Химия биологически активных веществ лекции. Биологически активные вещества лекарственных растений. Химия биологически активных соединений

Для того, чтобы после напряженных тренировок и соревнований организм атлета мог поддерживать работоспособность и нормальную жизнедеятельность, ему необходим сбалансированный рацион питания в зависимости от индивидуальных потребностей организма, которые должны соответствовать возрасту атлета, его полу и виду спорта. Для восстановления нормальной работы систем организма вместе с пищей спортсмен должен получать достаточное количество белков, жиров и углеводов, а также биологически активных веществ – витаминов и минеральных солей.

Как известно, физиологические потребности организма зависят от постоянно изменяющихся условий жизни спортсмена, что не позволяет качественно сбалансировать рацион.

Тем не менее, организм человека обладает регулирующими свойствами и может усваивать из пищи необходимые питательные вещества в том количестве, которое ему требуется в данный момент. Однако эти способы приспособления организма имеют определенные пределы.

Дело в том, что некоторые ценные витамины и незаменимые аминокислоты организм не может синтезировать в процессе обмена, и они могут поступать только с пищей. Если организм их не получает, питание будет несбалансированным, в результате чего и падает работоспособность, возникает угроза возникновения различных заболеваний.

Белки

Эти вещества просто необходимы для атлетов, занимающихся с отягощениями, поскольку они способствуют наращиванию мышечной массы. Белки образуются в организме за счет поглощения их из пищи. По пищевой ценности их невозможно заменить углеводами и жирами. Источниками белков являются продукты животного и растительного происхождения.

Белки , которые подразделяются на заменимые (около 80%) и незаменимые (20%). Заменимые аминокислоты синтезируются в организме, а незаменимые организм синтезировать не может, поэтому они должны поступать вместе с пищей или с помощью спортивного питания.

Белок – основной пластический материал. В составе скелетных мышц содержится приблизительно 20% белка. Белок входит в состав ферментов, ускоряющих разнообразные реакции и обеспечивающих интенсивность обмена веществ. Также белок содержится в гормонах, которые участвуют в регуляции физиологических процессов. Белок участвует в сократительной деятельности мышц.

Кроме этого, белок является составной частью гемоглобина и обеспечивает транспортировку кислорода. Белок крови (фибриноген) участвует в процессе ее свертывания. Сложные белки (нуклеопротеиды) способствуют передаче по наследству качеств организма. Также белок является источником энергии, необходимой для выполнения упражнений: 1 г белка содержит 4,1 ккал.

Мышечная ткань состоит из белка, поэтому бодибилдеры для максимального увеличения размеров мышц вводят в рацион много белка, в 2-3 раза больше рекомендуемой нормы. Следует отметить, что мнение о том, что потребление большого количества белка увеличивает силу и выносливость, ошибочно. Единственным способом увеличения размеров мышц без вреда для здоровья является регулярная тренировка.

Если атлет употребляет большое количество белковой пищи, это приводит к увеличению массы тела. Поскольку регулярные тренировки способствуют увеличению потребности организма в белке, большинство атлетов употребляет насыщенную белками пищу с учетом нормы, рассчитанной диетологами.

К продуктам, обогащенным белком, относятся мясо, мясопродукты, рыба, молоко и яйца.

Мясо – источник полноценных белков, жиров, витаминов (В 1, В2, В6) и минеральных веществ (калия, натрия, фосфора, железа, магния, цинка, йода). Также в состав мясных продуктов входят азотистые вещества, стимулирующие выделение желудочного сока, и безазотистые экстрактивные вещества, извлекающиеся при варке.

Почки, печень, мозги, легкие также содержат белок и имеют высокую биологическую ценность. Помимо белка, печень содержит много витамина А и жирорастворимых соединений железа, меди и фосфора. Она особенно полезна спортсменам, перенесшим тяжелую травму или операцию.

Ценным источником белка является морская и речная рыба. По наличию полезных веществ она не уступает мясу. По сравнению с мясом химический состав рыбы несколько разнообразнее. Она содержит до 20% белков, 20-30% жиров, 1,2% минеральных солей (соли калия, фосфора и железа). В морской рыбе содержится много фтора и йода.

В питании спортсменов преимущество отдают куриным и перепелиным яйцам. Использование яиц водоплавающих птиц нежелательно, так как они могут быть заражены возбудителями кишечных инфекций.

Кроме белков животного происхождения, существуют белки растительного происхождения, содержащиеся преимущественно в орехах и бобовых культурах, а также в сое.

Бобовые

Бобовые являются питательным и сытным источником обезжиренного белка, содержат нерастворимую клетчатку, сложные углеводы, железо, витамины С и группы В. Бобовые являются лучшим заменителем животного белка, снижают уровень холестерина, стабилизируют содержание сахара в крови.

Включение их в рацион атлетов обязательно не только из-за того, что в бобовых содержится большое количество белка. Такая пища позволяет контролировать массу тела. Бобовые лучше не употреблять в период соревнований, так как они являются довольно трудно усваиваемой пищей.

Соя содержит высококачественный белок, растворимую клетчатку, ингибиторы протеазы. Соевые продукты являются хорошими заменителями мяса, молока, незаменимы в рационе спортсменов-тяжелоатлетов и культуристов.

Орехи , помимо растительного белка, содержат витамины группы В, витамин Е, калий, селен. Различные виды орехов включаются в рацион спортсменов в качестве питательного продукта, малый объем которого может заменить большое количество пищи. Орехи обогащают организм витаминами, белками и жирами, снижают риск онкологических заболеваний, предотвращают многие болезни сердца.

Жиры (липиды)

Жиры играют важную роль в регулировании обмена веществ и способствуют нормальному функционированию организма. Недостаток жиров в рационе приводит к заболеваниям кожи, авитаминозам и другим болезням. Излишек жиров в организме ведет к ожирению и некоторым другим заболеваниям, что не допустимо для людей, занимающихся спортом.

Когда жиры попадают в кишечник, начинается процесс их расщепления до глицерина и жирных кислот. Потом эти вещества проникают сквозь стенку кишечника и вновь преобразуются в жиры, которые всасываются в кровь. Она транспортирует жиры в ткани, и там они используются в качестве энергетического и строительного материала.

Липиды входят в состав клеточных структур, поэтому они необходимы для образования новых клеток. Избыточное количество жира откладывается в виде запасов жировой ткани. Следует отметить, что нормальное количество жира у спортсмена в среднем составляет 10-12% от массы тела. В процессе окисления из 1 г жира высвобождается 9,3 ккал энергии.

Самыми полезными являются молочные жиры, которые содержатся в сливочном и топленом масле, молоке, сливках и сметане. Они содержат много витамина А и других полезных для организма веществ: холина, токоферола, фосфатидов.

Растительные жиры (подсолнечное, кукурузное, хлопковое и оливковое масла) являются источником витаминов и способствуют нормальному развитию и росту молодого организма.

Растительное масло содержит полиненасыщенные жирные кислоты и витамин Е. Растительное масло, предназначенное для тепловой обработки, должно быть рафинированным. Если растительное масло используется в свежем виде в качестве заправки для продуктов и блюд, лучше использовать нерафинированное, богатое витаминами и питательными веществами.

Жиры богаты фосфоросодержащими веществами и витаминами и являются ценным энергетическим источником.
Полиненасыщенные жирные кислоты способствуют повышению иммунитета, укреплению стенок кровеносных сосудов и активизации метаболизма.

В одной из недавних телевизионных передач приводились сведения о том, что россияне занимают одно из последних мест по уровню информированности о составе продуктов питания. Оказывается, что только 5% российских покупателей интересуются химическим составом продуктов, который указывается на этикетке. Причем их интересует количество калорий, белков, жиров и углеводов, но о каких-то там (омега)-жирных кислотах не слышал

Углеводы

В диетологии углеводы разделяются на простые (сахарные) и сложные, более важные с точки зрения рационального питания. Простые углеводы называются моносахаридами (это фруктоза и глюкоза). Моносахариды быстро растворяются в воде, это способствует их поступлению из кишечника в кровь.

Сложные углеводы построены из нескольких молекул моносахаридов и называются полисахаридами. К полисахаридам относятся все разновидности сахаров: молочный, свекловичный, солодовый и другие, а также клетчатка, крахмал и гликоген.

Гликоген является важнейшим элементом для развития выносливости у спортсменов, относится к полисахаридам, вырабатывается в организме животными. Хранится в печени и мышечной ткани, в мясе гликоген почти не содержится, так как после смерти живых организмов он распадается.

Организм усваивает углеводы за достаточно короткое время. Глюкоза, попадая в кровь, сразу становится источником энергии, воспринимаемым всеми тканями организма. Глюкоза необходима для нормального функционирования мозга и нервной системы.

Часть углеводов содержится в организме в виде гликогена, который в большом количестве способен превращаться в жир. Во избежание этого следует рассчитывать калорийность потребляемой пищи и поддерживать баланс расходуемых и получаемых калорий.

Углеводами богаты ржаной и пшеничный хлеб, сухари, крупы (пшеничная, гречневая, перловая, манная, овсяная, ячневая, кукурузная, рисовая), отруби и мед.

Кукурузная крупа – ценный источник сложных углеводов, клетчатки и тиамина. Это высококалорийный, но не жирный продукт. Спортсменам следует его употреблять с целью профилактики ишемической болезни сердца, некоторых видов рака, а также ожирения.

Высококачественные углеводы, содержащиеся в зерновых, являются лучшей заменой углеводам, находящимся в макаронных и хлебобулочных изделиях. В рацион спортсменов рекомендуется вводить немолотое зерно некоторых видов злаковых культур.

  • Ячмень широко используется для приготовления соусов, приправ, первых блюд;
  • Просо подается в качестве гарнира к мясным и рыбным блюдам. Зерна растения богаты фосфором и витаминами группы В;
  • Дикий рис содержит высококачественные углеводы, значительное количество белка и витаминов группы В;
  • Киноа – южноамериканский злак, используется для приготовления пудингов, супов и вторых блюд. Содержит не только углеводы, но и большое количество кальция, белка и железа;
  • Пшеница часто используются в спортивном питании в качестве заменителя риса.

Немолотое зерно или зерно грубого помола полезнее, чем измельченное в крупу или переработанное в хлопья. Не прошедшее специальную технологическую обработку зерно богато клетчаткой, витаминами и микроэлементами. Темные сорта зерна (например, коричневый рис) не вызывают развитие остеопороза в отличие от обработанных зерновых культур – таких, как манная крупа или белый рис.

Читайте также:

Минеральные вещества

Эти вещества входят в состав тканей и участвуют в их нормальном функционировании, поддерживают необходимое осмотическое давление в биологических жидкостях и постоянство кислотно-щелочного баланса в организме. Рассмотрим основные минеральные вещества.

Калий входит в состав клеток, а натрий содержится в межклеточной жидкости. Для нормальной жизнедеятельности организма необходимо строго определенное соотношение натрия и калия. Оно обеспечивает нормальную возбудимость мышечной и нервной тканей. Натрий участвует в поддержании постоянного осмотического давления, а калий влияет на сократительную функцию сердца.

Как избыток, так и недостаток калия в организме может привести к нарушениям в работе сердечно-сосудистой системы.

Калий присутствует в разной концентрации во всех жидкостях тела, помогает поддерживать водно-солевой баланс. Богатыми натуральными источниками калия являются бананы, абрикосы, авокадо, картофель, молочные продукты, цитрусовые.

Кальций входит в состав костей. Его ионы участвуют в нормальной деятельности скелетных мышц и мозга. Наличие кальция в организме способствует свертыванию крови. Избыточное количество кальция повышает частоту сокращений сердечной мышцы, а в очень больших концентрациях может вызвать остановку сердца. Лучшим источником кальция являются молочные продукты, кальцием также богата капуста брокколи и лососевые виды рыбы.

Фосфор входит в состав клеток и межклеточных тканей. Он участвует в процессе обмене жиров, белков, углеводов и витаминов. Соли фосфора играют важную роль в поддержании кислотно-щелочного баланса крови, укреплении мышц, костей и зубов. Фосфором богаты бобовые культуры, миндаль, птица и в особенности рыба.

Хлор входит в состав соляной кислоты желудочного сока и находится в организме в соединении с натрием. Хлор необходим для жизнедеятельности всех клеток организма.

Железо является составной частью некоторых ферментов и гемоглобина. Оно участвует в распределении кислорода и способствует окислительным процессам. Достаточное количество железа в организме предотвращает развитие анемии и снижение иммунитета, ухудшение работоспособности головного мозга. Натуральным источником железа являются зеленые яблоки, жирная рыба, абрикосы, горох, чечевица, инжир, морепродукты, мясо, птица.

Бром содержится в крови и других жидких сферах организма. Он усиливает процессы торможения в коре головного мозга и этим способствует нормальному соотношению между тормозными и возбудительными процессами.

Йод входит в состав гормонов, вырабатываемых щитовидной железой. Недостаток йода может вызывать нарушение многих функций организма. Источником йода являются йодированная соль, морская рыба, водоросли и другие морепродукты.

Сера входит в состав белков. Она содержится в гормонах, ферментах, витаминах и других соединениях, которые участвуют в обменных процессах. Серная кислота нейтрализует вредные вещества в печени. Достаточное присутствие серы в организме понижает уровень холестерина, предотвращает развитие опухолевых клеток. Серой богаты луковые культуры, зеленый чай, гранаты, яблоки, различные виды ягод.

Для нормального функционирования организма важны цинк, магний, алюминий, кобальт и марганец. Они входят в состав клеток в незначительных количествах, поэтому их называют микроэлементами.

Магний – металл, участвующий в биохимических реакциях. Он необходим для сокращения мышц и работы ферментов. Этот микроэлемент укрепляет костную ткань, регулирует сердечный ритм. Источником магния являются авокадо, коричневый рис, пророщенная пшеница, семена подсолнечника, амарант.

Марганец – микроэлемент, необходимый для образования костных и соединительных тканей, работы ферментов, участвующих в углеводном обмене. Марганцем богаты ананасы, ежевика, малина.

Витамины

Витамины – это биологически активные органические вещества, играющие важную роль в обмене веществ. Одни витамины содержатся в составе ферментов, обеспечивающих протекание биологических реакций, другие находятся в тесной связи с железами внутренней секреции.

Витамины поддерживают иммунитет и обеспечивают высокую работоспособность организма. Недостаток витаминов вызывает нарушения в нормальном функционировании организма, которые называют авитаминозами. Потребность организма в витаминах значительно увеличивается при повышении атмосферного давления и температуры окружающей среды, а также при физических нагрузках и некоторых заболеваниях.

В настоящее время известно около 30 разновидностей витаминов. Витамины делятся на две категории: жирорастворимые и водорастворимые . Жирорастворимыми витаминами являются витамины A, D, Е, К. Они имеются в жировых отложениях организма и не всегда требуют регулярного поступления извне, при недостатке организм берет их из своих ресурсов. Излишнее количество этих витаминов может быть токсичным для организма.

Водорастворимыми витаминами являются витамины группы В, фолиевая кислота, биотин, пантотеновая кислота. В связи с малой растворимостью в жирах эти витамины с трудом проникают в жировые ткани и не накапливаются в организме, кроме витамина В12, накапливающегося в печени. Избыток водорастворимых витаминов выводится с мочой, поэтому они малотоксичны и их можно принимать в довольно большом количестве. Передозировка иногда приводит к аллергическим реакциям.

Для спортсменов витамины являются особенно важными веществами по целому ряду причин.

  • Во-первых, витамины напрямую участвуют в процессах развития, работы и роста мышечной ткани, синтезе белка и обеспечении целостности клеток.
  • Во-вторых, при активных физических нагрузках многие полезные вещества затрачиваются в большом количестве, поэтому возникает повышенная потребность в витаминах во время тренировок и соревнований.
  • В-третьих, специальные витаминные добавки и натуральные витамины усиливают рост и увеличивают работоспособность мышц.

Наиболее важные витамины для спорта

Витамин Е (токоферол). Способствует нормальной репродуктивной деятельности организма. Недостаток витамина Е может привести к необратимым изменениям в мускулатуре, что недопустимо для спортсменов. Этот витамин является антиоксидантом, защищающим поврежденные клеточные мембраны и снижающим количество свободных радикалов в организме, накопление которых ведет к изменениям состава клеток.

Витамином Е богаты растительные масла, зародыши злаковых растений (ржи, пшеницы), зеленые овощи. Следует отметить, что витамин Е повышает усваиваемость и устойчивость витамина А. Токсичность витамина Е достаточно низка, однако при передозировке могут возникнуть побочные эффекты – кожные заболевания, неблагоприятные изменения в половой сфере. Витамин Е следует принимать вместе с небольшим количеством жиросодержащей пищи.

Витамин Н (биотин). Участвует в репродуктивных процессах организма и влияет на жировой обмен и нормальное функционирование кожного покрова. Биотин принимает важнейшее участие в синтезе аминокислот. Следует знать, что биотин нейтрализуется авидином, содержащимся в сыром яичном белке. При чрезмерном употреблении сырых или недоваренных яиц спортсмены могут испытывать проблемы с ростом костной и мышечной ткани. Источником биотина являются дрожжи, яичный желток, печень, зерновые и бобовые культуры.

Витамин С (аскорбиновая кислота). Содержится в ферментах, катализаторах. Участвует в окислительно-восстановительных реакциях, обменных процессах углеводов и белков. При недостатке витамина С в пище человек может заболеть цингой. Следует отметить, что в большинстве случаев это заболевание приводит спортсменов к профнепригодности. Его характерные симптомы – быстрая утомляемость, кровоточивость и разрыхление десен, выпадение зубов, кровоизлияния в мышцы, суставы и кожу.

Витамин С повышает иммунитет. Он является отличным антиокислителем, защищающим клетки от свободных радикалов, ускоряет процесс регенерации клеток. Кроме того, аскорбиновая кислота принимает участие в образовании коллагена, являющегося основным материалом соединительных тканей, поэтому достаточное содержание в организме этого витамина снижает травматизм при повышенных силовых нагрузках.

Витамин С способствует лучшему усвоению железа, необходимого для синтеза гемоглобина, а также участвует в процессе синтеза тестостерона. Витамин С имеет самую большую растворимость в воде, поэтому быстро распределяется по жидкостям в организме, вследствие чего его концентрация снижается. Чем больше масса тела, тем ниже содержание витамина в организме при той же норме потребления.

У спортсменов, наращивающих или участвующих в силовых видах спорта, потребность в аскорбиновой кислоте повышена и увеличивается при интенсивных тренировках. Организм не способен синтезировать этот витамин и получает его с растительной пищей.

Ежедневное употребление аскорбиновой кислоты необходимо для поддержания естественного баланса веществ в организме, при этом в стрессовых ситуациях норма витамина С увеличивается в 2, а во время беременности – в 3 раза.

Аскорбиновой кислотой богаты ягоды черной смородины и шиповника, цитрусовые, болгарский перец, брокколи, дыни, томаты и многие другие овощи и фрукты.

Передозировка витамина С может привести к аллергическим реакциям, зуду и раздражению кожи, огромные дозы способны стимулировать развитие опухолей.

Витамин А . Обеспечивает нормальное состояние эпителиальных покровов тела и необходим для роста и размножения клеток. Этот витамин синтезируется из каротина. При недостатке в организме витамина А резко снижается иммунитет, слизистые оболочки и кожные покровы становятся сухими. Витамин А имеет большое значение для зрения и нормальной половой функции.

При отсутствии этого витамина у девушек задерживается половое развитие, а у мужчин прекращается выработка семени. Для спортсменов особое значение имеет то, что витамин А активно участвует в синтезе белков, являющимся основополагающим для роста мышц. Кроме того, этот витамин участвует в накоплении организмом гликогена – главного хранилища энергии.

В для спортсменов обычно включается достаточно небольшое количество витамина А. Однако высокие физические нагрузки не способствуют накоплению витамина А. Поэтому перед ответственными соревнованиями следует употреблять больше продуктов, содержащих этот витамин.

Основным его источником являются овощи и некоторые фрукты, окрашенные в красный и оранжевый цвета: морковь, абрикосы, тыква, а также сладкий картофель, молочные продукты, печень, рыбий жир, желтки яиц.

Следует соблюдать большую осторожность при повышении доз витамина А, так как их превышение опасно и приводит к тяжелым заболеваниям – желтухе, общей слабости, отслаиванию кожи. Этот витамин растворим в жирах и поэтому усваивается организмом только вместе с приемом жирной пищи. При употреблении сырой моркови рекомендуется заправлять ее растительным маслом.

Витамины группы В . К ним относятся витамины В1 (тиамин), В2 (рибофлавин), В6, В12, ВЗ (никотиновая кислота), пантотеновая кислота и другие.

Витамин В1 (тиамин) участвует в обмене белков, жиров и углеводов. Нервная ткань наиболее чувствительна к недостатку тиамина. При его нехватке в ней резко нарушаются обменные процессы. При отсутствии в пище тиамина может развиться тяжелое заболевание бери-бери. Оно проявляется в нарушениях обмена веществ и нарушении нормального
функционирования организма.

Недостаток витамина В1 вызывает слабость, нарушение пищеварения и расстройства нервной системы и сердечной деятельности. Тиамин участвует в процессе синтеза белка и росте клеток. Эффективен при наращивании мышц.

Витамин В1 участвует в образовании гемоглобина, важного для обогащения мышц кислородом в период активных тренировок. Кроме того, этот витамин в целом повышает производительность, регулирует затраты энергии. Чем интенсивнее тренировки, тем большее количество тиамина требуется.

Тиамин не синтезируется в организме, а поступает с растительной пищей. Им особенно богаты дрожжи и отруби, мясные субпродукты, бобовые и зерновые культуры.

Витамин В2 (рибофлавин). Содержится во всех клетках организма и является катализатором окислительно-восстановительных реакций. При нехватке рибофлавина наблюдается понижение температуры, слабость, нарушение функций желудочно-кишечного тракта и поражение слизистых оболочек. Рибофлавин участвует в важнейших процессах выделения энергии: метаболизме глюкозы, окислении жирных кислот, усвоении водорода, метаболизме белков.

Между массой тела без жира и количеством рибофлавина в пище существует прямая зависимость. Для женщин потребность в витамине В2 выше, чем у мужчин. Этот витамин увеличивает возбудимость мышечной ткани. Натуральным источником рибофлавина являются печень, дрожжи, зерновые культуры, мясо и молочные продукты.

Дефицит пантотеновой кислоты может вызвать дисфункцию печени, а недостаточное количество фолиевой кислоты – малокровие.

Витамин B3 (никотиновая кислота). Играет важную роль в синтезе жиров и белков и влияет на рост организма, состояние кожных покровов и работу нервной системы. Содержится в ферментах, катализирующих окислительно-восстановительные процессы в тканях. Обеспечение организма достаточным количеством этого витамина улучшает питание мышц в ходе тренировки.

Никотиновая кислота вызывает сжатие сосудов, что помогает культуристам выглядеть на соревнованиях более мускулистыми, однако надо учитывать, что большие дозы этой кислоты снижают работоспособность и замедляют сжигание жира.

Витамин ВЗ поступает в организм вместе с пищей. Он особенно требуется организму при заболеваниях печени, сердца, легких формах диабета и язвенной болезни. Недостаток витамина может привести к заболеванию пеллагрой, которая характеризуется поражением кожного покрова и расстройствами деятельности желудочно-кишечного тракта.

Большое количество никотиновой кислоты содержат дрожжи и отруби, мясо тунца, печень, молоко, яйца, грибы.

Витамин В4 (холин). Входит в состав лецитина, который участвует в построении клеточных мембран и образовании плазмы крови. Обладает липотропным действием. Источниками витамина В4 являются мясо, рыба, соя, яичные желтки.

Витамин В6 (пиридоксин). Содержится в ферментах, участвующих в расщеплении аминокислот. Этот витамин участвует в белковом обмене и влияет на уровень гемоглобина в крови. Пиридоксин необходим спортсменам в повышенных дозах, так как способствует росту мышечной ткани и увеличению работоспособности. Источником витамина В6 являются мясо молодой птицы, рыба, мясные субпродукты, свинина, яйца, недробленый рис.

Витамин В9 (фолиевая кислота). Стимулирует и регулирует процесс кроветворения, предотвращает малокровие. Участвует в синтезе генетического состава клеток, синтезе аминокислот, кроветворении. Витамин должен присутствовать в рационе при беременности и интенсивных физических нагрузках. Естественным источником фолиевой кислоты являются листовые овощи (салат, шпинат, пекинская капуста), фрукты, бобовые культуры.

Витамин В12 . Повышает аппетит и устраняет желудочно-кишечные расстройства. При его недостатке снижается уровень гемоглобина в крови. Витамин В12 участвует в обмене веществ, в процессах кроветворения и нормальной деятельности нервной системы. Не синтезируется, в организм поступает с пищей.

Витамином В12 богаты печень и почки. Содержится только в пище животного происхождения, поэтому спортсменам, придерживающимся безжировой или вегетарианской диеты, следует обратиться к врачу по поводу включения в рацион этого витамина в виде различных препаратов. Недостаток витамина В12 приводит к пернициозной анемии, сопровоодающейся нарушением кроветворения.

Витамин В13 (оротовая кислота). Обладает повышенными анаболическими свойствами, стимулирует обмен белков. Принимает участие в синтезе нуклеиновых кислот. Входит в состав поливитаминных препаратов, естественным источником являются дрожжи.

Витамин D очень важен для усвоения организмом кальция и фосфора. Этот витамин содержит большое количество жира, поэтому многие спортсмены избегают его применения, что приводит к нарушениям в костной ткани. Витамином D богаты молочные продукты, масло, яйца, он образуется в кожном покрове при облучении солнечным светом. Данное вещество стимулирует рост организма, участвует в углеводном обмене.

Недостаток витамина D приводит к нарушению функций двигательного аппарата, деформации костей и работы органов дыхания. Регулярное включение в рацион продуктов и препаратов, содержащих этот витамин, способствует быстрому восстановлению организма после многодневных соревнований и повышенных физических нагрузок, лучшему заживлению травм, увеличению выносливости, а также хорошему самочувствию спортсменов. При передозировке витамина D наступает токсическая реакция, а также увеличивается вероятность развития опухолей.

Фрукты и овощи не содержат этого витамина, но в них содержатся стеролы провитамина D, которые под действием солнечных лучей превращаются в витамин D.

Витамин К . Регулирует свертываемость крови. Его рекомендуется принимать при тяжелых нагрузках, опасностях микротравм. Снижает кровопотери при менструациях, кровоизлияниях, травмах. Витамин К синтезируется в тканях и при избыточном содержании может вызвать образование тромбов. Источником этого витамина являются зеленные культуры.

Витамин В15 . Стимулирует окислительные процессы в клетках.

Витамин Р . При его недостатке нарушается прочность капилляров, увеличивается их проницаемость. Это приводит к усиленному кровотечению.

Пантотеновая кислота . Способствует нормальному протеканию в организме многих химических реакций. При ее недостатке уменьшается вес, развивается малокровие, нарушаются функции некоторых желез, происходит задержка в росте.

Так как потребности спортсменов в витаминах весьма различны, а в естественном виде потребление их не всегда возможно, хорошим выходом является употребление препаратов, в которые в дозированной форме входит большое количество витаминов, микро- и макроэлементов.

Разрушение биологически активных веществ

Все биологически активные вещества способны разрушаться. Разрушению способствуют не только естественные процессы, но и неправильное употребление, хранение и применение продуктов, содержащих биологически активные вещества.

Вся жизнедеятельность организма стоит на трех китах – саморегуляции, самообновлении и самовоспроизведении. В процессе взаимодействия с меняющейся средой организм вступает с ней в сложные отношения и постоянно приспосабливается к изменяющимся условиям. Это и есть саморегуляция, немаловажная роль в обеспечении которой принадлежит биологически активным веществам.

Основные биологические понятия

Под саморегуляцией в биологии понимают способность организма поддерживать динамический гомеостаз.

Гомеостаз – это относительное постоянство состава и функций организма на всех уровнях организации – клеточном, органном, системном, организменном. И именно на последнем поддержание гомеостаза обеспечивается биологически активными веществами регуляторных систем. А в организме человека этим занимаются следующие системы - нервная, эндокринная и иммунная.

Биологически активные вещества, выделяемые организмом, это вещества, способные в малых дозах изменять скорость обменных процессов, регулировать метаболизм, синхронизировать работу всех систем организма, а также влиять на особей противоположного пола.

Многоуровневая регуляция – разнообразие агентов влияния

Биологически активными веществами могут считаться абсолютно все соединения и элементы, которые встречаются в организме человека. И хотя все они обладают специфической активностью, выполняя или влияя на каталитические (витамины и ферменты), энергетические (углеводы и липиды), пластические (белки, углеводы и липиды), регуляторные (гормоны и пептиды) функции организма. Все они делятся на экзогенные и эндогенные. Экзогенные биологически активные вещества поступают в организм извне и различными путями, а эндогенными считаются все элементы и вещества, что входят в состав организма. Остановим свое внимание на некоторых важных для жизнедеятельности нашего организма веществах, дадим краткую их характеристику.


Главные – гормоны

Биологически активные вещества гуморальной регуляции организма – гормоны, которые синтезируются железами внутренней и смешанной секреции. Главные их свойства заключаются в следующем:

  1. Действуют на расстоянии от места образования.
  2. Каждый гормон строго специфичен.
  3. Быстро синтезируются и быстро инактивируются.
  4. Эффект достигается при очень малых дозах.
  5. Выполняют роль промежуточного звена в нервной регуляции.

Секреция биологически активных веществ (гормонов) обеспечивается эндокринной системой человека, в которую входят железы внутренней секреции (гипофиз, эпифиз, щитовидка, паращитовидные, вилочковая, надпочечные) и смешанной секреции (поджелудочная и половые железы). Каждая железа выделяет собственные гормоны, которые обладают всеми перечисленными свойствами, работают по принципам взаимодействия, иерархичности, обратной связи, взаимосвязи с внешней средой. Все они становятся биологически активными веществами крови человека, ведь только таким способом они доставляются к агентам взаимодействия.

Механизм воздействия

Биологически активные вещества желез включаются в биохимию жизненных процессов и воздействуют на специфические клетки или органы (мишени). Они могут быть белковой природы (соматотропин, инсулин, глюкагон), стероидными (половые и гормоны надпочечников), быть производными аминокислот (тироксин, трийодтиронин, норадреналин, адреналин). Биологически активные вещества желез внутренней и смешанной секреции обеспечивают контроль за этапами индивидуального эмбрионального и постэмбрионального развития. Их недостаток или избыток приводит к нарушениям различной степени тяжести. Например, недостаток биологически активного вещества железы внутренней секреции гипофиза (гормона роста) приводит к развитию карликовости, а его избыток в детском возрасте - к гигантизму.


Витамины

Существование этих низкомолекулярных органических биологически активных веществ открыл российский врач М.И. Лунин (1854-1937). Это вещества, не выполняющие пластических функций и не синтезируемые (или синтезируемые в очень ограниченном количестве) в организме. Именно поэтому основным источником для их получения является пища. Как и гормоны, витамины проявляют свое действие в малых дозах и обеспечивают протекание процессов метаболизма.

По своему химическому составу и воздействию на организм витамины очень разнообразны. В нашем организме только витамины группы В и К синтезируются бактериальной микрофлорой кишечника, а витамин D синтезируется клетками кожи под воздействием ультрафиолета. Все остальные мы получаем с пищей.

В зависимости от обеспеченности организма этими веществами, выделяют следующие патологические состояния: авитаминозы (полное отсутствие какого-либо витамина), гиповитаминозы (частичный дефицит) и гипервитаминозы (переизбыток витамина, чаще – А, D, С).


Микроэлементы

В состав нашего организма входит 81 элемент периодической таблицы из 92. Все они важны, но некоторые необходимы нам в микроскопических дозах. Эти микроэлементы (Fe, I, Cu, Cr, Mo, Zn, Co, V, Se, Mn, As, F, Si, Li, B и Br) долго оставались загадкой для ученых. Сегодня их роль (как усилителей мощности ферментной системы, катализаторов обменных процессов и строительных элементов биологически активных веществ организма) не вызывает сомнений. Дефицит микроэлемента в организме приводит к образованию ущербных ферментов и нарушению их функций. Например, дефицит цинка приводит к нарушениям в транспортировке углекислоты и к нарушению работы всей сосудистой системы, развитию гипертонии.

И примеров можно приводить множество, а в целом дефицит одного или нескольких микроэлементов приводит к задержкам развития и роста, нарушениям кроветворения и работы иммунной системы, разбалансировке регуляторных функций организма. И даже к преждевременному старению.


Органические и активные

Среди множества органических соединений, которые играют важнейшую роль в нашем организме, выделим следующие:

  1. Аминокислоты, которых в организме синтезируется двенадцать из двадцати одной.
  2. Углеводы. Особенно глюкоза, без которой мозг не может правильно работать.
  3. Органические кислоты. Антиоксиданты – аскорбиновая и янтарная, антисептическая бензойная, улучшитель работы сердца – олеиновая.
  4. Жирные кислоты. Всем известные Омега-3 и 5.
  5. Фитонциды, которые содержатся в растительной пище и обладают способностями к уничтожению бактерий, микроорганизмов и грибков.
  6. Флавоноиды (фенольные соединения) и алкалоиды (азотосодержащие вещества) природного происхождения.

Ферменты и нуклеиновые кислоты

Среди биологически активных веществ крови следует выделить еще две группы органических соединений – это ферментные комплексы и аденозинтрифосфорные нуклеиновые кислоты (АТФ).

АТФ является универсальной энергетической валютой организма. Все обменные процессы в клетках нашего тела протекают с участием этих молекул. Кроме того, активный транспорт веществ через клеточные мембраны невозможен без этой энергетической составляющей.

Ферменты (как биологические катализаторы всех процессов жизнедеятельности) также являются биологически активными и необходимыми. Достаточно сказать, что гемоглобин эритроцитов не может обойтись без специфических ферментных комплексов и аденозинтрифосфорной нуклеиновой кислоты как при фиксации кислорода, так и при его отдаче.


Волшебные феромоны

Одними из самых загадочных биологически активных образований являются афродизиаки, главная цель которых - установление коммуникации и сексуального влечения. У человека эти вещества выделяются в области носа и губных складок, груди, в анальной и генитальной областях, подмышечных впадинах. Они работают в минимальных количествах и при этом не осознаются на сознательном уровне. Причина тому – они попадают в вомероназальный орган (расположен в носовой полости), у которого прямая нервная связь с глубинными структурами головного мозга (гипоталамусом и таламусом). Кроме привлечения партнера, последние исследования доказывают, что именно эти летучие образования ответственны за плодовитость, инстинкты заботы о потомстве, зрелости и прочности брачных связей, агрессивности или покорности. Мужской феромон андростерон и женский копулин быстро разрушаются в воздухе и работают только при близких контактах. Именно поэтому не стоит особо доверять косметологическим производителям, которые активно эксплуатируют тему афродизиаков в своей продукции.


Несколько слов о БАДах

Сегодня не найти человека, который не слышал бы о биологически активных добавках (БАД). Фактически это комплексы биологически активных веществ различного состава, не являющиеся лекарственными средствами. Биологически активные добавки могут быть фармацевтическим продуктом – диетическими добавками, витаминными комплексами. Или же продуктами питания, дополнительно обогащенными активными компонентами, не содержащимися в данном продукте.

Мировой рынок биологически активных добавок сегодня огромен, но и россияне не отстают. Некоторые опросы показали, что этот продукт принимает каждый четвертый житель России. При этом 60 % потребителей используют его как дополнение к пище, 16 % - как источники витаминов и микроэлементов, а 5 % уверены, что биологически активные добавки являются лекарственными средствами. Кроме того, зарегистрированы и случаи, когда под видом биологически активных добавок как спортивного питания и средств для снижения веса продавались добавки, в которых были обнаружены психотропные вещества и наркотические средства.


Можно быть сторонником или противником приема данного продукта. Мировое мнение изобилует различными данными по этому вопросу. В любом случае здоровый образ жизни и разнообразное сбалансированное питание не повредит вашему организму, избавит от сомнений в отношении приема тех или иных пищевых добавок.

Биологически активные вещества лекарственных растений

1. Классификация биологически активных веществ

Растения

Органические вещества

Минеральные вещества

Вещества первичного биосинтеза

Вещества вторичного биосинтеза

Минеральные соли

Алкалоиды

Микроэлементы

Гликозиды

Углеводы

Сапонины

Органические кислоты

Дубильные вещества

Флаваноиды

Эфирные масла

Растительные гормоны

Витамины

Биологически активные вещества – это такие вещества, которые оказывают влияние на биологические процессы в организме человека и животных.

Они могут быть продуктами первичного (витамины, жиры, углеводы, белки) и вторичного биосинтеза (алкалоиды, гликозиды, дубильные вещества).

В растениях всегда содержится комплекс биологически активных веществ, но терапевтическим и профилактическим действием обладает одно или несколько. Их называют Действующими веществами и используют при производстве лекарственных препаратов.

В растениях также содержаться так называемые Сопутствующие вещества . Это условное название продуктов первичного и вторичного синтеза в растениях (ментол, папаверин, танин). Некоторые сопутствующие вещества позитивно влияют на организм человека, так как дополняют действие основного действующего вещества. Например, витамины, минеральные вещества, флаваноиды усиливают всасываемость действующих веществ, усиливают полезное действие или ослабляют вредное действие сильнодействующих соединений. Наряду с полезными сопутствующими веществами в растениях содержаться и вредные, которые необходимо удалять. Например, в семенах клещевины, кроме касторового масла содержится и вещество ядовитое вещество рицин, которое можно разрушить при термической обработке. В коре крушины содержатся окисленные гликозиды, которые оказывают лечебное действие, и неокисленные, которые вызывают боль в желудке и рвоту. Удалить эти вещества можно при термической обработке или при хранении в течение одного года.

Наряду с сопутствующими веществами выделяют группу Балластных веществ (фармакологически индифферентные). К ним в основном относятся продукты первичного синтеза. Понятие балластные – условное, так как и эти вещества влияют на организм человека и животного. Например, клетчатка стимулирует перистальтику кишечника, нормализует холестериновый обмен, усиливает выделение желудочного сока. Если эти вещества используют в медицине и фармации, то их относят к основным.

Все биохимические процессы в растении происходят в водной среде. Содержание воды в лекарственных растениях составляет 50-90%. Большая часть ее – в свободном состоянии, примерно 5% - в связанном. Поэтому растения сравнительно легко высыхают.

Все вещества растений можно разделить на две группы: минеральные и органические. Минеральные делятся на микроэлементы и макроэлементы.

2. Алкалоиды

Это сложные азотсодержащие соединения щелочного характера, которые вырабатываются в организме растений. Они могут быть кислородсодержащие (твердые) и безкислородные (жидкие). В растениях содержатся в форме солей блочной, щавелевой, лимонной, винной и других кислот. Алкалоиды есть во всех частях растения, но распределены неравномерно: у одних растений – в плодах, у других – в коре и корнях. Содержание алкалоидов зависит от экологических условий, биологических особенностей растения и стадии его развития.

Алкалоиды добывают из растений методом экстракции, одновременно с этим из сырья поступают дубильные вещества, слизи, смолы. Алкалоиды относятся к сильнодействующим веществам широкого спектра действия. Некоторые из них отличаются малой токсичностью и избирательным действием, так как в организме животных разлагаются на производные, сходные с присущими для их биосинтеза. Например, алкалоиды группы кофеина (производные пурина) распадаются в организме на гипоксантин, ксантин и мочевинную кислоту. В организме животных подобный распад есть в белковом обмене. Поэтому токсичность низкая.

Сами алкалоиды в воде не растворяются, но их соли растворяются хорошо. Содержание их в растениях от следовых количеств до 2-3% в сухом продукте (в хинной коре до 16%). Большинство растений содержит несоколько разных алкалоидов, например в маке снотворном и чистотеле их по 26. Образование алкалоидов присуще для растений из семейств маковых, лютиковых, пасленовых, бобовых.

Самые известные алкалоиды: морфин – в головках мака снотворного, атропин – белладонна обыкновенная, никотин – в листьях табака. К этой группе относят и некоторые стимуляторы нервной системы – производные ксантина – кофеин – в семенах кофейного дерева, колы и какао, листьях чайного куста; теобромин – в семенах какао, теофилин – в чайных листьях.

Лекарства, сделанные на основе алкалоидов, оказывают сложное и многостороннее действие на организм. Они активизируют деление клеток, повышают артериальное давление, усиливают общий обмен веществ, улучшают секрецию пищеварительных желез.

Из алкалоидных растений чаще всего используют мак снотворный, чистотел большой, барбарис обыкновенный, головатень круглоголовый, головня ржи, листья чая, корень раувольфии обыкновенной, семена ореха рвотного.

3. Гликозиды

Состоят из соединений глюкозы или других сахаров с разными веществами. Гликозиды легко распадаются на углеродную часть – гликон и одну или несколько несахаристых соединений – агликоны или генины. Агликоны гликозидов по химическому строению бывают алифатическими, ароматическими, гетероциклическими соединениями.

Лекарственными свойствами обладают агликоны. Но в чистом виде они плохо растворяются в воде и из-за этого плохо всасываются желудочным трактом и усваиваются. В то же время, гликозиды легко растворяются и всасываются и поэтому более активны.

К алкалоидам относятся: альдегиды, алкалоиды, спирты, терпены, флавоны, органические кислоты. Распад гликозидов происходит при кипячении в воде, нагревании с разведенными кислотами или основаниями, а также под действием ферментов – гликозидаз. Гликозиды – преимущественно кристаллические, реже – аморфные вещества, хорошо растворяющиеся в воде, спирте, горькие на вкус. Из растений их экстрагируют водой или этанолом низкой концентрации.

В зависимости от химической природы гликозиды подразделяют на три группы:

1. О-гикозиды, агликоны которых не содержат азота (гликозиды группы наперстянки), наиболее часто встречающиеся в природе

2. N-гликозиды, в составе агликонов которых есть азот (нитрилгликозиды, циангликозиды - амигдалин)

Амигдалин образуется в семенах косточковых фруктовых пород (абрикос, вишня, миндаль, слива, персик, терн и другие), а также при экстремальных условиях (вытаптывание, градобой, ливень) в сорго обыкновенном, суданской траве, клевере полевом и ползучем, льне полевом. Амигдалин, расщепляясь образует синильную кислоту (сильный яд).

3. S-гликозиды, агликоны которых содержат азот и серу (тиогликозиды, горчичные гликозиды)

В медицине используют такие основные группы этих соединений:

А) фенилгликозиды, которые в агликоне содержат фенильный радикал (одноатомные и многоатомные фенолы);

Б) антрагликозиды, в составе которых есть проиводное антрахинона (выделены из крушины, ревеня, алоэ)

В) флавоновые гликозиды, агликон которых – производное флавона (рутин, катехин)

Г) стероидные гликозиды или сердечные (О-гликозиды), в агликоне содержат стероидную группу и действуют на сердечную мышцу (гликозиды ландыша майского, горицвета весеннего, наперстянки).

Д) тиогликозиды – наименее распространенная группа среди растений. Они содержат серу, обнаружены в семенах растений семейства капустные.

По действию на организм выделяют такие гликозиды: сердечные, антрагликозиды, тиогликозиды, сапонины, горькие (несердечные) гликозиды.

1. Сердечные или стероидные гликозиды.

Химические соединения, действующие на сердечную мышцу, усиливая ее сокращение (кардиотоническое влияние). Некоторые из них успокаивающе действуют на центральную нервную систему. При передозировке могут вызвать летальный исход.

Химический состав их однотипный. Их агликоны являются производными циклопентано-пергидрофенантрена и принадлежат к классу стероидов.

Сердечные гликозиды уменьшают содержание ионов калия в клетках и повышают содержание ионов натрия и кальция, улучшают процесс проникновения сахаров через клеточную мембрану, активизируют клеточное дыхание, увеличивают общее содержание белков или увеличивают количество небелкового азота. Эта группа гликозидов нормализует ферментативные процессы углеводно-фосфорного обмена в сердечной мышце и облегчает усвоение ими АТФ.

Сердечные гликозиды содержат горицвет весенний, наперстянка, ландыш майский, строфант.

2. Антрагликозиды

Агликоны этой группы гликозидов представляют собой мономеры: антранолы, антроны, антрахиноны и их димеры. Они содержатся в алоэ, коре и плодах крушины ломкой, листьях и корнях ревеня. Содержание действующих веществ в алоэ древовидном не менее 18%, в листьях сены 2,5-3%, в коре крушины ломкой – до 7%, в корнях ревеня 2,6%. Экстракты и отвары смеси антрагликозидов проявляют более сильный эффект, чем выделенные в чистом виде. Оказывают синергическое действие по отношению к другим препаратам, и антагонистическое по отношению к дубильным веществам.

3. Триогликозиды.

Соединения, в состав агликонов которых входит сера, принимающая участие в освобождении сахаристого компонента. Эти соединения горькие, острые на вкус. Они возбуждают аппетит, способны раздражать слизистые оболочки и кожу, благодаря чему усиливают кровеоборот при внешнем применении, проявляют активное бактерицидное и бактериостатическое действие на патогенные группы микроорганизмов, вызывающих воспаление кожи, подкожной основы и мышц. В небольшом количестве возбуждают аппетит, усиливают кровеоборот.

4. Сапонины

Это гетерозидные соединения стероловых или тритерпеновых агликонов с разными сахарами (глюкоза, рамноза, арабиноза, галактоза), а также с глюкуроновой кислотой. Они содержаться в многих растениях, особенно из семейств первоцветных и гвоздичных, а в некоторых (мыльнянка аптечная, первоцвет весенний, остудник голый) накапливаются в значительном количестве. Сапонины хорошо растворяются в воде, образуя коллоидные растворы, а при вибрации – густую пену. Даже в очень концентрированных растворах они находятся в молекулярном или ионном состоянии. Характерная особенность сапонинов – их способность образовывать сложные соединения с определенными алкоголями и фенолами, особенно с холестерином. Такого типа соединения дают возможность сапонинам находиться в инертном состоянии, и лишь при разложении под действием высокой температуры их действие активизируется.

– стероидные сапонины принадлежат к группе природных гликозидов, которым свойственная высокая гемолитическая активность. Они обнаружены в растениях разных семейств, но главным образом, в растениях семейств диоскорейные, бобовые, лютиковые, лилейные. Стероидные сапонины обладают фунгицидным, противоопухолевым, цитостатическим действием. Они понижают артериальное давление, нормализируют сердечный ритм, делают дыхание более ровным и глубоким. Эти сапонины используются как производное сырье для синтеза стероидных гормонов.

– тритерпеновые сапонины в большинстве обладают гемолитическим действием. Они разрушают оболочку эритроцитов и освобождают гемоглобин. Сапонины имеют едкий горький вкус, раздражают слизистую оболочку глотки, желудка и кишечника, вызывают рвоту и усиливают бронхиальную секрецию. Их назначают при тяжелом легочном кашле для откашливания.

Сапонины разных растений обладают разным действием. Так сапонины солодки голой имеют эстрогенную активность, элеутерококка – повышают иммунитет, женьшеня – дают адаптогенный эффект.

Сапонины способствуют выделению желчи и ее разреженности, активизируют выделение желудочного и кишечного сока, сока поджелудочной железы.

Растительные препараты с содержанием сапонинов, принимаемые перорально, даже в небольших дозах раздражают нервные окончания слизистой желудка и вызывают тошноту. Одновременно вызывается раздражение дыхательного центра, углубляется и учащается дыхание. Образующаяся водянистая слизь облегчает кашель, а усиленное дыхание способствует удалению слизи из дыхательных путей.

Сапонины увеличивают проницаемость стенок слизистой оболочки пищеварительного канала и улучшают всасываемость солей кальция, железа, сердечных гликозидов. Эта их особенность имеет большое значение для усвоения витаминов или минеральных солей, содержащихся в томатах, фасоли и других плодах и овощах, в которых есть сапониновые гликозиды.

Сапонины, введенные парентерально (внутримышечно или подкожно) раздражают ткани, вызывают их воспаление, нагноение, некроз. Действуют как сильнейший протоплазматический яд. В первую очередь действие сапонинов проявляется на паренхиматозных органах. Значительно поражается капиллярная система печени, почек, сердечной мышцы, возникают кровеизлияния и деструктивные изменения в альвеолярной системе легких и тонкого кишечника.

Образуя комплексные соединения с холестерином и стероидными веществами, сапонины приводят к гемолизу, гемолитической анемии, тяжелых повреждений гемопоетической функции и костного мозга. Некоторые из них (токсические) чрезмерно усиливают гемолиз эритроцитов, а другие (малотоксичные), наоборот, замедляют этот процесс: соединяются с альбуминами крови в достаточно устойчивые комплексы.

Введенные внутримышечно в большом количестве, они сначала возбуждают, а потом поражают важные отделы головного и спинного мозга, дыхательный центр, сердечную мышцу.

Сапонинсодержащие растения используются в медицине как отхаркивающие средства при заболеваниях дыхательных путей, как мочегонные, общеукрепляющие, стимулирующие, тонизирующие лекарства. Значительную их часть применяется при лечении болезней сердечно-сосудистой системы, как седативные и противосклеротичные средства. Эффективны при лечении атеросклероза сосудов головного мозга, атеросклерозе совместно с гипертонической болезнью и злокачественными новообразованиями.

5. Горькие (несердечные) гликозиды

Очень горькие на вкус. В отличие от горьких алкалоидов и горьких сердечных гликозидов не опасны и применяются в медицинской практике для усиления секреторной функции желудка, лучшего усвоения пищи. К горьким гликозидам относятся абсинтин (из полыни горькой), аукубин (из вероники лекарственной), эритаурин (из золототысячника малого). Горькие гликозиды относят также к группе горечей.

6. Гликоалколоиды

В растениях образуются как «гибриды» между алкалоидами и гликозидами. Впервые был выделен гликоалкалоид из ягод паслена черного, который долгое время не находил применения в медицине. Долгое время для синтеза гормонов, и в частности кортизона, использовали кору надпочечников, что было экономически невыгодно. В 1935 году из них добывали 20 гормонов для медицины. Эти вещества применяют как мощный регулятор обмена веществ в организме.

Необходимо было найти растительный аналог для получения гормонов. Таким растением оказался паслен дольчатый, произрастающий в Австралии. В этом растении содержатся наиболее сложно синтезируемые молекулы соласодина для фармацевтической промышленности по производству гормональных препаратов.

Вещества (сокращено - БАВ) - это особые химические вещества, которые обладают при небольшой концентрации высокой активностью к определенным группам организмов (человек, растения, животные, грибы) или к определенным группам клеток. БАВ применяют в медицине и в качестве профилактики болезней, а также для поддержания полноценной жизнедеятельности.

Биологически активные вещества бывают:

1. Алкалоиды - азотсодержащие природы. Как правило, растительного происхождения. Обладают основными свойствами. Нерастворимы в воде, с кислотами образуют различные соли. Обладают хорошей физиологической активностью. В больших дозах - это сильнейшие яды, в малых - лекарства (медикаменты "Атропин", "Папаверин", "Эфедрин").

2. Витамины - особенная группа органических соединений, которые жизненно необходимы животным и человеку для хорошего метаболизма и полноценной жизнедеятельности. Многие из витаминов принимают участие в образовании нужных ферментов, тормозят или ускоряют активность определенных ферментных систем. Также витамины используются как к пище (входят в их состав). Некоторые витамины поступают в организм с пищей, другие образуются микробами в кишечнике, третьи - появляются в результате синтеза из жироподобных веществ под воздействием ультрафиолета. Недостаток витаминов может привести к различным нарушениям в обмене веществ. Болезнь, которая возникла в результате малого поступления витаминов в организм, называют авитаминозом. Недостаток - а чрезмерное количество - гипервитаминоз.

3. Гликозиды - соединения органической природы. Обладают самым разнообразным воздействием. Молекулы гликозидов состоят из двух важных частей: несахаристой (агликона или генина) и сахаристой (гликон). В медицине используют для лечения заболеваний сердца и сосудов, как противомикробное и отхаркивающее средство. Также гликозиды снимают усталость умственную и физическую, дезинфицируют мочевые пути, успокаивают ЦНС, улучшают пищеварение и повышают аппетит.

4. Гликолалкалоиды - биологически активные вещества, родственные гликозидам. Из них можно получить следующие лекарственные препараты: "Кортизон", "Гидрокортизон" и другие.

5. (другое название - таниды) способны осаждать белки, слизи, клеевые вещества, алкалоиды. По этой причины они несовместимы с этими веществами в лекарствах. С белками они образуют альбуминаты (противовоспалительное средство).

6. Масла жирные - это жирных кислот или спирта трехатомного. Некоторые жирные кислоты участвуют в выведение из организма холестерина.

7. Кумарины - это биологически активные вещества, в основе которых лежит изокумарин или кумарин. В эту же группу относят пиранокумарины и фурокумарины. Некоторые кумарины обладают спазмолитическим действием, другие проявляют капилляроукрепляющую активность. Также существуют кумарины противоглистного, мочегонного, курареподобного, противомикробного, обезболивающего и иного действия.

8. Микроэлементы, как и витамины, тоже добавляются в биологически активные пищевые добавки. Они входят в состав витаминов, гормонов, пигментов, ферментов, образуют химические соединения с белками, накапливаются в тканях и органах, в железах эндокринных. Для человека важны следующие микроэлементы: бор, никель, цинк, кобальт, молибден, свинец, фтор, селен, медь, марганец.

Существуют и другие биологически активные вещества: (бывают летучие и нелетучие), пектиновые вещества, пигменты (другое название - красящие вещества), стероиды, каротиноиды, флавоноиды, фитонциды, экдизоны, эфирные масла.

I . Введение.

К биологически активным веществам относятся: ферменты, витамины и гормоны . Это жизненно важные и необходимые соединения, каждое из которых выполняет незаменимую и очень важную роль в жизнедеятельности организма.

Переваривание и усвоение пищевых продуктов происходит при участии ферментов. Синтез и распад белков, нуклеиновых кислот, липидов, гормонов и других веществ в тканях организма представляет собой также совокупность ферментативных реакций. Впрочем, и любое функциональное проявление живого организма - дыхание, мышечное сокращение, нервно-психическая деятельность, размножение и т.д. - тоже непосредственно связаны с действием соответствующих ферментных систем. Иными словами, без ферментов нет жизни. Их значение для человеческого организма не ограничивается рамками нормальной физиологии. В основе многих заболеваний человека лежат нарушения ферментативных процессов.

Витамины могут быть отнесены к группе биологически активных соединений , оказывающих свое действие на обмен веществ в ничтожных концентрациях. Это органические соединения различной химической структуры, которые необходимы для нормального функционирования практически всех процессов в организме. Они повышают устойчивость организма к различным экстремальным факторам и инфекционным заболеваниям, способствуют обезвреживанию и выведению токсических веществ и т.д.

Гормоны - это продукты внутренней секреции, которые вырабатываются специальными железами или отдельными клетками, выделяются в кровь и разносятся по всему организму в норме вызывая определенный биологический эффект.

Сами гормоны непосредственно не влияют на какие-либо реакции клетки. Только связавшись с определенным, свойственным только ему рецептором вызывается определенная реакция.

Нередко гормонами называют и некоторые другие продукты обмена веществ, образующиеся во всех [напр. углекислота] или лишь в некоторых [напр. ацетилхолин] тканях, обладающие в большей или меньшей степени физиологической активностью и принимающие участие в регуляции функций организма животных Однако такое широкое толкование понятия " гормоны" лишает его всякой качественной специфичности. Термином " гормоны" следует обозначать только те активные продукты обмена веществ, которые образуются в специальных образованиях - железах внутренней секреции. Биологически активные вещества, образующиеся в других органах и тканях, принято называть " парагормонами","гистогормонами","биогенными стимуляторами".

Биологически активные продукты обмена веществ образуются и в растениях, но относить эти вещества к гормонам совершенно не правильно.

А теперь познакомимся с каждой группой веществ, входящей в состав биологически активных, отдельно.

II . Ферменты.

1.История открытия.

В основе всех жизненных процессов лежат тысячи химических реакций. Они идут в организме без применения высокой температуры и давления, т.е. в мягких условиях. Вещества, которые окисляются в клетках человека и животных, сгорают быстро и эффективно, обогащая организм энергией и строительным материалом. Но те же вещества могут годами храниться как в консервированном [изолированном от воздуха] виде, так и на воздухе в присутствии кислорода. Возможность быстрого переваривания продуктов в живом организме осуществляется благодаря присутствию в клетках особых биологических катализаторов - ферментов . Термин "фермент" (fermentum по-латыни означает "бродило", "закваска") был предложен голландским ученым Ван-Гельмонтом в начале XYII века. Так он назвал неизвестный агент, принимающий активное участие в процессе спиртового брожения.

Экспериментальное изучение ферментативных процессов началось в XYIII столетии, когда французский естествоиспытатель Р. Реомюр поставил опыты, чтобы выяснить механизм переваривания пищи в желудке хищных птиц. Он давал хищным птицам глотать кусочки мяса, заключенные в просверленную металлическую трубочку, которая была прикреплена к тонкой цепочке. Через несколько часов трубочку вытягивали из желудка птицы и выяснилось, что мясо частично растворилось. Поскольку оно находилось в трубочке и не могло подвергаться механическому измельчению, естественно было предположить, что на него воздействовал желудочный сок. Это предположение подтвердил итальянский естествоиспытатель Л. Спалланцани. В металлическую трубочку, которую заглатывали хищные птицы, Л.Спалланцани помещал кусочек губки. После извлечения трубки из губки выжимали желудочный сок. Затем нагревали мясо в этом соке, и оно полностью в нем " растворялось".

Значительно позже (1836г) Т. Шванн открыл в желудочном соке фермент пепсин (от греческого слова pepto - "варю") под влиянием которого и происходит переваривания мяса в желудке. Эти работы послужили началом изучения так называемых протеолитических ферментов.

Важным событием в развитии науки о ферментах явились работы К.С. Киргоффа. В 1814 г. действительный член Петербургской Академии наук К.С.Киргофф выяснил, что проросший ячмень способен превращать полисахарид крахмал в дисахарид мальтозу, а экстракт дрожжей расщеплял свекловичный сахар на моносахариды - глюкозу и фруктозу. Это были первые исследования в ферментологии. Хотя на практике применение ферментативных процессов было известно с незапамятных времен (сбраживание винограда, сыроварение и др.)

В разных изданиях применяются два понятия: "ферменты" и " энзимы". Эти названия идентичны. Они обозначают одно и тоже - биологические катализаторы . Первое слово переводится как "закваска" , второе - "в дрожжах".

Долгое время не представляли,что происходит в дрожжах, какая сила, присутствующая в них, заставляет вещества разрушаться и превращаться в более простые. Только после изобретения микроскопа было установлено, что дрожжи - это скопление большого количества микроорганизмов, которые используют сахар в качестве своего основного питательного вещества. Иными словами, каждая дрожжевая клетка "начинена" ферментами способными разлагать сахар. Но в то же время были известны и другие биологические катализаторы, не заключенные в живую клетку, а свободно "обитающие" вне ее. Например, они были найдены в составе желудочных соков, клеточных экстрактов. В связи с этим в прошлом различали два типа катализаторов: считалось, что собственно ферменты неотделимы от клетки и вне ее не могут функционировать, т.е. они "организованы". А "неорганизованные" катализаторы, которые могут работать вне клетки, называли энзимами. Такое противопоставление "живых" ферментов и "неживых" энзимов объяснялось влиянием виталистов, борьбой идеализма и материализма в естествознании. Точки зрения ученых разделились. Основоположник микробиологии Л. Пастер утверждал, что деятельность ферментов определяется жизнью клетки. Если клетку разрушить, то прекратиться и действие фермента. Химики во главе с Ю. Либихом развивали чисто химическую теорию брожения, доказывая, что активность ферментов не зависит от существования клетки.

В 1871 г. русский врач М.М. Манассеина разрушила дрожжевые клетки, растирая их речным песком. Клеточный сок, отделенный от остатков клеток, сохранял свою способность сбраживать сахар. Через четверть века немецкий ученый Э. Бухнер получил бесклеточный сок прессованием живых дрожжей под давлением до 5*10 Па. Этот сок, подобно живым дрожжам, сбраживал сахар с образованием спирта и оксида углерода (IV):

C6H12O6--->2C2H5OH + 2CO2

Работы А.Н. Лебедева по исследованию дрожжевых клеток и труды других ученых положили конец виталистическим представления в теории биологического катализа, а термины "фермент" и "энзим" стали применять как равнозначные.

2.Свойства ферментов.

Будучи белками, ферменты обладают всеми их свойствами. Вместе с тем биокатализаторы характеризуются рядом специфических качеств, тоже вытекающих из их белковой природы. Эти качества отличают ферменты от катализаторов обычного типа. Сюда относятся термолабильность ферментов, зависимость их действия от значения рН среды, специфичность и, наконец, подверженность влиянию активаторов и ингибиторов.

Термолабильность ферментов объясняется тем, что температура, с одной стороны, воздействует на белковую часть фермента, приводя при слишком высоких значениях к денатурации белка и снижению каталитической функции, а с другой стороны, оказывает влияние на скорость реакции образования фермент-субстратного комплекса и на все последующие этапы преобразования субстрата, что ведет к усилению катализа.

Зависимость каталитической активности фермента от температуры выражается типичной кривой. До некоторого значения температуры (в среднем до 5О°С) каталитическая активность растет, причем на каждые 10°С примерно в 2 раза повышается скорость преобразования субстрата. В то же время постепенно возрастает количество инактивированного фермента за счет денатурации его белковой части. При температуре выше 50°С денатурация ферментного белка резко усиливается и, хотя скорость реакций преобразования субстрата продолжает расти, активность фермента, выражающаяся количеством превращенного субстрата, падает.

Детальные исследования роста активности ферментов с повышением температуры, проведенные в последнее время, показали более сложный характер этой зависимости, чем указано выше: во многих случаях она не отвечает правилу удвоения активности на каждые 10°С в основном из-за постепенно нарастающих конформационных изменений в молекуле фермента.

Температура, при которой каталитическая активность фермента максимальна, называется его температурным оптимумом . Температурный оптимум для различных ферментов неодинаков. В общем для ферментов животного происхождения он лежит между 40 и 50°С, а растительного - между 50 и 60°С. Однако есть ферменты с более высоким температурным оптимумом, например, у папаина (фермент растительного происхождения, ускоряющий гидролиз белка) оптимум находится при 8О°С. В то же время у каталазы (фермент, ускоряющий распад Н2О2 до Н2О и О2) оптимальная температура действия находится между 0 и -10°С, а при более высоких температурах происходит энергичное окисление фермента и его инактивация.