Концентрация ионов натрия больше. Мембранный потенциал клетки, или потенциал покоя. –18. Потенциал действия – это

Na + /K + насос или Na + /K + АТФ-аза это тоже, как и ионные каналы комплекс интегральных мембранных белков, которые могут не просто открыть путь для перехода иона по градиенту, а активно перемещать ионы против градиента концентрации. Механизм работы насоса представлен на рисунке 8.

    Белковый комплекс в состоянии Е1, в этом состоянии насос чувствителен к ионам натрия и с цитоплазматической стороны с ферментом связываются 3 иона натрия

    После связывание ионов натрия происходит гидролиз АТФ и выделяется энергия, необходимая для переноса ионов против градиента концентрации, освобождается АДФ неорганический фосфат (именно поэтому насос и называют Na + /K + АТФ-азой).

    Насос меняет конформацию и переходит в состояние Е2. При этом места связывания ионов натрия оказываются обращенными наружу. В этом состоянии насос обладает низким сродством к натрию и ионы освобождаются во внеклеточную среду.

    В конформации Е2 фермент обладает высоким сродством к калию и связывает 2 иона.

    Происходит перенос калия, освобождение его во внутриклеточную среду и присоединение молекулы АТФ – насос вернулся в конформацию Е1, вновь приобрел сродство к ионам натрия и включается в новый цикл.

Рисунок 8 Механизм работы Na + /K + АТФ-азы

Обратите внимание на то, что Na + /K + насос переносит 3 иона натрия из клетки в обмен на 2 иона калия. Поэтому насос является электрогенным : суммарно за один цикл из клетки удаляется один положительный заряд. Транспортный белок выполняет от 150 до 600 циклов в секунду. Поскольку работа насоса представляет собой многоступенчатую химическую реакцию, она, подобно всем химическим реакциям, в значительной степени зависит от температуры. Другой характеристикой насоса является наличие уровня насыщения, это означает, что скорость работы насоса не может возрастать бесконечно при повышении концентрации транспортируемых ионов. В отличие от этого поток пассивно диффундирующего вещества растет пропорционально разности концентраций.

Помимо Na + /K + насоса мембрана содержит еще кальциевый насос, этот насос откачивает ионы кальция из клетки. Кальциевый насос присутствует с очень высокой плотностью в саркоплазматическом ретикулуме мышечных клеток. Цистерны ретикулюма накапливают ионы кальция в результате расщепления молекулы АТФ.

Итак, результатом работы Na + /K + насоса является трансмембранная разность концентраций натрия и калия. Выучите значения концентрация натрия, калия и хлора (ммоль/л) вне и внутри клетки!

Концентрация ионов внутри и вне клетки

Итак, есть два факта, которые необходимо учесть, чтобы понять механизмы, поддерживающие мембранный потенциал покоя.

1 . Концентрация ионов калия в клетке значительно выше, чем во внеклеточной среде. 2 . Мембрана в покое избирательно проницаема для К + , а для Nа + проницаемость мембраны в покое незначительна. Если принять проницаемость для калия за 1, то проницаемость для натрия в покое составит лишь 0,04. Следовательно, существует постоянный поток ионов К + из цитоплазмы по градиенту концентрации . Калиевый ток из цитоплазмы создает относительный дефицит положительных зарядов на внутренней поверхности, для анионов клеточная мембрана непроницаема в результате цитоплазма клетки оказывается заряженной отрицательно по отношению к окружающей клетку среде. Эта разность потенциалов между клеткой и внеклеточным пространством, поляризация клетки, называется мембранным потенциалом покоя (МПП).

Возникает вопрос: почему же ток ионов калия не продолжается до уравновешивания концентраций иона вне и внутри клетки? Следует вспомнить о том, это заряженная частица, следовательно, ее движение зависит и от заряда мембраны. Внутриклеточный отрицательный заряд, который создается благодаря току ионов калия из клетки, препятствует выходу из клетки новых ионов калия. Поток ионов калия прекращается, когда действие электрического поля компенсирует движение иона по градиенту концентрации. Следовательно, для данной разности концентраций ионов на мембране формируется так называемый РАВНОВЕСНЫЙ ПОТЕНЦИАЛ для калия. Этот потенциал (Ek) равен RT/nF *ln Kснаружи/Kвнутри, (n – валентность иона.) или

Ek =61,5 log K снаружи / K внутри

Мембранный потенциал (МП) в большой степени зависит от равновесного потенциала калия, однако, часть ионов натрия все же проникает в покоящуюся клетку, так же, как и ионы хлора. Таким образом, отрицательный заряд, который имеет мембрана клетки, зависит от равновесных потенциалов натрия, калия и хлора и описывается уравнением Нернста. Наличие этого мембранного потенциала покоя чрезвычайно важно, потому, что именно он определяет способность клетки к возбуждению - специфическому ответу на раздражитель.

Между наружной поверхностью клетки и ее цитоплазмой в состоянии покоя существует разность потенциалов около 0,06-0,09 в, причем поверхность клетки заряжена электроположительно по отношению к цитоплазме. Эту разность потенциалов называют потенциалом покоя или мембранным потенциалом. Точное измерение потенциала покоя возможно только с помощью микроэлектродов, предназначенных для внутриклеточного отведения токов, очень мощных усилителей и чувствительных регистрирующих приборов - осциллографов.

Микроэлектрод (рис. 67, 69) представляет собой тонкий стеклянный капилляр, кончик которого имеет диаметр около 1 мкм. Этот капилляр заполняют солевым раствором, погружают в него металлический электрод и соединяют с усилителем и осциллографом (рис. 68). Как только микроэлектрод прокалывает покрывающую клетку мембрану, луч осциллографа отклоняется вниз из своего исходного положения и устанавливается на новом уровне. Это свидетельствует о наличии разности потенциалов между наружной и внутренней поверхностью клеточной мембраны.

Наиболее полно происхождение потенциала покоя объясняет так называемая мембранно-ионная теория. Согласно этой теории все клетки покрыты мембраной, имеющей неодинаковую проницаемость для различных ионов. В связи с этим внутри клетки в цитоплазме в 30-50 раз больше ионов калия, в 8-10 раз меньше ионов натрия и в 50 раз меньше ионов хлора, чем на поверхности. В состоянии покоя клеточная мембрана более проницаема для ионов калия, чем для ионов натрия. Диффузия положительно заряженных ионов калия из цитоплазмы на поверхность клетки придает наружной поверхности мембраны положительный заряд.

Таким образом, поверхность клетки в покое несет на себе положительный заряд, тогда как внутренняя сторона мембраны оказывается заряженной отрицательно за счет ионов хлора, аминокислот и других крупных органических анионов, которые через мембрану практически не проникают (рис. 70).

Потенциал действия

Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя, то в этом участке возникает возбуждение, проявляющееся в быстром колебании мембранного потенциала и называемое потенциалом действия .

Потенциал действия можно зарегистрировать либо с помощью электродов, приложенных к внешней поверхности волокна (внеклеточное отведение), либо микроэлектрода, введенного в цитоплазму (внутриклеточное отведение).

При внеклеточном отведении можно обнаружить, что поверхность возбужденного участка на очень короткий период, измеряемый тысячными долями секунды, становится заряженной электроотрицательно по отношению к покоящемуся участку.

Причина возникновения потенциала действия - изменение ионной проницаемости мембраны. При раздражении проницаемость клеточной мембраны для ионов натрия повышается. Ионы натрия стремятся внутрь клетки, так как, во-первых, они заряжены положительно и их влекут внутрь электростатические силы, во-вторых, концентрация их внутри клетки невелика. В покое клеточная мембрана была малопроницаемой для ионов натрия. Раздражение изменило проницаемость мембраны, и поток положительно заряженных ионов натрия из внешней среды клетки в цитоплазму значительно превышает поток ионов калия из клетки наружу. В результате внутренняя поверхность мембраны становится заряженной положительно, а наружная вследствие потери положительно заряженных ионов натрия отрицательно. В этот момент и регистрируется пик потенциала действия.

Повышение проницаемости мембраны для ионов натрия продолжается очень короткое время. Вслед за этим в клетке возникают восстановительные процессы, приводящие к тому, что проницаемость мембраны для ионов натрия вновь понижается, а для ионов калия возрастает. Поскольку ионы калия также заряжены положительно, то, выходя из клетки, они восстанавливают исходные отношения снаружи и внутри клетки.

Накопления ионов натрия внутри клетки при многократном возбуждении ее не происходит потому, что ионы натрия эвакуируются из нее постоянно за счет действия специального биохимического механизма, называемого "натриевым насосом". Есть данные и об активном транспорте ионов калия с помощью "натрий-калиевого насоса".

Таким образом, согласно мембранно-ионной теории в происхождении биоэлектрических явлений решающее значение имеет избирательная проницаемость клеточной мембраны, обусловливающая разный ионный состав на поверхности и внутри клетки, а следовательно, и разный заряд этих поверхностей. Следует заметить, что многие положения мембранно-ионной теории все еще дискуссионны и нуждаются в дальнейшей разработке.

Статья на конкурс «био/мол/текст»: Потенциал покоя - это важное явление в жизни всех клеток организма, и важно знать, как он формируется. Однако это сложный динамический процесс, трудный для восприятия целиком, особенно для студентов младших курсов (биологических, медицинских и психологических специальностей) и неподготовленных читателей. Впрочем, при рассмотрении по пунктам, вполне возможно понять его основные детали и этапы. В работе вводится понятие потенциала покоя и выделяются основные этапы его формирования с использованием образных метафор, помогающих понять и запомнить молекулярные механизмы формирования потенциала покоя.

Мембранные транспортные структуры - натрий-калиевые насосы - создают предпосылки для возникновения потенциала покоя. Предпосылки эти - разность в концентрации ионов на внутренней и наружной сторонах клеточной мембраны. Отдельно проявляет себя разность концентрации по натрию и разность концентрации по калию. Попытка ионов калия (K +) выровнять свою концентрацию по обе стороны мембраны приводит к его утечке из клетки и потере вместе с ними положительных электрических зарядов, за счёт чего значительно усиливается общий отрицательный заряд внутренней поверхности клетки. Эта «калиевая» отрицательность составляет бóльшую часть потенциала покоя (−60 мВ в среднем), а меньшую его часть (−10 мВ) составляет «обменная» отрицательность, вызванная электрогенностью самого ионного насоса-обменника.

Давайте разбираться подробнее.

Зачем нам нужно знать, что такое потенциал покоя и как он возникает?

Вы знаете, что такое «животное электричество»? Откуда в организме берутся «биотоки»? Как живая клетка, находящаяся в водной среде, может превратиться в «электрическую батарейку» и почему она моментально не разряжается?

На эти вопросы можно ответить только в том случае, если узнать, как клетка создаёт себе разность электрических потенциалов (потенциал покоя) на мембране.

Совершенно очевидно, что для понимания того, как работает нервная система, необходимо вначале разобраться, как работает её отдельная нервная клетка - нейрон. Главное, что лежит в основе работы нейрона - это перемещение электрических зарядов через его мембрану и появление вследствие этого на мембране электрических потенциалов. Можно сказать, что нейрон, готовясь к своей нервной работе, вначале запасает энергию в электрической форме, а затем использует ее в процессе проведения и передачи нервного возбуждения.

Таким образом, наш самый первый шаг к изучению работы нервной системы - это понять, каким образом появляется электрический потенциал на мембране нервных клеток. Этим мы и займёмся, и назовём этот процесс формированием потенциала покоя .

Определение понятия «потенциал покоя»

В норме, когда нервная клетка находится в физиологическом покое и готова к работе, у неё уже произошло перераспределение электрических зарядов между внутренней и наружной сторонами мембраны. За счёт этого возникло электрическое поле, и на мембране появился электрический потенциал - мембранный потенциал покоя .

Таким образом, мембрана оказывается поляризованной. Это означает, что она имеет разный электрический потенциал наружной и внутренней поверхностей. Разность между этими потенциалами вполне возможно зарегистрировать.

В этом можно убедиться, если ввести внутрь клетки микроэлектрод, соединённый с регистрирующей установкой. Как только электрод попадает внутрь клетки, он мгновенно приобретает некоторый постоянный электроотрицательный потенциал по отношению к электроду, расположенному в окружающей клетку жидкости. Величина внутриклеточного электрического потенциала у нервных клеток и волокон, например, гигантских нервных волокон кальмара, в покое составляет около −70 мВ. Эту величину называют мембранным потенциалом покоя (МПП). Во всех точках аксоплазмы этот потенциал практически одинаков.

Ноздрачёв А.Д. и др. Начала физиологии .

Ещё немного физики. Макроскопические физические тела, как правило, электрически нейтральны, т.е. в них в равных количествах содержатся как положительные, так и отрицательные заряды. Зарядить тело можно, создав в нем избыток заряженных частиц одного вида, например, трением о другое тело, в котором при этом образуется избыток зарядов противоположного вида. Учитывая наличие элементарного заряда (e ), полный электрический заряд любого тела можно представить как q = ±N×e , где N - целое число.

Потенциал покоя - это разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны, когда клетка находится в состоянии физиологического покоя. Его величина измеряется изнутри клетки, она отрицательна и составляет в среднем −70 мВ (милливольт), хотя в разных клетках может быть различной: от −35 мВ до −90 мВ.

Важно учитывать, что в нервной системе электрические заряды представлены не электронами, как в обычных металлических проводах, а ионами - химическими частицами, имеющими электрический заряд. И вообще в водных растворах в виде электрического тока перемещаются не электроны, а ионы. Поэтому все электрические токи в клетках и окружающей их среде - это ионные токи .

Итак, изнутри клетка в покое заряжена отрицательно, а снаружи - положительно. Это свойственно всем живым клеткам, за исключением, разве что, эритроцитов, которые, наоборот, заряжены отрицательно снаружи. Если говорить конкретнее, то получается, что снаружи вокруг клетки будут преобладать положительные ионы (катионы Na + и K +), а внутри - отрицательные ионы (анионы органических кислот, не способные свободно перемещаться через мембрану, как Na + и K +).

Теперь нам всего лишь осталось объяснить, каким же образом всё получилось именно так. Хотя, конечно, неприятно сознавать, что все наши клетки кроме эритроцитов только снаружи выглядят положительными, а внутри они - отрицательные.

Термин «отрицательность», который мы будем применять для характеристики электрического потенциала внутри клетки, пригодится нам для простоты объяснения изменений уровня потенциала покоя. В этом термине ценно то, что интуитивно понятно следующее: чем больше отрицательность внутри клетки - тем ниже в отрицательную сторону от нуля смещён потенциал, а чем меньше отрицательность - тем ближе отрицательный потенциал к нулю. Это намного проще понять, чем каждый раз разбираться в том, что же именно означает выражение «потенциал возрастает» - возрастание по абсолютному значению (или «по модулю») будет означать смещение потенциала покоя вниз от нуля, а просто «возрастание» - смещение потенциала вверх к нулю. Термин «отрицательность» не создаёт подобных проблем неоднозначности понимания.

Сущность формирования потенциала покоя

Попробуем разобраться, откуда берётся электрический заряд нервных клеток, хотя их никто не трёт, как это делают физики в своих опытах с электрическими зарядами.

Здесь исследователя и студента поджидает одна из логических ловушек: внутренняя отрицательность клетки возникает не из-за появления лишних отрицательных частиц (анионов), а, наоборот, из-за потери некоторого количества положительных частиц (катионов)!

Так куда же деваются из клетки положительно заряженные частицы? Напомню, что это покинувшие клетку и скопившиеся снаружи ионы натрия - Na + - и калия - K + .

Главный секрет появления отрицательности внутри клетки

Сразу откроем этот секрет и скажем, что клетка лишается части своих положительных частиц и заряжается отрицательно за счёт двух процессов:

  1. вначале она обменивает «свой» натрий на «чужой» калий (да-да, одни положительные ионы на другие, такие же положительные);
  2. потом из неё происходит утечка этих «наменянных» положительных ионов калия, вместе с которыми из клетки утекают положительные заряды.

Эти два процесса нам и надо объяснить.

Первый этап создания внутренней отрицательности: обмен Na + на K +

В мембране нервной клетки постоянно работают белковые насосы-обменники (аденозинтрифосфатазы, или Na + /K + -АТФазы), встроенные в мембрану. Они меняют «собственный» натрий клетки на наружный «чужой» калий.

Но ведь при обмене одного положительного заряда (Na +) на другой такой же положительный заряд (K +) никакого дефицита положительных зарядов в клетке возникать не может! Правильно. Но, тем не менее, из-за этого обмена в клетке остаётся очень мало ионов натрия, потому что они почти все ушли наружу. И в то же время клетка переполняется ионами калия, которые в неё накачали молекулярные насосы. Если бы мы могли попробовать на вкус цитоплазму клетки, мы бы заметили, что в результате работы насосов-обменников она превратилась из солёной в горько-солёно-кислую, потому что солёный вкус хлорида натрия сменился сложным вкусом довольно-таки концентрированного раствора хлорида калия. В клетке концентрация калия достигает 0,4 моль/л. Растворы хлорида калия в пределах 0,009–0,02 моль/л имеют сладкий вкус, 0,03–0,04 - горький, 0,05–0,1 - горько-солёный, а начиная с 0,2 и выше - сложный вкус, состоящий из солёного, горького и кислого .

Важно здесь то, что обмен натрия на калий - неравный . За каждые отданные клеткой три иона натрия она получает всего два иона калия . Это приводит к потере одного положительного заряда при каждом акте ионного обмена. Так что уже на этом этапе за счёт неравноценного обмена клетка теряет больше «плюсов», чем получает взамен. В электрическом выражении это составляет примерно −10 мВ отрицательности внутри клетки. (Но помните, что нам надо ещё найти объяснение для оставшихся −60 мВ!)

Чтобы легче было запомнить работу насосов-обменников, образно можно выразиться так: «Клетка любит калий!» Поэтому клетка и затаскивает калий к себе, несмотря на то, что его и так в ней полно. И поэтому она невыгодно обменивает его на натрий, отдавая 3 иона натрия за 2 иона калия. И поэтому она тратит на этот обмен энергию АТФ. И как тратит! До 70% всех энергозатрат нейрона может уходить на работу натрий-калиевых насосов. (Вот что делает любовь, пусть она даже и не настоящая!)

Кстати, интересно, что клетка не рождается с готовым потенциалом покоя. Ей его ещё надо создать. Например, при дифференцировке и слиянии миобластов потенциал их мембраны изменяется от −10 до −70 мВ, т.е. их мембрана становится более отрицательной - поляризуется в процессе дифференцировки. А в экспериментах на мультипотентных мезенхимальных стромальных клетках костного мозга человека искусственная деполяризация, противодействующая потенциалу покоя и уменьшающая отрицательность клеток, даже ингибировала (угнетала) дифференцировку клеток .

Образно говоря, можно выразиться так: Создавая потенциал покоя, клетка «заряжается любовью». Это любовь к двум вещам:

  1. любовь клетки к калию (поэтому клетка насильно затаскивает его к себе);
  2. любовь калия к свободе (поэтому калий покидает захватившую его клетку).

Механизм насыщения клетки калием мы уже объяснили (это работа насосов-обменников), а механизм ухода калия из клетки объясним ниже, когда перейдём к описанию второго этапа создания внутриклеточной отрицательности. Итак, результат деятельности мембранных ионных насосов-обменников на первом этапе формирования потенциала покоя таков:

  1. Дефицит натрия (Na +) в клетке.
  2. Избыток калия (K +) в клетке.
  3. Появление на мембране слабого электрического потенциала (−10 мВ).

Можно сказать так: на первом этапе ионные насосы мембраны создают разность концентраций ионов, или градиент (перепад) концентрации, между внутриклеточной и внеклеточной средой.

Второй этап создания отрицательности: утечка ионов K + из клетки

Итак, что начинается в клетке после того, как с ионами поработают её мембранные натрий-калиевые насосы-обменники?

Из-за образовавшегося дефицита натрия внутри клетки этот ион при каждом удобном случае норовит устремиться внутрь : растворённые вещества всегда стремятся выровнять свою концентрацию во всём объёме раствора. Но это у натрия получается плохо, поскольку ионные натриевые каналы обычно закрыты и открываются только при определённых условиях: под воздействием специальных веществ (трансмиттеров) или при уменьшении отрицательности в клетке (деполяризации мембраны).

В то же время в клетке имеется избыток ионов калия по сравнению с наружной средой - потому что насосы мембраны насильно накачали его в клетку. И он, тоже стремясь уравнять свою концентрацию внутри и снаружи, норовит, напротив, выйти из клетки . И это у него получается!

Ионы калия K + покидают клетку под действием химического градиента их концентрации по разные стороны мембраны (мембрана значительно более проницаема для K + , чем для Na +) и уносят с собой положительные заряды. Из-за этого внутри клетки нарастает отрицательность.

Тут ещё важно понять то, что ионы натрия и калия как бы «не замечают» друг друга, они реагируют только «на самих себя». Т.е. натрий реагирует на концентрацию натрия же, но «не обращает внимания» на то, сколько вокруг калия. И наоборот, калий реагирует только на концентрацию калия и «не замечает» натрий. Получается, что для понимания поведения ионов надо по отдельности рассматривать концентрации ионов натрия и калия. Т.е. надо отдельно сравнить концентрацию по натрию внутри и снаружи клетки и отдельно - концентрацию по калию внутри и снаружи клетки, но не имеет смысла сравнивать натрий с калием, как это, бывает, делается в учебниках.

По закону выравнивания химических концентраций, который действует в растворах, натрий «хочет» снаружи войти в клетку; туда же его влечёт и электрическая сила (как мы помним, цитоплазма заряжена отрицательно). Хотеть-то он хочет, но не может, так как мембрана в обычном состоянии плохо его пропускает. Натриевые ионные каналы, имеющиеся в мембране, в норме закрыты. Если все же его заходит немножко, то клетка сразу же обменивает его на наружный калий с помощью своих натрий-калиевых насосов-обменников. Получается, что ионы натрия проходят через клетку как бы транзитом и не задерживаются в ней. Поэтому натрий в нейронах всегда в дефиците.

А вот калий как раз может легко выходить из клетки наружу! В клетке его полно, и она его удержать не может. Он выходит наружу через особые каналы в мембране - «калиевые каналы утечки», которые в норме открыты и выпускают калий .

К + -каналы утечки постоянно открыты при нормальных значениях мембранного потенциала покоя и проявляют взрывы активности при сдвигах мембранного потенциала, которые длятся несколько минут и наблюдаются при всех значениях потенциала. Усиление К + -токов утечки ведёт к гиперполяризации мембраны, тогда как их подавление - к деполяризации. ...Однако, существование канального механизма, ответственного за токи утечки, долгое время оставалось под вопросом. Только сейчас стало ясно, что калиевая утечка - это ток через специальные калиевые каналы.

Зефиров А.Л. и Ситдикова Г.Ф. Ионные каналы возбудимой клетки (структура, функция, патология) .

От химического - к электрическому

А теперь - ещё раз самое главное. Мы должны осознанно перейти от движения химических частиц к движению электрических зарядов .

Калий (K +) положительно заряжен, и поэтому он, когда выходит из клетки, выносит из неё не только самого себя, но и положительный заряд. За ним изнутри клетки к мембране тянутся «минусы» - отрицательные заряды. Но они не могут просочиться через мембрану - в отличие от ионов калия - т.к. для них нет подходящих ионных каналов, и мембрана их не пропускает. Помните про оставшиеся необъяснёнными нами −60 мВ отрицательности? Это и есть та самая часть мембранного потенциала покоя, которую создаёт утечка ионов калия из клетки! И это - большая часть потенциала покоя.

Для этой составной части потенциала покоя есть даже специальное название - концентрационный потенциал . Концентрационный потенциал - это часть потенциала покоя, созданная дефицитом положительных зарядов внутри клетки, образовавшимся за счёт утечки из неё положительных ионов калия .

Ну, а теперь немного физики, химии и математики для любителей точности.

Электрические силы связаны с химическими по уравнению Гольдмана. Его частным случаем является более простое уравнение Нернста , по формуле которого можно рассчитать трансмембранную диффузионную разность потенциалов на основе различной концентрации ионов одного вида по разные стороны мембраны. Так, зная концентрацию ионов калия снаружи и внутри клетки, можно рассчитать калиевый равновесный потенциал E K:

где Е к - равновесный потенциал, R - газовая постоянная, Т - абсолютная температура, F - постоянная Фарадея, К + внеш и K + внутр - концентрации ионов К + снаружи и внутри клетки, соответственно. По формуле видно, что для расчёта потенциала между собой сравниваются концентрации ионов одного вида - K + .

Более точно итоговая величина суммарного диффузионного потенциала, который создаётся утечкой нескольких видов ионов, рассчитывается по формуле Гольдмана-Ходжкина-Катца. В ней учтено, что потенциал покоя зависит от трех факторов: (1) полярности электрического заряда каждого иона; (2) проницаемости мембраны Р для каждого иона; (3) [концентраций соответствующих ионов] внутри (внутр) и снаружи мембраны (внеш). Для мембраны аксона кальмара в покое отношение проводимостей Р K: PNa :P Cl = 1: 0,04: 0,45 .

Заключение

Итак, поте нциал покоя состоит из двух частей:

  1. −10 мВ , которые получаются от «несимметричной» работы мембранного насоса-обменника (ведь он больше выкачивает из клетки положительных зарядов (Na +), чем закачивает обратно с калием).
  2. Вторая часть - это всё время утекающий из клетки калий, уносящий положительные заряды. Его вклад - основной: −60 мВ . В сумме это и дает искомые −70 мВ.

Что интересно, калий перестанет выходить из клетки (точнее, его вход и выход уравниваются) только при уровне отрицательности клетки −90 мВ. В этом случае сравняются химические и электрические силы, проталкивающие калий через мембрану, но направляющие его в противоположные стороны. Но этому мешает постоянно подтекающий в клетку натрий, который несёт с собой положительные заряды и уменьшает отрицательность, за которую «борется» калий. И в итоге в клетке поддерживается равновесное состояние на уровне −70 мВ.

Вот теперь мембранный потенциал покоя окончательно сформирован.

Схема работы Na + /K + -АТФазы наглядно иллюстрирует «несимметричный» обмен Na + на K + : выкачивание избыточного «плюса» в каждом цикле работы фермента приводит к отрицательному заряжению внутренней поверхности мембраны. Чего в этом ролике не сказано, так это того, что АТФаза ответственна за менее чем 20% потенциала покоя (−10 мВ): оставшаяся «отрицательность» (−60 мВ) появляется за счет выхода из клетки через «калиевые каналы утечки» ионов K + , стремящихся выровнять свою концентрацию внутри клетки и вне нее.

Литература

  1. Jacqueline Fischer-Lougheed, Jian-Hui Liu, Estelle Espinos, David Mordasini, Charles R. Bader, et. al.. (2001). Human Myoblast Fusion Requires Expression of Functional Inward Rectifier Kir2.1 Channels . J Cell Biol . 153 , 677-686;
  2. Liu J.H., Bijlenga P., Fischer-Lougheed J. et al. (1998). Role of an inward rectifier K + current and of hyperpolarization in human myoblast fusion . J. Physiol. 510 , 467–476;
  3. Sarah Sundelacruz, Michael Levin, David L. Kaplan. (2008). Membrane Potential Controls Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells . PLoS ONE . 3 , e3737;
  4. Павловская М.В. и Мамыкин А.И. Электростатика. Диэлектрики и проводники в электрическом поле. Постоянный ток / Электронное пособие по общему курсу физики. СПб: Санкт-Петербургский государственный электротехнический университет;
  5. Ноздрачёв А.Д., Баженов Ю.И., Баранникова И.А., Батуев А.С. и др. Начала физиологии: Учебник для вузов / Под ред. акад. А.Д. Ноздрачёва. СПб: Лань, 2001. - 1088 с.;
  6. Макаров А.М. и Лунева Л.А. Основы электромагнетизма / Физика в техническом университете. Т. 3;
  7. Зефиров А.Л. и Ситдикова Г.Ф. Ионные каналы возбудимой клетки (структура, функция, патология). Казань: Арт-кафе, 2010. - 271 с.;
  8. Родина Т.Г. Сенсорный анализ продовольственных товаров. Учебник для студентов вузов. М.: Академия, 2004. - 208 с.;
  9. Кольман Я. и Рем К.-Г. Наглядная биохимия. М.: Мир, 2004. - 469 с.;
  10. Шульговский В.В. Основы нейрофизиологии: Учебное пособие для студентов вузов. М.: Аспект Пресс, 2000. - 277 с..

Для образования МПП необходимо наличие: 1) ионных трансмембранных градиентов между цитозолем и внеклеточной средой (ведущую роль играют ионы натрия и калия); 2) разной проницаемости мембраны для ионов, что определяется ионными каналами мембраны.

Величины градиентов: К + в цитозоле клетки примерно в 33 раза больше, чем во внеклеточной среде; Na + в клетке примерно в 14 раз, С1 _ в 20 раз и Са 2+ в десятки тысяч раз меньше, чем во внеклеточной среде.

Механизмы образования градиентов: калий-натриевый насос образует градиенты Na + и К + (рис. 1.2.3). Градиент С1~ создается в результате использования энергии градиента К + при их совместном транспорте из клетки, а также в результате его обмена на гидрокарбонат с помощью анионообменника CI/HCO3. Ионы активно удаляются из клетки с помощью Са 2+ -насоса и ионообмена на Na + .

Рис. 1.2.3. Калий-натриевый насос в клеточной мембране. Используя энергию фосфатной группы одной молекулы АТФ, насос переносит против градиента концентрации два иона К + из внеклеточной жидкости в цитозоль клетки и три иона Na + в противоположном направлении

Различная проницаемость мембраны для ионов определена наличием ионных каналов, их числом и состоянием.

Ионные каналы - интегральные белки мембраны, состоящие из нескольких субъединиц, образующих отверстие (пору) и способные с большей или меньшей избирательностью (селективностью) пропустить в клетку или из клетки неорганические ионы по концентрационному и электрическому градиентам (рис. 1.2.4).


Рис. 1.2.4.

а - каналы утечки без воротного механизма; б-г - каналы с воротным механизмом: б - канал закрыт, потенциально активен, в - канал открыт, г - канал закрыт, инактивирован; д - липидный бислой мембраны; 1 - селективный фильтр;

2 - активационные ворота; 3 - инактивационные ворота

В канале имеется участок, выполняющий роль «селективного фильтра» (d = 0,3-0,6 нм), через который ион может пройти после частичной или полной утраты своей водной оболочки. Через ионный канал в течение 1 с может проходить до 20 млн ионов, поэтому ионные токи каналов во много раз превосходят ионные токи, связанные с работой ионных насосов и ионообменников

Существует несколько видов ионных каналов. Каналы имеют воротный механизм, который определяет закрытое (потенциально активное), открытое (активированное) или закрытое (инактивированное) состояние канала. Проницаемость канала (состояние «ворот») регулируется: 1) изменением поляризации мембраны (по- тенциалуправляемые каналы); 2) влиянием химических веществ - нейромедиаторов, гормонов, лекарственных средств (хемоуправля- емые каналы); 3) деформацией мембраны (механочувствительные каналы).

Потенциалуправляемые каналы (натриевые, калиевые, кальциевые, хлорные) находятся в возбудимых клетках. Они имеют воротную «частицу» (сенсор канала) в виде диполя, на концах которого располагаются разноименные заряды. По времени срабатывания ворот (от миллисекунд до секунд) каналы подразделяют на быстрые и медленные. Те участки мембраны возбудимых клеток, которые имеют такие каналы, называются возбудимыми мембранами (только в них возможно образование потенциала действия).

Хемоуправляемые каналы («канал-рецептор», «ионотропный рецептор») находятся в составе рецептора, на который действуют биоактивные вещества: нейромедиаторы - ацетилхолин, ГАМК, глутамат и др., гормоны, лекарственные средства (например, М-холи- норецептор, ГАМК А -рецептор и др.).

Механочувствительные каналы (МЧК) изменяют проводимость в ответ на деформацию мембраны при действии механических раздражителей, гидростатического и осмотического давления. Выделены различные виды МЧК: каналы, активируемые и ингибируемые растяжением мембраны; катионные (калиевые, кальциевые, неселективные), анионные каналы и др. Они могут создавать токи, достаточные для изменения электрического потенциала мембраны и активации потенциалуправляемых каналов.

В состоянии физиологического покоя проницаемость мембраны (Р) определяется в основном каналами утечки. Она очень низкая для Na + , средняя для С1 _ и более высокая для К + . Если P R+ принять

за единицу, то Р к+ : Р сг: P Na+ = 1: 0,4: 0,04.

Механизмы возникновения мембранного потенциала покоя. Диффузия К + из клетки по каналам утечки до равновесного потенциала (Е к+ = -94 мВ) является главным механизмом формирования МПП

(К + как поляризующий ион). Равновесный потенциал (Е ион) для К + - потенциал, при котором возникает равенство двух сил: силы перемещения иона по химическому градиенту и противоположной по направлению электростатической силы. При равенстве этих сил прекращается диффузия иона. Диффузия К + из клетки по электростатической силе (разность зарядов) увлекает за собой цитозольные анионы (белки, фосфаты), которые останавливаются около внутренней поверхности непроницаемой для них клеточной мембраны, образуя отрицательный мембранный потенциал.

Асимметричная работа калий-натриевого насоса (на 2 иона К + , перемещаемого в клетку, из нее выводится 3 иона Na +) создает поляризацию мембраны (около -10 мВ) и является вторым механизмом образования МПП (см. рис. 1.2.3).

Небольшая диффузия Na + по каналам утечки внутрь клетки (E Na+ = +60 мВ) делает реальный МПП несколько ниже, чем Е к+

(Na + как деполяризующий ион).

Функциональная роль МПП. Отрицательный мембранный потенциал и преимущественно внеклеточное расположение ионов натрия создает большую электродвижущую силу для Na + , направленную на движение этого катиона внутрь клетки. При открытых Na + -Ka- налах эта сила определяет выдающуюся роль Na + в развитии биопотенциалов (фазы деполяризации). В деятельности транспортеров и ионообменников возбудимых и невозбудимых клеток она позволяет осуществить вторично-активный транспорт: электродвижущая сила Na + используется для перемещения в клетку аминокислот и глюкозы, или выведения из клетки ионов кальция и водорода.

Препотенциал и критический уровень деполяризации. Главный потенциал возбудимых клеток - потенциал действия (ПД). Раздражителем при этом в естественных условиях служат биопотенциалы (рецепторные, синаптические) и их биотоки, которые деполяризуют мембрану, имеющую потенциалуправляемые ионные каналы. ПД возникает, если раздражитель способен деполяризовать мембрану до критического уровня (примерно на 15-20 мВ). Если деполяризация при действии раздражителя не достигает критического уровня, т.е. раздражитель является субпороговым, ПД не возникает, а образуется препотенциал.

Препотенциал (локальный ответ) - локальный потенциал, возникающий при действии субпороговых раздражителей в тех же участках мембраны, где и потенциал действия (т.е. имеющих потенциалуправляемые каналы). Препотенциал расположен в субпороговой области (между МПП и критическим уровнем деполяризации), имеет фазы деполяризации и реполяризации (рис. 1.2.5).

Механизмы возникновения препотенциала. При действии субпорогового раздражителя возникает деполяризация, связанная с открытием потенциалуправляемых 1Ча + -каналов и входящим в клетку Na + -TOKOM, который не достигает критического уровня деполяризации. Деполяризация открывает также и более медленные потенциалуправляемые К + -каналы, что увеличивает выходящий из клетки К + -ток и вызывает затем фазу реполяризации. Во время препотенциала входящий в клетку Na + -TOK меньше, чем выходящий из клетки К + -ток через потенциалуправляемые каналы и К + -каналы утечки. Поэтому после прекращения действия субпорогового раздражителя препотенциал исчезает.


Рис. 1.2.5. Схема локального ответа (препотенциала) и потенциала действия: 7 - деполяризация; 2 - реполяризация

Свойства препотенциала. Амплитуда препотенциала находится в прямой зависимости от силы раздражителя, он возникает в соответствии с законом «силы» (его амплитуда пропорциональна силе раздражителя). Препотенциалы способны к суммации, если промежутки между раздражителями короче, чем продолжительность существования препотенциала - новый препотенциал будет суммироваться с предыдущим. Следовательно, высокочастотные субпороговые раздражители могут деполяризовать мембрану до критического уровня и вызвать ПД. Во время препотенциала повышена возбудимость. Распространение препотенциала происходит с затуханием амплитуды на небольшие расстояния (обычно в пределах 1 мм).

Критический уровень деполяризации (КУД, или критический потенциал - Е кр) - тот уровень, при котором деполяризация мембраны может принимать регенеративный (самоусиливающийся) характер, свидетельствующий о развитии потенциала действия. При этом входящий в клетку Na + -TOK равен выходящему из клетки К + - току, что характеризует электрическую нестабильность мембраны - в равной степени процесс может идти как в сторону деполяризации и образования ПД, так и в сторону реполяризации и ограничиться препотенциалом. Раздражитель, деполяризующий МПП до КУД, называется пороговым раздражителем. Величина потенциала, равная разности между КУД и МПП, называется пороговым потенциалом (ПП = МПП - КУД), он характеризует возбудимость клетки (чем меньше ПП, тем больше возбудимость, и наоборот)

Мысль о двух формах конвертируемой энергии я высказал в 1975 году. Спустя два года эта точка зрения была поддержана Митчелом. А в группе А. Глаголева тем временем начались опыты по проверке одного из предсказаний этой новой концепции.

Я рассуждал следующим образом. Если протонный потенциал - разменная монета, то клетка должна располагать достаточным количеством, таких «денежных знаков».

Это требование выполнялось, если речь шла об АТФ. Клетка всегда содержит довольно большие количества АТФ, причем приняты меры для стабилизации этого количества в условиях меняющейся конъюнктуры - непрерывно варьирующих скоростей образования и использования АТФ. Есть особое вещество - креатин-фосфат, участвующее только в одной реакции - фосфорилировании АДФ:

АДФ + креатинфосфат ⇔ АТФ + креатин.

Когда АТФ в избытке, а АДФ в дефиците, реакция идет справа налево и накапливается креатинфосфат, которого в этих условиях становится много больше, чем АТФ. Но стоит повыситься уровню АДФ и уменьшиться АТФ, как реакция меняет направление, и креатинфосфат оказывается поставщиком АТФ. Тем самым креатинфосфат выполняет свою функцию стабилизатора, буфера уровня АТФ.

А как обстоят дела с протонным потенциалом?

Несложный расчет позволяет перевести одну энергетическую «валюту» в другую. Этот расчет показывает, что количество энергии, накопленное, к примеру, бактериальной клеткой в виде протонного потенциала, оказывается почти в тысячу раз меньшим, чем количество АТФ, если протонный потенциал находится в электрической форме. Это количество одного порядка с числом генераторов и потребителей потенциала в бактериальной мембране.

Такая ситуация создает особую необходимость в буферной системе, стабилизирующей уровень протонного потенциала. В противном случае даже кратковременное превышение общей скорости потребляющих потенциал процессов над скоростью его генерации приведет к исчезновению потенциала и остановке всех систем, питаемых потенциалом.

Итак, должен быть буфер для протонного потенциала наподобие креатинфосфата для АТФ. Но что за компонент подобрала природа на такую роль?

Обдумывая эту проблему, я попытался найти какую-нибудь связанную с потенциалом биологическую систему, функция которой была бы неизвестна.

Одна из старых загадок биологии: зачем клетка поглощает ионы калия и выбрасывает ионы натрия, создавая дорогостоящую асимметрию в распределении этих близких по своим свойствам ионов между цитоплазмой и окружающей средой? Практически в любой живой клетке ионов калия намного больше, чем ионов натрия, в то время как в среде натрий находится в огромном избытке над калием. Может быть, Na + - яд для клетки?

Нет, это не так. Хоть некоторые ферментные системы действительно лучше работают в КСl, чем в NaCl, это выглядит вторичным приспособлением к «многокалиевой» и «малонатриевой» внутренней среде клетки. За огромный срок биологической эволюции клетка могла бы приспособиться к естественному соотношению ионов щелочных металлов во внешней среде. Живут же галофильные бактерии в насыщенном растворе NaCl, причем концентрация Na + в их цитоплазме иногда доходит до моля на литр, что почти в тысячу раз больше концентрации Na + в обычных клетках. Итак, Na + не яд.

Заметим, что те же галофильные бактерии поддерживают внутриклеточную концентрацию К + около 4 молей на литр, тратя на создание натрий-калиевого градиента колоссальные по масштабам клетки количества энергетических ресурсов.

Известно, что возбудимые клетки животных, такие, как нейроны, используют натрий-калиевый градиент для проведения нервного импульса. Но как быть с другими типами клеток, например, с бактериями?

Давайте обратимся к механизму транспорта К + и Na + через бактериальную мембрану. Известно, что между цитоплазмой бактерии и внешней средой существует разность электрических потенциалов, поддерживаемая работой белков-генераторов в бактериальной мембране. Откачивая протоны изнутри клетки наружу, белки-генераторы тем самым заряжают внутренность бактерии отрицательно. В этих условиях накопление ионов К + внутри клетки могло бы происходить просто за счет электрофореза - движения положительно заряженного иона калия в отрицательно заряженную цитоплазму бактерии.

При этом поток калия должен разряжать мембрану, предварительно заряженную протонными генераторами.

В свою очередь, разрядка мембраны должна немедленно активировать работу генераторов.

Это означает, что энергетические ресурсы, затрачиваемые на генерацию разности электрических потенциалов между клеткой и средой, будут использованы для концентрирования ионов К + внутри клетки. Конечным балансом такого процесса окажется обмен внутриклеточных ионов Н + на внеклеточные ионы К + (ионы Н + откачиваются белками-генераторами наружу, ионы К + поступают внутрь, двигаясь в электрическом поле, созданном движением ионов Н +).

Стало быть, внутри клетки будет создаваться не только избыток ионов К + , но и дефицит ионов Н + .

Этот дефицит можно использовать для откачки ионов Na + . Сделать это можно следующим образом. Известно, что бактерии располагают особым переносчиком ионов натрия, обменивающим Na + на Н + (этот переносчик носит название Nа + /Н + -антипортера). В условиях нехватки Н + в цитоплазме антипорт может компенсировать протонный дефицит, перенося Н + из внешней среды внутрь клетки. Произвести такой антипорт переносчик может только одним способом: обменяв внешний на внутренний Na + . Значит, движение ионов Н + внутрь клетки может быть использовано для откачки из той же клетки ионов Na + .

Вот мы и создали калий-натриевый градиент: внутри клетки накопили К + и откачали оттуда Na + . Движущей силой этих процессов был создаваемый белками-генераторами протонный потенциал. (Направление потенциала было таково, что внутренность клетки заряжалась отрицательно и там возникала нехватка ионов водорода.)

Допустим теперь, что протонные генераторы по какой-то причине выключились. Что произойдет в этих новых условиях с калий-натриевым градиентом?

Конечно же, он рассеется: ионы К + вытекут из клетки в окружающую среду, где их мало, ионы Na + войдут внутрь, где эти ионы в дефиците.

Но вот что интересно. Рассеиваясь, калий-натриевый градиент сам окажется генератором протонного потенциала того же направления, что образовывался при работе белков-генераторов.

Действительно, выход иона К + как положительно заряженной частицы создает диффузионную разность потенциалов на клеточной мембране со знаком «минус» внутри клетки. Вход Na + при участии Nа + /Н + - антипортера будет сопровождаться выходом Н + , то есть созданием дефицита Н + внутри клетки.

Так что же получается? Когда белки-генераторы работают, создаваемый ими протонный потенциал расходуется на образование калий-натриевого градиента. Зато когда они выключены (или их мощности недостает, чтобы удовлетворить многочисленных потребителей потенциала), калий-натриевый градиент, рассеиваясь, сам начинает генерировать протонный потенциал.

Так ведь это и есть буфер протонного потенциала, тот самый буфер, который так необходим для работы мембранных энергетических систем!

Схематично эту концепцию можно изобразить так:

Калий-натриевый градиент ↓ внешние энергетические ресурсы → протонный потенциал → работа.

Но если такая схема верна, то калий-натриевый градиент должен продлить работоспособность клетки в условиях, когда исчерпаны энергетические ресурсы.

А. Глаголев и И. Броун проверили справедливость этого вывода. Был взят мутант кишечной палочки, лишенный протонной АТФ-синтетазы. Для такого мутанта окисление субстратов кислородом служит единственным энергетическим ресурсом, пригодным, чтобы образовать протонный потенциал. Как было показано в свое время Дж. Адлером и его сотрудниками, мутант подвижен, пока в среде есть кислород.

Глаголев и Броун повторили опыт Адлера и убедились, что исчерпание запаса кислорода в растворе действительно останавливает бактерии, если они находятся в среде с КСl. В этих условиях калий-натриевый градиент отсутствует: калия много и в клетках и в среде, а натрия нет ни там, ни здесь.

А теперь давайте возьмем среду с NaCl. В таких условиях должны быть оба интересующих нас градиента: калиевый (калия много внутри и мало снаружи) и натриевый (натрия много снаружи и мало внутри). Гипотеза предсказывала, что в такой ситуации подвижность сохранится какое-то время и в бескислородных условиях, поскольку возможно превращение энергии:

калий-натриевый градиент → протонный потенциал → вращение флагеллы.

И в самом деле, бактерии двигались еще 15-20 минут после того, как измерительное устройство зарегистрировало нулевой уровень СЬ в среде.

Но особенно наглядным, как и следовало ожидать, оказался опыт с солелюбивыми бактериями, которые транспортируют очень большие количества ионов К + и Na + , чтобы создать калий-натриевый градиент. Такие бактерии быстро останавливались в темноте в бескислородных условиях, если в среде был КСl, и все еще двигались спустя девять (!) часов, если КСl был заменен на NaCl.

Эта величина - девять часов - интересна прежде всего как иллюстрация объема того резервуара энергии, который представляет собой калий-натриевый градиент у солелюбивых бактерий. Кроме того, она приобретает особый смысл, если вспомнить о том, что солелюбивые бактерии располагают бактериородопсином и, стало быть, способны к превращению энергии света в протонный потенциал. Ясно, что такое превращение возможно лишь в светлый период суток. А как быть ночью? Так вот оказывается, что энергии, запасенной днем в виде калий-натриевого градиента, хватает на всю ночь.

Утверждение, что калий-натриевый градиент играет роль буфера протонного потенциала, позволяет понять не только биологическую функцию этого градиента, но и причину, которая в течение многих лет препятствовала выяснению его значения для жизнедеятельности клетки. Мысль о буферной роли калий-натриевого градиента не могла родиться, прежде чем был открыт протонный потенциал и было доказано, что он служит конвертируемой формой энергии. Все эти годы проблема калия и натрия просто ждала своего часа.