты (см.), аденозинтрифосфорная кислота (см.), уридинтрифосфат, никотинамидадениндинуклеотид, никотинимидадениндинуклеотидфосфат (НАД и HАДФ), некоторые антибиотики и т. п.

Искусственно синтезированы N-гликозиды сульфонамидных препаратов: «глюкострептоцид», N-глюкозид сульфидина, норсульфазолглюкозид, отличающиеся от исходных агликонов гораздо большей растворимостью, меньшей токсичностью и иногда видоизмененным характером действия.

N-Гликозиды алифатических аминов с длинной цепью (додецил- и октадециламинов) применяются в текстильной промышленности.

N-Гликозиды некоторых ароматических аминов предложены в качестве антиоксидантов каучука.

C-Гликозиды

C-Гликозиды встречаются в природе (бергенин, псевдоуритин) и могут быть получены синтетически; отличаются от всех других групп Г. неспособностью к гидролизу.

Лекарственные гликозиды

Лекарственные гликозиды не являются единой фармакол, группой: спектр их действия весьма широк, что обусловлено строением как агликона, так и гликоновой части их молекулы. Гликоновая часть усиливает и ускоряет действие агликона, увеличивает его растворимость, способствует лучшему его проникновению в клетки организма, придает стабильность молекуле Г. и обусловливает соответствующую особенность действия.

Из обширного класса О-гликозидов наибольшее значение имеют стероидные Г., и в первую очередь производные циклопентапергидрофенантрена, относящиеся к группе сердечных гликозидов (см.). Другие стероидные Г. применяют для лечения атеросклероза (диоспонин и др.), заболеваний вен (асцин, эсфлазид и др.). Получены препараты Г. противовоспалительного, гормонального, нейротропное, тонизирующего и гонадотропного действия (аралозиды, АВС-сапорал, панаксозиды из корня жень-шеня и др.). Среди О-гликозидов следует отметить также препараты слабительного и мочегонного действия, а также биофлавоноиды (см.).

Для лечения некоторых заболеваний сосудов применяются Г. кумаринов и хромонов (эскулин, келлозид).

Ряд лекарственных Г. оказывает антимикробное, антивирусное и цитопатическое действие. К таким Г. относятся некоторые антибиотики, получаемые из Strep tomyces (см. Стрептомицины) и других источников, амигдалин и др. Есть сведения, что синтетические N-гликозиды, имеющие в качестве гликоновой части или в ее составе рибозу и дезоксирибозу, обладают широким спектром лекарственного действия и применяются в качестве стимуляторов обмена веществ, иммунодепрессантов (см. Иммунодепрессивные вещества), химиотерапевтических средств и др.

S-и С-гликозиды содержатся в ряде растений (горчица, черногорка, боярышник и др.). Многие лекарственные Г. обладают горьким вкусом, поэтому растения, их содержащие (золототысячник, полынь и др.), используют в качестве горечей (см.).

Лекарственные Г. в большинстве случаев относятся к сильнодействующим препаратам и применяются в небольших дозах.

Гликозиды в судебно-медицинском отношении

Идентификация Г. имеет большое значение при случайных отравлениях.

Чаще всего наиболее токсичными оказываются сердечные Г. Интоксикация может развиться даже при применении терапевтических доз. При суд.-мед. установлении отравлений Г. большое значение имеют особенности клин, картины: сильная слабость, судороги, коматозное состояние, брадикардия; нарушение проводимости и возникновение возбуждения сердечной деятельности, что может вызвать тахиаритмию желудочков сердца. Полное прекращение сердечной деятельности может наступить преимущественно в стадии диастолы. При отравлениях Г. могут наблюдаться нарушения функции ц. н. с. и жел.-киш. тракта, а также олигурия. При исследовании трупа специфические изменения органов не обнаруживают, иногда отмечают нек-рое их полнокровие.

Для доказательства смертельных отравлений Г. большое значение имеют данные суд.-хим. исследования трупного материала, а также остатков препаратов, послуживших предположительно причиной смерти.

Г. из организма человека выделяются преимущественно с желчью и частично с мочой. Для суд.-хим. экспертизы особое значение имеет исследование желчи и желчного пузыря, а также участков печени, прилегающих к желчному пузырю и тканей с места инъекций.

Сохраняемость Г. в трупном материале в течение 1 года достигается консервированием этанолом, к-рое должно производиться непосредственно после взятия объектов исследования.

Схема судебно-хим. определения Г. включает несколько основных стадий: экстрагирование трупного материала 70% этанолом при pH 7,0; осаждение в экстракте белков; очистку экстрагированием четыреххлористым углеродом; экстрагирование олеандрина и ланатозидов хлороформноспиртовой смесью 9:1 (т, к. строфантин является сильно гидрофильным соединением, то в этих условиях он не извлекается); очистку извлеченной фракции олеандрина и ланатозидов от сопутствующих веществ щёлочью; качественно-количественное определение и пр.; экстрагирование строфантина спиртово-хлороформной смесью (8:2); осаждение строфантина из водной фазы сульфатом аммония при полном насыщении, растворение осадка, повторное осаждение и экстрагирование строфантина с последующим качественно-количественным определением его.

Качественное обнаружение строфантина производится методом хроматографии на бумаге, олеандрина и ланатозидов - методом тонкослойной хроматографии (см.). Пятна строфантина специфически проявляются 3,5-динитробензойной к-той, мета-динитробензолом и 2,4-динитродифенилсульфоном; олеандрин проявляется еще кроме указанных реагентов, концентрированной серной к-той, содержащей следы железа.

Количественное определение Г. в элюатах производится, в основном, фотоколориметрированием окрашенных р-ров после реакции с 2,4-динитродифенилсульфоном в щелочной среде.

Описанная схема исследования позволяет открывать 30- 50 мкг Г. на 100 г влажного веса ткани.

Библиография: Власенко Л. М. К вопросу систематического судебно-химического определения сердечных гликозидов, в кн.: Вопр. суд. мед., под ред. В. И. Прозоровского, с. 233, М., 1971; ВотчалБ. Е. и С луцкийМ. К. Сердечные гликозиды, М., 1973; Кочетков Н. К. и др. Химия углеводов, М., 1967; Савицкий H. Н. Фармакодинамика сердечных гликозидов. Л., 1974, библиогр.; Степаненко Б. Н. Углеводы, Успехи в изучении строения и метаболизма, М., 1968.

Б. Н. Степаненко; Я. И. Хаджай (фарм.), А. Ф. Рубцов (суд.).

Сапонинами (сапонизидами) называют большую группу природных высокомолекулярных соединений гликозидного характера, обладающих поверхностной и гемолитической активностью (детергенты), а также токсичностью для холоднокровных животных.

Термин "сапонин" или "сапонизид" был впервые предложен в 1819 г. Мэлоном для вещества, выделенного Шрайдером в 1811 г. из мыльнянки.

Водные растворы сапонинов образуют при встряхивании обильную стойкую пену (подобно мыльной), в результате чего эти вещества получили название сапонинов (от лат. sapo - мыло).

Молекула сапонина состоит из углеводной части и агликона, называемого сапогенином. Углеводная часть может содержать от 1 до 11 моносахаридов. Наиболее часто встречаются D-глюкоза, D-галактоза, L-рамноза, L-арабиноза, D-ксилоза, L-фруктоза, а также D-глюкуроновая и D-галактуроновая кислоты.

Классификация сапонинов

В зависимости от строения агликона сапонины делят на стероидные и тритерпеновые .

Стероидные сапонины, в свою очередь, подразделяются на:

1. Спиростаноловые (характеризуются наличием спиро-кетальной группировки из 8 углеродных атомов и замкнутого кольца F);

2. Фуростаноловые (где кольцо F раскрыто, и боковая цепь содержит глюкозу).

В результате гидролиза фуростаноловые гликозиды могут превращаться в спиростаноловые. В зависимости от ориентации кольца F относительно остальной части молекулы агликона последние подразделяют на спиростанолы «нормального» ряда и «изо»-ряда.

Наиболее характерным представителем стероидных агликонов является диосгенин, содержащийся в корневищах с корнями диоскореи ниппонской:

Диосгенин

В настоящее время известно около 150 стероидных гликозидов, из них более 100 спиростаноловых и 40 - фуростаноловых.

Агликоны стероидных сапонинов всегда имеют ОН-группу у С 3 , и иногда в положениях С 1 , С 2 , С 5 и С 12 . У многих стероидных сапонинов в положении 5-6 имеется двойная связь. Стероидные сапонины представляют собой 3-О-гликозиды.

Тритерпеновые сапонины в зависимости от количества циклов в составе агликона подразделяются на тетрациклические и пентациклические.

К тетрациклическим сапонинам относятся производные даммарана(дамарандиол), циклоартана(циклоартенол) и ланостана:

К подгруппе даммарана относятся сапонины женьшеня - панаксозиды(гинзенозиды); к группе циклоартана - сапонины астрагала шерстистоцветкового - дазиантозиды.

К пентациклическим относятся сапонины, производные:

1) урсана :

-АМИРИН УРСОЛОВАЯ КИСЛОТА

2) олеанана :

-АМИРИН ГЛИЦИРРЕТИНОВАЯ КИСЛОТА

(С-28-СООН-олеаноловая кислота)

Производные олеанана находятся в корнях солодки, аралии, в корневищах с корнями синюхи и др.

3) лупана :

ЛУПЕОЛ

Производные лупана - бетулин, бетулиновая кислота выделены из березы.

4) гопана и др.:

ГОПАН

Сапогенины тритерпеновых сапонинов всегда имеют ОН-группу у С 3 , иногда в положениях С 16 , С 21 , С 22 , С 24 ; карбоксильные группы могут быть у С 28 , С 29 (урсоловая, олеаноловая и глицирретиновая кислоты); карбонильные - у С 11 . Двойная связь часто встречается в положении 12-13.

Тритерпеновые сапонины могут быть нейтральными и кислыми, кислотный характер обусловлен карбоксильной группой в агликоне или присутствием уроновых кислот в углеводной части. Гидроксильные группы могут быть ацилированы уксусной, пропионовой, ангеликовой и другими кислотами.

Углеводная часть может присоединяться к агликону по гидроксильной или карбоксильной группам; она может быть линейной и разветвленной.

Растительный мир и его лекарственные вещества.

Гликозидный « Saponin » природное вещество.

Сапонины довольно странные вещества, попадая в кровь они вызывают гемолиз (разрушение эритроцитов - красных кровяных телец), обладают высокой токсичностью для хладнокровных (рыбы, лягушки, черви), вызывая их гибель даже в миллионном разведении.

Действие сапонинов весьма разнообразно, они обладают мягчительным и отхаркивающим свойством, что позволяет применять их при легочных заболеваниях, мочегонным, успокаивающим, стимулирующим и тонизирующим. Как и все гликозиды, молекула сапонина состоит из углеводной части и агликона, получившего название САПОГЕНИН.

В растительном мире сапонины не то чтобы были весьма распространены, но все же встречаются как в подземных так и в наземных частях растений. Синюха, солодка, первоцвет, диоскорея, растения семейства аралиевых, патриния накапливают сапонины в корневой части, наперстянка в листве, а коровяка в цветах. Встречаются сапонины также у пчел, пиявок и очковых змей.

Время сбора разнообразно, корневища с корнями диоскореи заготавливают осенью или весной (до цветения), заманихи - осенью, корень солодки - весной и летом (лучше во время цветения).

Сапонины, как и все гликозиды нестойки, и при заготовки подвергаются принудительной сушки, температуре 55-60|С, с хорошей вентиляцией.

Помимо лечения сапонины широко используются в пищевой промышленности (солодка - для производства пива и шипучих напитков, мочения яблок и брусники, в производстве халвы), быту (для стирки тонких окрашенных тканей вместо мыла, так как пена не содержит щелочей и не разъедает красок), текстильной промышленности (для фиксации красок). Маглы умудряются применять сапонины при пожаротушении, они входят в состав противопожарных смесей как пенообразующие вещества (в частности в пенных огнетушителях используется солодка).

Поробнее о Сапонине.

Название "сапонин" (от лат. sapo - мыло) впервые появилось в 1819 г., когда из мыльнянки (растения семейства гвоздичных, с розоватыми душистыми цветками) было выделено вещество образующее с водой обильное количество пены. Сапонины - высокомолекулярные сложные органические соединения гликозидного характера, обладающие специфическими свойствами: водные растворы из сырья, содержащие сапонины, образуют обильную пену; попадая в кровь, вызывают гемолиз эритроцитов; токсичны для холоднокровных (лягушек, рыб, червей), вызывая их гибель даже в разведении 1:1000000. Подобно гликозиду, молекула сапонинов состоит из углеводной части и агликона, называемого сапогенином.

Классификация (характеристика агликона сапогенина).

Сапонины по строению их агликонов делятся на две группы: стероидные и тритерпеновые.

Стероидные сапонины (гликозиды). Сапогенины этих сапонинов являются производными циклопентанопергидрофенантрена, как и агликоны сердечных гликозидов.

Стероидные сапонины встречаются редко, преимущественно в растениях тропического климата. В семействах диоскорейных, норичниковых, спаржевых, амариллисовых стероидные сапонины часто встречаются совместно с сердечными гликозидами (наперстянка, ландыш и др.).

Тритерпеновые сапонины (гликозиды). У многих тритерпеновых сапонинов сапогенином является олеаноловая кислота.

В молекуле сапогенина имеются 5 конденсированных циклогексановых колец, образующих соединение с общей формулой С 30 Н 98 и 1-2 карбоксильные группы. Растения, содержащие тритерпеновые сапонины, распространены довольно широко (семейства синюховых, астровых, гвоздичных, яснотковых, валериановых, аралиевых, бобовых).

Способы получения.

Для выделения сапонинов из растительного сырья пользуются водой или разбавленными спиртами. Агликоны сапонинов хорошо растворяются в органических растворителях. Растворимость в воде зависит от количества моносахаридов и увеличивается с их возрастанием.

В последнее время для обнаружения сапонинов в сырье начали использовать хроматографию на бумаге и в тонком слое сорбента.

Количественное определение.

Используют весовой метод (осаждением сапонинов с последующим взвешиванием остатка), гемолитический и рыбный индексы, пенное число и химические методы.

Распространение.

Сапонины встречаются в растительном и животном мире.

Обнаружены у растений различных климатических зон, в подземных (синюха, солодка, первоцвет, диоскорея, растения семейства аралиевых, патриния)

и надземных (листья наперстянки, цветки коровяка) органах, в растворенном состоянии, в клеточном соке. Среди животных сапонины встречаются у пчел, змей очковых, пиявок.

Факторы, влияющие на накопление сапонинов.

Среди таких факторов можно выделить следующие:

1) Географический - преимущественно у южных растений;

2) Освещенность - положительно влияет на накопление (однако женьшень требует затемнения);

3) Почвенный - внесение удобрений увеличивает содержание сапонинов;

4) Возраст растения - у диоскореи на второй год развития сапонинов в 2 раза меньше, чем на четвертый.

Заготовка.

Сбор производят в определенную фазу накопления БАВ. Корневища с корнями диоскореи заготавливают осенью или весной (до цветения), заманихи - осенью, корень солодки - весной и летом (лучше во время цветения).

Техника сбора.

Корневища выкапывают, культивируемые выпахивают плугом или трактором (солодку). Быстро промывают (сапонины) в проточной воде, режут на куски. Некоторые виды сырья подвяливают (синюха, солодка, первоцвет).

Сушка.

Раскладывают тонким слоем, ворошат. Сушат быстро в сушилках с искусственным обогревом при температуре 55-60°С, с хорошей вентиляцией. Корень женьшеня требует особой обработки.

Хранение.

В упакованном виде как гликозидное сырье. Женьшень хранят особо в сухих хорошо проветриваемых помещениях. Сроки годности указаны на каждое сырье, в отдельных статьях.

Применение.

Усиливают секрецию бронхиальных желез, возбуждают кашлевой центр - используются как отхаркивающие средства. Как адаптогенные средства (женьшень, аралия). Регулируют водно-солевой и минеральный обмен (солодка). Усиливают деятельность гормонов, ферментов за счет эмульгирующего действия. Оказывают противовоспалительное действие (солодка). Стероидные сапонины за рубежом являются источником синтеза кортикостероидов (гормональный препарат кортизона), также применяются при атеросклерозе (поражение артерий, сопровождающееся накоплением на их внутренней поверхности жировых веществ в виде желтоватых бляшек, что уменьшает просветы артерий). Многие сапонины используют как мочегонные и слабительные средства.

Применение в народном хозяйстве.

Тритерпеновые сапонины широко используются в пищевой промышленности (солодка - для производства пива и шипучих напитков, мочения яблок и брусники, в производстве халвы), быту (для стирки тонких окрашенных тканей вместо мыла, так как пена не содержит щелочей и не разъедает красок), текстильной промышленности (для фиксации красок). Сапонины входят в состав противопожарных смесей как пенообразующие вещества (в огнетушителях используется солодка).

Сырьевая база.

Лекарственные растения - диоскорея японская, аралия маньчжурская - преимущественно дикорастущие дальневосточные виды. Женьшень обычно собирают с плантаций. В настоящее время изучаются надземные виды сырья - листья и плоды, что будет способствовать восстановлению зарослей женьшеня, аралии. Сырьевая база солодки не очень значительна. Потребность в корне этого растения велика как в медицине, так и в других отраслях народного хозяйства. Кроме того, Россия - крупнейший поставщик этого сырья на мировом рынке.

text_fields

text_fields

arrow_upward

Сапонины (сапонизиды) — гликозиды (гетерозиды), производные стероидов и тритерпеноидов, обладающие гемолитической и поверхностной активностью и токсичностью для холоднокровных животных.

Название «сапонин» (от лат. «sapo» — мыло) впервые появилось в 1819 г., когда из мыльнянки (растения семейства гвоздичных) было выделено вещество, образующее с водой обильную пену.

Классификация сапонинов

text_fields

text_fields

arrow_upward

Сапонины по строению их агликона (сапогенина) делятся на две группы: стероидные и тритерпеновые.

Стероидные сапонины

Сапогенины этих сапонинов являются производными циклопентанпергидрофенантрена, как и агликоны кардиотонических гликозидов. Однако стероидные сапонины не оказывают кардиотонического действия, так как не имеют лактонного кольца при С 17 и ряда других функциональных групп.

Сапогенины всех стероидных сапонинов имеют:

  • у С 3 кольца А – гидроксильную (-ОН) группу;
  • в положении 16-17 — спирокетальную группировку за счет окисления боковой цепи;
  • в положении 5-6 — двойную связь (-CH=CH-);
  • в положениях С 10 и C 13 — метильные (-СН 3) группы.

Углеводная часть молекулы стероидных сапонинов присоединяется в положении С 3 агликона и может содержать от 1 до 9 моносахаридов (глюкоза, галактоза, рамноза, галактуроновая кислота и др.). Моносахариды могут образовывать как линейные, так и разветвленные цепи. Например, стероидный сапонин диосцин (диоскорея ниппонская – Dioscorea nipponica, якорцы стелющиеся – Tribulus terrestris) состоит из агликона диосгенина, к которому присоединяется разветвленная триоза:

Стероидные сапонины встречаются редко, преимущественно в растениях тропического климата. В семействах диоскорейных, норичниковых, спаржевых, амариллисовых стероидные сапонины часто встречаются совместно с кардиотоническими гликозидами (наперстянка, ландыш и др.).

Тритерпеновые сапонины имеют общую формулу (С 5 Н 8) 6 и, в зависимости от количества колец в структуре агликона, делятся на пентациклические и тетрациклические.

а) Тетрациклические — содержат в структуре агликона 4 кольца и подразделяются на производные даммарана (даммарандиол), циклоартана (циклоартенол), зуфана. В основе этой группы лежит даммаран. Производные даммарана легко окисляются с образованием гетероциклов (панаксдиол и панакстриол). Соединения подобного строения обнаружены в женьшене (Panax ginseng), заманихе высокой (Oplopanax elatus), березе (Betula spp.).

б) Пентациклические содержат в структуре агликона 5 колец. Среди этой группы выделяют производные урсана (альфа -амирин), олеанана (бета -амирин), лупана (лупеол), гопана. С медицинской точки зрения, наиболее важными являются производные урсана и олеанана, которые отличаются друг от друга расположением заместителей – метильных (-СН 3) групп в положениях 19 и 20 кольца Е.

Альфа- амирин лежит в основе различных соединений, которые найдены в ортосифоне тычиночном, или почечном чае (Orthosiphon stamineus), лапчатке прямостоячей (Potentilla erecta) и других. Наиболее важным представителем является кислота урсоловая (28-карбокси-альфа -амирин). Кислота урсоловая обнаружена во многих растениях (бруснике — Vaccinium vitis-idaea, клюкве болотной — Oxycoccus palustris и др.), причем встречается как в виде гликозидов, так и свободного агликона.

Бета -амирин лежит в основе следующих соединений:

  • кислота олеаноловая (28-карбокси-бета -амирин). Кислота олеаноловая и ее производные являются агликонами сапонинов аралии высокой (Aralia elata), синюхи голубой (Polemonium caeruleum), конского каштана (Aesculus hippocastanum), первоцвета весеннего (Primula veris), календулы лекарственной (Calendula officinalis), патринии средней (Patrinia intermedia) и др.
  • кислота глицирретиновая (11-оксо-29-карбокси-бета -амирин). Кислота глицирретиновая является агликоном кислоты глицирризиновой (в С 3 положении присоединяется углеводная цепь из двух молекул глюкуроновой кислоты). Кислота глицирризиновая содержится в солодке голой (Glycyrrhiza glabra) и солодке уральской (G. uralensis).

Углеводная часть тритерпеновых сапонинов может присоединяться к агликону в различных положениях:

  • в С 3 положении за счет гидроксильной (-ОН) группы;
  • в С 28 положении за счет карбоксильной (-СООН) группы (при этом связь агликона с сахаром называется ацилгликозидной);
  • с сапогенином могут быть связаны две углеводные цепи (за счет гидроксильной группы в С 3 положении и карбоксильной группы в С 28 положении). В этом случае сапонины относятся к дигликозидам.

Тритерпеновые сапонины могут быть нейтральными и кислыми. Кислотные свойства обусловлены наличием карбоксильных групп сапогенина и углеводной части молекулы. Гидроксильные группы могут быть ацилированы уксусной, тиглиновой, пропионовой, ангеликовой и другими кислотами.

Углеводная часть тритерпеновых сапонизидов может содержать от 1 до 11 моносахаридов (глюкоза, галактоза, рамноза, арабиноза, фруктоза, глюкуроновая и галактуроновая кислоты). Она может быть линейной и разветвленной (например, у аралозидов — сапонинов аралии высокой). Разветвление углеводной цепи происходит от первого сахарного остатка, связанного с агликоном.

Распространение сапонинов в растительном мире

text_fields

text_fields

arrow_upward

Распространение сапонинов в растительном мире, локализация в растениях. Влияние условий обитания и онтогенеза на накопление сапонинов

В растительном мире более широко распространены тритерпеновые сапонины. Они обнаружены в растениях почти 70 семейств. Наиболее богаты тритерпеновыми сапонинами представители семейств аралиевых (Araliaceae), гвоздичных (Caryophyllaceae), синюховых (Polemoniaceae), бобовых (Fabaceae), истодовых (Polygalaceae), сложноцветных (Asteraceae), губоцветных (Lamiaceae) и др.

Стероидные сапонины встречаются значительно реже и обнаружены, главным образом, в растениях семейств диоскорейных (Dioscoreaceae), лилейных (Liliaceae), норичниковых (Scrophulariaceae), парнолистниковых (Zygophyllaceae), лютиковых (Ranunculaceae), амариллисовых (Amaryllidaceae). Стероидные сапонины часто сопровождают в растениях кардиотонические гликозиды (виды наперстянки, ландыша, адонис весенний).

Растения, накапливающие тритерпеновые сапонины, не содержат стероидные, и наоборот.

В растениях сапонины обычно находятся в клеточном соке почти всех органов в растворенном виде.

Сапонины найдены во всех органах растений:

  • в траве (астрагал шерстистоцветковый — Astragalus dasyanthus, хвощ полевой — Equisetum arvense, якорцы стелющиеся — Tribulus terrestris);
  • в листьях (почечный чай — Orthosiphon stamineus);
  • в семенах (конский каштан — Aesculus hippocastanum);
  • в подземных органах (диоскорея ниппонская — Dioscorea nipponica, синюха голубая — Polemonium caeruleum, заманиха высокая — Oplopanax elatus, солодка голая — Glycyrrhiza glabra и с. уральская — G. uralensis, женьшень — Раnах ginseng, аралия высокая (а. маньчжурская) — Aralia elata). В подземных органах накапливается наибольшее количество сапонинов.

Предположительно, сапонины принимают участие в биохимических процессах в растениях:

  • в малых концентрациях они ускоряют прорастание семян, рост и развитие растений, а в больших, наоборот, тормозят. Таким образом, сапонины играют роль гормонов роста растений;
  • сапонины оказывают влияние на проницаемость мембран растительных клеток, что связано с их поверхностной активностью.

На накопление сапонинов влияют стадии онтогенеза растений. Максимальное количество сапонинов в сырье содержится в фазы:

  • бутонизации и начала цветения (ортосифон тычиночный и астрагал шерстистоцветковый);
  • в конце вегетации, когда биомасса лекарственного растительного сырья максимальна (солодки, синюха, заманиха, аралия, женьшень, диоскорея);
  • в период плодоношения (конский каштан).
  • дикорастущая синюха голубая достигает максимальной продуктивности к 5-6-му году жизни, а в культуре — к 2-3-му году. При этом содержание сапонинов в подземных органах находится на одном уровне;
  • культивируемый женьшень рекомендуется собирать на 5-6-ой год, т.к. корни быстро растут до 3-х лет и далее их рост замедляется, а с 13 лет наблюдается уменьшение биомассы корней. Это связано с постепенным отмиранием боковых корней.

Влияние факторов внешней среды на накопление сапонинов строго специфично. Среди них трудно выявить общие закономерности для всех растений. Отметим лишь отдельные моменты:

  • растения семейства аралиевых являются эндемиками Дальнего Востока, где сложился особый климатический и почвенный режим;
  • зависимость накопления глицирризиновой кислоты от типа почвы и ее засоленности характерна для солодки. Чем больше засоленность, тем меньше глицирризиновой кислоты содержат корни солодки. Повышение влажности почвы способствует накоплению глицирризиновой кислоты.

Сырьевая база растений, содержащих сапонины

text_fields

text_fields

arrow_upward

Синюха голубая растет по опушкам и вдоль лесных дорог в лесной и лесостепной зонах европейской части России и Западной Сибири.

Женьшень, заманиха, аралия, диоскорея ниппонская встречаются в лесах Дальнего Востока (Приморский, Хабаровский края).

Солодки голая и уральская часто образуют сплошные заросли в поймах и долинах рек в степных и пустынных районах европейской части России и Сибири. В этих же регионах, как сорняк, встречаются якорцы стелющиеся.

Синюха голубая не образует крупных зарослей, пригодных для промышленных заготовок, в связи, с чем ее культивируют. Женьшень культивируют на Дальнем Востоке.

Ортосифон тычиночный импортируют из стран тропической Азии.

В последние годы перспективным является метод культуры тканей. Он заключается в выращивании на определенных питательных средах биомассы сырьевой части лекарственных растений. Полученная таким образом биомасса используется в дальнейшем для получения лекарственных препаратов.

В России метод культуры тканей был разработан и освоен на примере женьшеня. Культура тканей женьшеня под названием «Биоженьшень» используется для получения настойки.

Физические свойства сапонинов

text_fields

text_fields

arrow_upward

Физические свойства сапонинов

Сапонины — бесцветные или желтоватые аморфные вещества. В кристаллическом состоянии выделены гликозиды, имеющие в углеводной цепи до 4 моносахаридов. Оптически активны.

Гликозиды растворимы в воде. Растворимость увеличивается с возрастанием количества моносахаридов в углеводной цепи. В разведенных (60-70 %) спиртах растворяются на холоду; в более крепких (80-90 %) спиртах — только при нагревании, а при охлаждении выпадают в осадок. Нерастворимы в органических растворителях (ацетон, хлороформ, бензол).

Свободные сапогенины не растворяются в воде и хорошо растворимы в органических растворителях.

В зависимости от рН водных извлечений сапонины делят на:

  • нейтральные — стероидные и тетрациклические тритерпеновые сапонины;
  • кислые — пентациклические тритерпеновые сапонины. Их кислотность обусловлена наличием карбоксильных (-СООН) групп в структуре агликона или присутствием уроновых кислот в углеводной цепи.

Специфическим свойством сапонинов является их способность снижать поверхностное натяжение жидкостей (воды) и давать при встряхивании стойкую обильную пену. Такая поверхностная активность связана с наличием в молекулах сапонинов одновременно как гидрофильного, так и липофильного остатков.

Химические свойства сапонинов

text_fields

text_fields

arrow_upward

Химические свойства обусловлены структурой агликона, наличием отдельных функциональных групп, а также присутствием гликозидной связи.

Сапонины гидролизуются под влиянием ферментов и кислот. Производные кислот олеаноловой и глицирретиновой гидролизуются под воздействием щелочей.

При взаимодействии с кислотными реагентами (сурьмы (III) хлорид, сурьмы (V) хлорид, железа (III) хлорид, кислота серная концентрированная и др.) образуют окрашенные продукты.

Кислые сапонины образуют нерастворимые комплексы с солями тяжелых металлов (Ва, Рb, Cu).

Сапонины способны образовывать комплексы с белками, стеринами, липидами, фенольными соединениями. В составе комплексов сапонины не обладают гемолитической и поверхностной активностью.

Сапонины, имеющие в своей основе стероидное ядро, вступают в специфическую реакцию Либермана–Бурхарда.

Биологические свойства сапонинов

text_fields

text_fields

arrow_upward

Сапонины обладают гемолитической активностью. Они способны растворять липидную часть оболочки эритроцитов. В результате этого оболочка из полупроницаемой становится проницаемой. Гемоглобин свободно поступает в плазму крови и растворяется в ней. Образуется красный прозрачный раствор — «лаковая» кровь.

Гемолитической активностью обладают только гликозиды. В связи с этим сапонины не применяются для внутривенного введения, т.к. вызывают анемию. При приеме внутрь, после гидролиза в желудочно-кишечном тракте до агликонов, сапонины теряют гемолитическую активность.

Гемолиз эритроцитов вызывают не все сапонины. Этим свойством не обладают сапонины солодки.

Сапонины токсичны для холоднокровных животных (рыбы, лягушки, круглые черви). Они нарушают функцию жабр, которые являются не только органом дыхания, но и регулятором солевого осмотического давления в организме. Сапонины парализуют или вызывают гибель холоднокровных животных даже в больших разведениях (1:1 000000).

Агликоны сапонинов для холоднокровных животных не токсичны.

Оценка качества сырья, содержащего сапонины. Методы анализа

text_fields

text_fields

arrow_upward

Наличие сапонинов в лекарственном растительном сырье можно установить при помощи качественных реакций, которые проводят непосредственно с сырьем или с водным извлечением из него.

Качественные реакции

Качественные реакции на сапонины основаны на их физических, химических и биологических свойствах.

Государственная фармакопея XI издания (вып. 2) рекомендует использовать качественные реакции для подтверждения подлинности для трех видов сырья.

  1. Корневища с корнями синюхи голубой. С водным извлечением проводят реакцию пенообразования, основанную на способности сапонинов снижать поверхностное натяжение жидкости (воды) и давать в отваре стойкую обильную пену после встряхивания.
  2. Корни аралии маньчжурской (а. высокой). Метанольное извлечение хроматографируют в тонком закрепленном слое силикагеля (на пластинках «Силуфол») в системе растворителей хлороформ-метанол-вода (61:32:7). В качестве свидетеля используют раствор сапарала. Хроматограмму проявляют 20 % раствором кислоты серной и нагревают в сушильном шкафу (t = 105 °C) в течение 10 мин. Появляются пятна вишневого цвета.
  3. Корни женьшеня.

а) Реакция с порошком корней женьшеня (на гликозиды). При нанесении кислоты серной концентрированной на порошок корней женьшеня через 1-2 минуты появляется кирпично-красное окрашивание, переходящее в красно-фиолетовое, а затем — в фиолетовое.

б) Наличие панаксозидов доказывают при помощи разделения извлечения из корней женьшеня в тонком слое силикагеля и последующего проявления полученной хроматограммы раствором кислоты фосфорно-вольфрамовой при нагревании. Панаксозиды проявляются в виде розовых пятен.

Kоличественноe определениe

Общих методов количественного определения сапонинов в лекарственном растительном сырье нет. Чаще всего используют методы:

  1. Потенциометрический метод . Метод основан на определении изменения электродвижущей силы (ЭДС) в результате титрования. Метод используется для определения суммы аралозидов в корнях аралии маньчжурской (а. высокой).

Этапы определения:

  • подготовительный;
  • экстракция аралозидов метиловым спиртом и их кислотный гидролиз;
  • очистка от сопутствующих веществ — осаждение кислоты олеаноловой в результате смены растворителя (разбавление спиртового извлечения водой и охлаждение);
  • растворение кислоты олеаноловой в горячей смеси метилового и изобутилового спиртов (1:1,5);
  • количественное определениетитрование раствором натрия гидроксида (0,1 моль/л) в смеси метилового спирта и бензола:

Точку эквивалентности определяют потенциометрически.

  1. Спектрофотометрический метод . Метод основан на способности сапонинов и их окрашенных комплексов поглощать монохроматический свет при определенной длине волны. Метод предложен для определения содержания сапонинов в следующих видах сырья:

а) корневища с корнями диоскореи ниппонской. Проводят кислотный гидролиз сапонинов с последующим проведением реакции свободного агликона (диосгенин) с реактивом (пара -диметиламинобензальдегид). Образуется окрашенный комплекс;

б) корни солодки. Проводят осаждение кислоты глицирризиновой концентрированным раствором аммиака. Осадок растворяют и определяют оптическую плотность полученного раствора.

  1. Гравиметрический метод — определение экстрактивных веществ. Метод основан на определении сухого остатка после высушивания суммы веществ, извлеченных из сырья соответствующим экстрагентом. Метод предложен для оценки качества сырья женьшеня, почечного чая, синюхи голубой, солодки.

В сырье астрагала шерстистоцветкового и заманихи высокой количественное содержание биологически активных веществ не определяют.

Особенности сбора, сушки и хранения сырья, содержащего сапонины

text_fields

text_fields

arrow_upward

Заготовку сырья, содержащего сапонины, проводят в период их максимального накопления по правилам заготовки гликозидсодержащего сырья. Особенностями заготовки и сушки являются:

  • корни солодки заготавливают с марта по ноябрь;
  • корни солодки, корневища с корнями диоскореи ниппонской, траву якорцев стелющихся допускается сушить на солнце.

Хранится сырье по общему списку, сроки хранения индивидуальны для каждого вида сырья. При переработке сапонинсодержащего сырья следует принимать меры предосторожности, поскольку при вдыхании возможно возникновение аллергических реакций.

Пути использования сырья, содержащего сапонины

text_fields

text_fields

arrow_upward

Лекарственное растительное сырье, содержащее сапонины, используется для получения разнообразных лекарственных форм и препаратов.

I. Экстемпоральные лекарственные формы (отпускают без рецепта врача, приказ МЗСР РФ № 587 от 13.09.05).

  1. Настои:
  • листья почечного чая;
  • трава астрагала шерстистоцветкового.
  1. Отвары:
  • корневища с корнями синюхи голубой;
  • корни солодки.
  1. Порошок корней солодки сложный.
  2. Сборы:
  • сбор отхаркивающий № 2;
  • сбор «Арфазетин» (входят корни аралии или корневища с корнями заманихи);
  • сборы мочегонные, противоязвенные и т.д.

II. Экстракционные (галеновые) препараты.

  1. Настойки:
  • женьшеня, биомассы женьшеня;
  • заманихи;
  • аралии.
  1. Экстракты:
  • сухой экстракт корней солодки;
  • густой экстракт корней солодки (входит в состав грудного эликсира).

III. Препараты, содержащие сумму сапонинов.

  1. «Сапарал» — сумма аммонийных солей аралозидов.
  2. «Полиспонин» — сумма сапонинов диоскореи ниппонской.
  3. «Трибуспонин» — сумма сапонинов якорцев стелющихся.
  4. IV. Препараты индивидуальных сапонинов.
  5. «Глицирам» — аммонийная соль глицирризиновой кислоты.
  6. «Глидеринина мазь» (глидеринин выделен из экстракта корней солодки).
  7. V. Полусинтетические препараты.
  8. «Кортизон» (гормон коры надпочечников) — получают на основе стероидного сапогенина диосгенина.
  9. VI. Комплексные препараты.
  10. «Амтерсол» (сироп, в состав входит экстракт корней солодки).
  11. Грудной эликсир.
  12. Настойка биоженьшеня с витаминами и минеральными солями.
  13. «Сафинор» (в состав входит сапарал).

VII. Препараты на основе других групп биологически активных веществ.

  1. «Ликвиритон» — спазмолитическое, противовоспалительное, антацидное средство.
  2. «Флакарбин» — спазмолитическое, противовоспалительное, капилляроукрепляющее средство.

Оба препарата получены на основе флавоноидов корней солодки. Применяются при язвенной болезни желудка и двенадцатиперстной кишки, а также при гиперацидных гастритах.

Сапонины используют также в пищевой промышленности, в технике (для изготовления огнетушителей), в парфюмерии (как мягкие моющие средства).

Медицинское применение сырья и препаратов, содержащих сапонины

text_fields

text_fields

arrow_upward

Сапонины обладают широким спектром фармакологического действия.

  1. Гипохолестеринемическое и противосклеротическое действие. Сапонины обладают способностью снижать уровень холестерина в крови, что приводит к снижению склеротических изменений в кровеносных сосудах, уменьшению их ломкости и т.д. Действие характерно для стероидных сапонинов диоскореи ниппонской и якорцев стелющихся.
  2. Тонизирующее , стимулирующее , адаптогенное действие. Характерно для сапонинов женьшеня, заманихи высокой, аралии высокой. Их препараты применяют при переутомлении, усталости, гипотонии, как иммуномодуляторы.
  3. Отхаркивающее действие. Сапонины повышают секрецию желез верхних дыхательных путей. Это ведет к разжижению мокроты, что облегчает ее эвакуацию. Такое действие характерно для сапонинов солодки и синюхи голубой.
  4. Диуретическое действие характерно для сырья почечного чая и астрагала шерстистоцветкового, которые применяются при отеках сердечного происхождения.
  5. Легкое слабительное действие характерно для корней солодки.
  6. Кортикотропное действие (подобное действию кортизона и других гормонов коркового слоя надпочечников). Регулируется водно-солевой обмен, проявляется противовоспалительное и антиаллергическое действие. Характерно для сырья солодки, применяют при астме, экземе, дерматитах.
  7. Седативное действие характерно для сырья синюхи голубой.
  8. Гипотензивное действие при начальных стадиях сердечно-сосудистой недостаточности проявляют биологически активные вещества астрагала шерстистоцветкового.
  9. Противоязвенное действие проявляется у сбора, в состав которого входит сырье синюхи голубой и сушеницы топяной.