Специальные методы лучевой диагностики. Лучевые методы диагностики

1. Периоды развития морфологии.

2. Диагностические и лечебные возможности морфологических методик.

3. Виды материала, подлежащего морфологическому исследованию.

4. Методика выполнения гистологического исследования.

5. Порядок проведения цитологического исследования.

6. Диагностические возможности иммуногистохимии в морфологии.

7. Возможности применения микробиологических методов в морфологических исследованиях.

8. Методы окраски гистологических препаратов.

9. Методы окраски цитологических препаратов.

10. Показания и противопоказания к бронхоскопии.

11. Современные возможности электронной микроскопии.

12. Исследование хромосом в морфологической диагностике.

13. Значение морфологических методов исследования в клинической диагностике заболеваний.

14. Биопсия. Виды и диагностическое значение.

15. Различия в выполнении планового и срочного гистологических исследований.

Лучевая диагностика

Лучевая диагностика - наука о применении излучений для исследования строения и функций нормальных и патологически измененных органов и систем человека с целью профилактики и распознавания заболеваний.

В состав лучевой диагностики входят рентгенодиагностика, радионуклидная диагностика, ультразвуковая диагностика и магнитно-резонансная визуализация, термография, СВЧ-термометрия, магнитно-резонансная спектрометрия. Еще одно очень важное направление лучевой диагностики - интервенционная радиология: выполнение инвазивных диагностических и лечебных вмешательств под контролем лучевых исследований.

Рентгенологический метод - это способ изучения строения и функции различных органов и систем, основанный на качественном и количественном анализе пучка рентгеновского излучения, прошедшего через тело человека.

При прохождении через тело человека пучок рентгеновского излучения ослабевает. Тело человека представляет собой неоднородную среду, поэтому в разных органах излучение поглощается в неодинаковой степени ввиду различной толщины, состава и плотности ткани. При равной толщине слоя излучение сильнее всего поглощается костной тканью, содержащей металл - кальций, почти в 2 раза меньшее количество его задерживается паренхиматозными органами, состоящими в основном из воды, и свободно проходит через газ, находящийся в легких, желудке, кишечнике. Чем сильнее исследуемый орган поглощает излучение, тем интенсивнее его тень на приемнике излучения, и наоборот, чем больше лучей пройдет через орган, тем прозрачнее будет его изображение. Таким образом, метод прекрасно подходит для исследования костей и газовых скоплений (пневмоторакса, пневмоперитонеума, раздутого кишечника, легких, газа в мягких тканях при анаэробной инфекции).

Рис 9. Газ под диафрагмой (пневмоперитонеум)

Рис 10. Уровень жидкости в абсцессе легкого

Рис 11. Газ в правой плевральной полости (пневмоторакс)

Рис 12. Жидкость в правой плевральной полости (гемоторакс)

Рис 13. Раздутые петли кишечника с уровнями жидкости

(кишечная непроходимость)

Различение мягких тканей и жидкостных образований (желчный пузырь, почки, мышцы, нераздутая кишка и т.д) рентгенологическим методом невозможно из-за отсутствия разницы в поглрщении излучения. Для того чтобы получить дифференцированное изображение тканей, примерно одинаково поглощающих излучение, применяют искусственное контрастирование. С этой целью в организм вводят вещества, которые поглощают рентгеновское излучение сильнее (препараты йода, сульфат бария) или, наоборот, слабее (газ), чем мягкие ткани, и тем самым создают достаточный контраст с исследуемыми органами. Эти вещества можно вводить в сосудистое русло для изучения сосудов, кровоснабжения органов, мочевыводящих путей, а можно также вводить их в просвет полых органов для изучения их структуры и функции.

Рис 14. Контрастирование мочевыводящих путей – экскреторная урография. Двухстороннее расширение лоханок и мочеточников.

Рис 15. Ретроградное контрастирование желчевыводящих путей при помощи дуоденоскопа. Конкременты в холедохе.

Рентгеноскопия - метод рентгенологического исследования, основанный на получении рентгеновского изображения на флюоресцентном экране или телевизионном экране рентгеновской установки.

Рентгеноскопия позволяет исследовать органы в процессе их функционирования, например дыхательные движения диафрагмы, сокращения сердца, перистальтику пищевода, желудка, кишечника, а также определять взаиморасположение анатомических структур, локализацию и смещаемость патологических образований. Данный метод позволяет визуализировать заполнение органов контрастным веществом в динамике. Кроме того, под контролем рентгеноскопии выполняют многие диагностические и лечебные манипуляции (пункции, катетеризацию бронхов и др.). Исследование проводят при различном положении пациента (вертикальном, горизонтальном и др.), а также при различном направлении пучка рентгеновского излучения.

Рентгеноскопию с помощью флюоресцентного экрана, обладающего малой яркостью свечения, проводят в затемненном кабинете. Для полной темновой адаптации зрения врач-рентгенолог прежде чем приступить к исследованию должен находиться в затемненном помещении не менее 15-20 мин, а после пребывания на ярком свету - до 30 мин.

Рентгеноскопия с применением телевизионной системы проводится на свету. Использование рентгенотелевизионного просвечивания значительно облегчает исследование, не требует темновой адаптации, сопровождается более низкой лучевой нагрузкой на больного и персонал, обеспечивает лучшее, чем на флюоресцентном экране, различение деталей изображения. Рентгенотелевидение позволяет также документировать ренгеноскопическое изображение с помощью записи.

Продолжительность облучения больного при рентгеноскопии должна быть максимально короткой, например при исследовании органов грудной клетки не превышать 2-4 мин, желудка - 5-6 мин. Снижение лучевой нагрузки во время рентгеноскопии достигают также путем диафрагмирования (сужения) и фильтрации пучка рентгеновского излучения.

Недостатками метода являются сравнительно высокая лучевая нагрузка на пациента и врача и низкая разрешающая способность метода.

Рентгенография - метод рентгенологического исследования, при котором получают фиксированное изображение исследуемого объекта (рентгенограмму). Преимущество рентгенографии заключается в более высоком качестве и детализации изображения, а также в возможности наблюдать по рентгенограммам за динамикой процесса. С помощью рентгенографии могут быть изучены практически все области тела человека. В одних случаях это происходит за счет естественной контрастности ряда органов и структур, вследствие чего можно получить рентгенограммы костей и суставов, сердца, легких, диафрагмы; в других случаях рентгенографию выполняют в условиях искусственного контрастирования, например при урографии, ангиографии.

Показания к рентгенографии весьма широки, но в каждом конкретном случае должны быть обоснованы, так как рентгенологическое исследование сопряжено с лучевой нагрузкой. Относительными противопоказаниями служат беременность, крайне тяжелое состояние или сильное возбуждение больного, а также острые состояния, при которых требуется экстренная хирургическая помощь (например, кровотечение из крупного сосуда, открытый пневмоторакс).

Специальных мер подготовки обычно не требуется. Рентгенографию выполняют с помощью рентгеновских аппаратов: стационарных или переносных.

Изображение может быть получено путем прямого воздействия рентгеновского излучения, прошедшего через исследуемый объект, на фотопленку, которую затем проявляют и фиксируют. Для уменьшения лучевой нагрузки на больного, а также с целью получения более качественного изображения рентгеновское излучение преобразуют в световое, для чего используют два люминесцентных усиливающих экрана, между которыми помещают кассету с фотопленкой.

Рентгенографию обычно проводят в двух взаимно перпендикулярных проекциях. Наряду с этим широко используют дополнительные и специальные проекции - косые, аксиальные, тангенциальные и др., что дает возможность изучать невидимые или плохо видимые объекты, осматривать объект со всех сторон, что важно в случае наложения одной структуры на другую.

Снимки, охватывающие часть тела (например, грудную клетку, брюшную полость), называют обзорными. На обзорных рентгенограммах могут быть выявлены повреждения костей и суставов, перфорации полого органа, патологического скопления газа и жидкости, отложения солей кальция и др. Прицельная рентгенограмма - изображение какой-либо части исследуемого органа или структуры, небольшого патологического объекта.

Рис 16. Перелом костей голени

Рис 17. Пневмония

За счет расхождения рентгеновских лучей отображение любой структуры на рентгенограмме несколько больше ее истинного размера. Степень увеличения тем больше, чем ближе исследуемый объект к рентгеновской трубке и чем дальше он находится от пленки, это используется для получения первично увеличенной рентгенограммы. Увеличительная рентгенография может быть эффективно использована для оценки небольших изменений структуры костей, суставов, при ангиографии и др. Для получения изображения органа или структуры, близкого по размерам к истинному, тело или его часть максимально приближают к кассете, а расстояние между кассетой и рентгеновской трубкой увеличивают.

С помощью современных рентгеновских установок, оснащенных ЭВМ, возможен перевод изображения в цифровую форму. Обработка данных в памяти компьютера позволяет складывать и вычитать диагностические изображения, рассчитывать периметры и площадь объектов, их плотность, измерять фон рентгенограммы.

Особой разновидностью рентгенографии является флюорография, в основе которой лежит фотографирование рентгеновского изображения с флюоресцентного экрана или с экрана электронно-оптического преобразователя.

Радионуклидный метод - это способ исследования функционального и морфологического состояния органов и систем с помощью радионуклидов и меченных ими индикаторов. Эти индикаторы - их называют радиофармацевтическими препаратами (РФП) - вводят в организм больного, а затем с помощью различных приборов определяют скорость и характер перемещения, фиксации и выведения их из органов и тканей. В большинстве методик предусматривается проведение инъекции РФП преимущественно в вену, реже в артерию, паренхиму органа, другие ткани. РФП применяют также перорально и путем вдыхания (ингаляция).

Показания к радионуклидному исследованию определяет лечащий врач после консультации с радиологом. Как правило, его проводят после других клинических, лабораторных и неинвазивных лучевых процедур, когда становится ясна необходимость радионуклидных данных о функции и морфологии того иди иного органа. Противопоказаний к радионуклидной диагностике нет, имеются лишь ограничения (беременность, декомпенсация жизненно-важных органов).

Радионуклидная визуализация - это создание картины пространственного распределения РФП в органах и тканях при введении его в организм пациента. Основным методом радионуклидной визуализации является гаммасцинтиграфия (или просто сцинтиграфия), которую проводят на аппарате, называемом гамма-камерой. Физиологической сущностью сцинтиграфии является органотропность РФП, т.е. способность его избирательно аккумулироваться в определенном органе - накапливаться, выделяться или проходить по нему в виде компактного радиоактивного болюса.

Каждая сцинтиграмма в той или иной степени характеризует функцию органа, так как РФП накапливается (и выделяется) преимущественно в нормальных и активно функционирующих клетках, поэтому сцинтиграмма - это функционально-анатомическое изображение. В этом уникальность радионуклидных изображений, отличающая их от получаемых при рентгенологическом и ультразвуковом исследованиях, магнитно-резонансной томографии. Отсюда вытекает и основное условие для назначения сцинтиграфии - исследуемый орган обязательно должен быть хотя бы в ограниченной степени функционально активным.

Ультразвуковая диагностика - распознавание патологических изменений органов и тканей организма с помощью ультразвука. Основана на принципе эхолокации - приеме сигналов посланных, а затем отраженных от поверхностей раздела тканевых сред, обладающих различными акустическими свойствами.

Благодаря простоте выполнения, безвредности, высокой информативности ультразвуковое исследование получило широкое распространение в клинической практике. В ряде случаев ультразвукового исследования бывает достаточно для установления диагноза (калькулезный холецистит), в других - ультразвук используется наряду с прочими (рентгенологическими, радионуклидными) методами (плеврит).

В зависимости от вида используемого ультразвукового излучателя и характера обработки отраженных сигналов различают одномерный (А- и М-методы), двухмерный (В-метод) способы анализа структур и допплерографию. А-метод предполагает регистрацию отраженных эхосигналов на экране осциллоскопа в виде пиков кривой (эхография). По расстоянию между пиками посылаемого и отраженных сигналов можно судить о глубине расположения границы раздела двух сред, т.е. расстояния до исследуемого объекта. Его используют для локации срединных структур мозга, чтобы выявить гематому в полости черепа, смещающую эти структуры. М-метод используют для одномерной регистрации движений объектов, при этом на экране осциллографа или ленте самописца фиксируются колебания отраженного эхосигнала. Его используют при изучении движущихся объектов - стенок и клапанов сердца. В-метод (ультразвуковое сканирование, сонография, ультразвуковая томография) предполагает формирование изображения из отдельных точек при сканировании движущимся ультразвуковым лучом. При этом каждая точка соответствует принятому датчиком отраженному эхосигналу, а ее место определяется глубиной расположения отражающей сигнал структуры. В современных приборах, устроенных по принципу «серой шкалы», яркость каждой точки изображения зависит от интенсивности отраженного сигнала, т.е. от акустического сопротивления тканей этого участка. Ультразвуковые волны легко распространяются в жидких средах и отражаются на границе различных слоев в зависимости от изменения акустического сопротивления среды. Чем больше акустическое сопротивление исследуемой ткани, тем интенсивнее она отражает ультразвуковые сигналы, тем светлее исследуемый участок выглядит на сканограмме. Отражение участком ткани ультразвуковых сигналов сильнее, чем в норме, определяют терминами «повышенная эхогенность», или «усиленная эхоструктура». Наибольшей эхогенностью обладают кости и конкременты желчных путей, поджелудочной железы, почек и др. Их акустическое сопротивление может быть настолько велико, что они совершенно не пропускают ультразвуковые сигналы, полностью отражая их. На сканограммах такие образования имеют белый цвет, а позади них располагается черного цвета «акустическая дорожка», или тень конкремента, - зона, в которую сигналы не поступают. Жидкость (например, заполняющая кисты), обладающая низким акустическим сопротивлением, отражает эхосигналы в небольшой степени. Такие зоны с пониженной эхогенностью хорошо различимы и выглядят на сканограммах темными. УЗИ – основной метод визуализации жидкостных образований – желчного пузыря, абсцессов, кист и др. Поскольку ткани человеческого организма (за исключением костной и легочной) содержат большое количество воды, они легко проводят ультразвуковые волны и являются хорошим объектом для исследования с помощью ультразвука. Газовая среда не проводит ультразвуковые волны. Этим объясняется малая эффективность использования ультразвука при исследовании легких.

Рис 18. Камни в желчном пузыре

Рис 19. Холецистит

Рис 20. Полость абсцесса в мягких тканях

Главным элементом ультразвукового прибора является преобразователь (датчик), который с помощью пьезоэлектрического кристалла преобразует электрический сигнал в звук высокой частоты (0,5-15 МГц). Этот же кристалл используется для приема отраженных луковых волн и их преобразования в электрические сигналы.

Минимальная разрешающая способность современных ультразвуковых приборов, при которых исследуемые объекты различаются на экране как отдельные структуры, определяется расстоянием 1-2 мм. Глубина проникновения ультразвука в ткани организма обратно пропорциональна его частоте.

Ультразвуковые исследования обычно не требуют специальной подготовки. Исследование органов брюшной полости рекомендуется производить натощак, исследование женских половых органов, предстательной железы, мочевого пузыря осуществляют при наполненном мочевом пузыре.

Методы ультразвуковой диагностики используются также при диагностических и лечебных чрескожных прицельных пункциях, что позволяет избегать повреждения жизненно важных органов.

Томография - метод послойного исследования органов человеческого тела с помощью средств лучевой диагностики. Различают методы томографии с использованием ионизирующего излучения, т.е. с облучением пациентов (рентгеновская томография, компьютерная рентгеновская и радионуклидная томография, эмиссионная компьютерная томография), и не связанные с ним (ультразвуковая и магнитно-резонансная томография). За исключением обычной рентгеновской, при всех видах томографии изображение получают с помощью встроенных в аппараты компьютеров.

Обычная рентгеновская томография - наиболее распространенный метод послойного исследования; основан на синхронном перемещении в пространстве излучателя и рентгеновской кассеты в процессе рентгеновской съемки. Томографы обеспечивают получение на пленке рентгеновского изображения только необходимого слоя. Устранение ненужных теней происходит за счет синхронного перемещения системы излучатель-кассета относительно некоторой пространственной оси и объекта исследования. На линейных томограммах удается обнаружить не видимые на обычных рентгенограммах детали анатомического строения органа или патологического процесса, которые при обычном рентгеновском исследовании скрыты вследствие суперпозиции (наложения) теневых образований.

Линейную томографию чаще применяют при заболеваниях легких, например для выявления каверн, абсцессов на фоне массивных инфильтративных или плевральных наслоений либо скрытых нормальными анатомическими структурами, например ребрами. Широко применяется линейная томография для исследования трахеи и бронхов при раке легкого, пневмонии, туберкулезе, а также для установления причины увеличения внутригрудных лимфатических узлов. Томография является важным методом в исследовании гортани. С ее помощью не только изучают структуру этого органа, но и одновременно оценивают состояние голосовых складок (связок). В урологической практике нефротомографию выполняют обычно после внутривенного введения рентгеноконтрастных веществ. Линейную томографию применяют также при исследовании околоносовых пазух, костной системы, желчных путей.

Компьютерная рентгеновская томография основана на получении послойного рентгеновского изображения органа с помощью компьютера. Просвечивание рентгеновским лучом тела пациента осуществляется вокруг его продольной оси, благодаря чему получаются поперечные «срезы». Изображение поперечного слоя исследуемого объекта на экране полутонового дисплея обеспечивается с помощью математической обработки множества рентгеновских изображении одного и того же поперечного слоя, сделанных под разными углами в плоскости слоя.

Компьютерный томограф состоит из рентгеновского излучателя, системы детектирования, регистрирующей прошедшее через исследуемый объект излучение; сканирующей установки, с помощью которой излучатель, а нередко и системы детектирования перемещаются вокруг неподвижного пациента; измерительной системы для усиления и преобразования сигналов детекторов; вычислительно-отображающего комплекса на основе ЭВМ для обработки результатов измерений и восстановления по ним изображения, а также для хранения изображений на носителях; пульта управления; системы документирования изображения в твердых копиях; стола для пациента с подвижной декой, системой управления перемещением и системой измерения координат. Высокая разрешающая способность позволяет дифференцировать структуры почти одинаковой плотности (например, органы брюшной полости и забрюшинного пространства) без дополнительного контрастирования. Для получения наиболее четкого изображения органов и патологических очагов при компьютерной томографии используют эффект усиления контрастности путем внутривенного введения рентгеноконтрастного вещества (так называемая усиленная компьютерная томография).

Компьютерная томография применяется при исследовании практически всех областей тела человека. Она дает возможность точно установить локализацию и распространенность патологического процесса, оценить результаты лечения, а также осуществлять прицельные пункции, биопсии, дренирования.

Рис 21. Компьютерная томограмма живота. Метастазы в печени.

Рис 22. Трехмерное моделирование на основе компьютерной томографии.

Специальной подготовки метод не требует, часто рекомендуют выполнять его натощак. Если в организм вводили рентгеноконтрастные вещества, не в связи с данным исследованием, необходимо дождаться их выведения.

Радионуклидная томография позволяет получить послойное изображение распределения радионуклида, находящегося в органе. По сравнению со сцинтиграфией радионуклидная томография обладает лучшей разрешающей способностью.

Позитронно-эмиссионную томографию выполняют с ультракороткоживущими радионуклидами, испускающими позитроны. Указанные радионуклиды получают в ускорителях заряженных частиц (циклотронах), устанавливаемых непосредственно в лечебном учреждении. Для двухфотонной томографии применяются особые гамма-камеры, способные регистрировать гамма-кванты, которые возникают при аннигиляции (столкновении) позитрона с электроном. Она представляет наибольший научный интерес, однако из-за высокой стоимости и сложности применения ее использование в медицинской практике ограничено.

Ультразвуковая томография - метод получения послойного изображения посредством анализа эхо-сигнала, отраженного от внутренних структур тела человека. Послойное ультразвуковое изображение получают путем развертки ультразвукового луча, в связи с чем данный метод иногда называют ультразвуковым сканированием.

Магнитно-резонансная томография (МР-томография) - метод получения изображения внутренних структур тела человека посредством использования явления ядерного магнитного резонанса. Наиболее эффективна МР-томография при исследовании головного мозга, межпозвоночных дисков, мягких тканей и органов живота и забрюшинного пространства, желчевыводящих путей.

Рис 23. Ядерно-магнитно-резонансная томограмма печени с последующим трехмерным моделированием желчевыводящих путей. Расширение желчевыводящих путей.

Общие принципы лучевой диагностики

1. всякое лучевое исследование должно быть обосновано. Главным аргументом в пользу выполнения лучевой процедуры должна быть клиническая необходимость получения дополнительной информации, без которой полный индивидуальный диагноз установить невозможно.

2. при выборе метода исследования необходимо учитывать лучевую (дозовую) нагрузку на больного. При равной информативности методов нужно отдать предпочтение тому, при котором не происходит облучения больного или оно наименее значительное.

3. при проведении лучевого исследования нужно придерживаться правила «необходимо и достаточно», избегая излишних процедур. Порядок выполнения необходимых исследований - от наиболее щадящих и необременительных к более сложным и инвазивньм (от простого к сложному). Однако не нужно забывать, что иногда приходится сразу выполнять сложные диагностические вмешательства ввиду их высокой информативности и важности для планирования лечения больного и экономии времени.

4. при организации лучевого исследования нужно учитывать экономические факторы («стоимостная эффективность методов»). Приступая к обследованию больного, врач обязан предвидеть затраты на его проведение. Стоимость некоторых лучевых исследований столь велика, что неразумное применение их может отразиться на бюджете лечебного учреждения.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Введение

Лучевая диагностика - наука о применении излучений для изучения строения и функции нормальных и патологически измененных органов и систем человека в целях профилактики и распознавания болезней.

Все излечения, используемые в лучевой диагностики, делят на неионизирующие и ионизирующие.

Неионизирующие излучения - это электромагнитные излучения различной частоты, не вызывающие ионизацию атомов и молекул, т.е. их распада на противоположно заряженные частицы -- ионы. К ним относится тепловое (инфракрасное -- ИК) излучение и резонансное, возникающее в объекте (тело человека), помещенном в стабильное магнитное поле, под действием высокочастотных электромагнитных импульсов. Также относят ультразвуковые волны, представляющие собой упругие колебания среды.

Ионизирующее излучение способно ионизировать атомы окружающей среды, в том числе атомы, входящие в состав тканей человека. Все эти излучения делят на две группы: квантовые (т.е. состоящие из фотонов) и корпускулярные (состоящие из частиц). Это деление в значительной мере условно, так как любое излучение имеет двойственную природу и в определенных условиях проявляет то свойства волны, то свойства частицы. К квантовым ионизирующим излучениям относят тормозное (рентгеновское) излучение и гамма-излучение. К корпускулярным излучениям причисляют пучки электронов, протонов, нейтронов, мезонов и других частиц.

Для получения дифференцированного изображение тканей, примерно одинаково поглощающих излучение, применяют искусственное контрастирование.

Существуют два способа контрастирования органов. Один из них заключается в прямом (механическом) введении контрастного вещества в полость органа - в пищевод, желудок, кишечник, в слезные или слюнные протоки, желчные пути, мочевые пути, в полость матки, бронхи, кровеносные и лимфатические сосуды или в клетчаточное пространство, окружающее исследуемый орган (например, в забрюшинную клетчатку, окружающую почки и надпочечники), или путем пункции - в паренхиму органа.

Второй способ контрастирования основан на способности некоторых органов поглощать из крови введенное в организм вещество, концентрировать и выделять его. Этот принцип - концентрации и элиминации - используют при рентгенологическом контрастировании выделительной системы и желчных путей.

Основные требования к рентгеноконтрастным веществам очевидны: создание высокой контрастности изображения, безвредность при введении в организм больного, быстрое выведение из организма.

В рентгенологической практике в настоящее время применяют следующие контрастные средства.

1. Препараты сульфата бария(BaSO4). Водная взвесь сульфата бария - основной препарат для исследования пищеварительного канала. Она нерастворима в воде и пищеварительных соках, безвредна. Применяют в видесуспензии в концентрации 1:1 или более высокой -- до 5:1. Для придания препарату дополнительных свойств (замедление оседания твердых частиц бария, повышение прилипаемости к слизистой оболочке) в водную взвесь добавляют химически активные вещества (танин, цитрат натрия, сорбит и др.), для увеличения вязкости -- желатин, пищевую целлюлозу. Существуют готовые официнальные препараты сульфата бария, отвечающие всем перечисленным требованиям.

2. Йодсодержащие растворы органических соединений. Это большая группа препаратов, представляющих собой главным образом производные не которых ароматических кислот -- бензойной, адипиновой, фенилпропионовой и др. Препараты используют для контрастирования кровеносных сосудов и полостей сердца. К ним относятся, например, урографин, тразограф, триомбраст и др. Эти препараты выделяются мочевыводящей системой, поэтому могут быть использованы для исследования чашечно-лоханочного комплекса почек, мочеточников,мочевого пузыря. В последнее время появилось новое поколение йодсодержащих органических соединений -- неионные (сначала мономеры -- омнипак, ультравист, затем димеры -- йодиксанол, йотролан). Их осмолярность значительно ниже, чем ионных, и приближается к осмолярности плазмы крови (300 моем). Вследствие этого они значительно менее токсичны, чем ионные мономеры. Ряд йодсодержащих препаратов улавливается из крови печенью и выводится с желчью, поэтому их применяют для контрастирования желчных путей. С целью контрастирования желчного пузыря применяют йодистые препараты, всасывающиеся в кишечнике (холевид).

3. Иодированные масла. Эти препараты представляют собой эмульсию йодистых соединений в растительных маслах (персиковом, маковом). Они завоевали популярность как средства, используемые при исследовании бронхов, лимфатических сосудов, полости матки, свищевых ходов Особенно хороши ультражидкие йодированные масла (липоидол) которые характеризуются высокой контрастностью и мало раздражают ткани. Иодсодержащие препараты, особенно ионной группы, могут вызывать аллергические реакции и оказывать токсическое воздействие на организм

Общие аллергические проявления наблюдаются со стороны кожи и слизистых оболочек (конъюнктивит, ринит, крапивница, отек слизистой оболочки гортани, бронхов, трахеи), сердечно-сосудистой системы (снижение кровяного давления, коллапс), центральной нервной системы (судороги, иногда параличи), почек (нарушение выделительной функции). Указанные реакции обычно преходящи, но могут достигать высокой степени выраженности и даже привести к смертельному исходу. В связи с этим перед введением в кровь йодсодержащих препаратов, особенно высокоосмолярных из ионной группы, необходимо провести биологическую пробу: осторожно вливают внутривенно 1 мл рентгеноконтрастного препарата и выжидают 2--3 мин, внимательно наблюдая за состоянием больного. Лишь в случае отсутствия аллергической реакции вводят основную дозу, которая при разных исследованиях варьирует от 20 до 100 мл.

4. Газы (закись азота, углекислый газ, обычный воздух). Для введения в кровь можно применять только углекислый газ вследствие его высокой растворимости. При введении в полости тела и клетчаточные пространства также во избежание газовой эмболии используют закись азота. В пищеварительный канал допустимо вводить обычный воздух.

1.Рентгенологические методы

Рентгеновские лучи были открыты 8 ноября 1895г. профессором физики Вюрцбургского университета Вильгельмом Конрадом Рентгеном (1845-1923).

Рентгенологический метод - это способ изучения строения и функции различных органов и систем, основанный на качественном и/или количественном анализе пучка рентгеновского излучения, прошедшего через тело человека. Рентгеновское излучение, возникшее в аноде рентгеновской трубки, направляют на больного, в теле которого оно частично поглощается и рассеивается, а частично проходит насквозь

Рентгеновские лучи являются одним из видов электромагнитных волн длиной приблизительно от 80 до 10~5 нм., которые в общеволновом спектре занимают место между ультрафиолетовыми лучами и -лучами. Скорость распространения рентгеновских лучей равна скорости света 300 000 км/с.

Рентгеновские лучи образуются в момент столкновения потока ускоренных электронов с веществом анода. При взаимодействии электронов с мишенью 99% их кинетической энергии превращается в тепловую энергию и только 1%-- в рентгеновское излучение. Рентгеновская трубка состоит из стеклянного баллона, в который впаяны 2 электрода: катод и анод. Из стеклянного баллона выкачен воздух: движение электронов от катода к аноду возможно лишь в условиях относительного вакуума. На катоде имеется нить накала, являющаяся плотно скрученной вольфрамовой спиралью. При подаче электрического тока на нить накала происходит электронная эмиссия, при которой электроны отделяются от спирали и образуют рядом с катодом электронное облачко. Это облачко концентрируется у фокусирующей чашечки катода, задающей направление движения электронов. Чашечка -- небольшое углубление в катоде. Анод, в свою очередь, содержит вольфрамовую металлическую пластину, на которую фокусируются электроны -- это и есть место образования рентгеновских лучей. К электронной трубке подключены 2 трансформатора: понижающий и повышающий. Понижающий трансформатор раскаляет вольфрамовую спираль низким напряжением (5--15 вольт), в результате чего возникает электронная эмиссия. Повышающий, или высоковольтный, трансформатор подходит непосредственно к катоду и аноду, на которые подаётся напряжение 20-140 киловольт. Оба трансформатора помещаются в высоковольтный блок рентгеновского аппарата, который наполнен трансформаторным маслом, обеспечивающим охлаждение трансформаторов и их надёжную изоляцию. После того как при помощи понижающего трансформатора образовалось электронное облачко, включается повышающий трансформатор, и на оба полюса электрической цепи подаётся высоковольтное напряжение: положительный импульс -- на анод, и отрицательный -- на катод. Отрицательно заряженные электроны отталкиваются от отрицательно заряженного катода и стремятся к положительно заряженному аноду -- за счёт такой разности потенциалов достигается высокая скорость движения -- 100 тыс. км/с. С этой скоростью электроны бомбардируют вольфрамовую пластину анода, замыкая электрическую цепь, в результате чего возникает рентгеновское излучение и тепловая энергия. Рентгеновское излучение подразделяется на тормозное и характеристическое. Тормозное излучение возникает из-за резкого замедления скорости электронов, испускаемых вольфрамовой спиралью. Характеристическое излучение возникает в момент перестройки электронных оболочек атомов. Оба этих вида образуются в рентгеновской трубке в момент столкновения ускоренных электронов с атомами вещества анода. Спектр излучения рентгеновской трубки представляет собой наложение тормозного и характеристического рентгеновских излучений.

Свойства рентгеновских лучей.

1. Проникающая способность; вследствие малой длины волны рентгеновские лучи могут проникать сквозь объекты, непроницаемы для видимого света.

2. Способность поглощаться и рассеиваться; при поглощении часть рентгеновских лучей с наибольшей длинной волны исчезает, полностью передавая свою энергию веществу. При рассеивании - откланяется от первоначального направления, и не несет полезной информации. Часть лучей полностью проходит через объект с изменением своих характеристик. Таким образом, формируется изображение.

3. Вызывают флюоресценцию (свечение). Это явление используют для создания специальных светящихся экранов с целью визуального наблюдения рентгеновского излучения, иногда для усиления действия рентгеновских лучей на фотопластинку.

4. Оказывают фотохимическое действие; позволяет регистрировать изображения на фоточувствительных материалах.

5. Вызывают ионизацию вещества. Это свойство используют в дозиметрии для количественной оценки действия этого вида излучения.

6. Распространяются прямолинейно, что позволяет получить рентгеновское изображение, повторяющее форму исследуемого материала.

7. Способны к поляризации.

8. Рентгеновским лучам свойственно дифракция и интерференция.

9. Они невидимы.

Виды рентгенологических методов.

1.Рентгенография (рентгеновская съемка).

Рентгенография - способ рентгенологического исследования, при котором фиксированное рентгеновское изображения объекта получают на твердом насители. Такими носителями могут быть рентгеновская пленка, фотопленка, цифровой детектор и др.

Пленочную рентгенографию выполняют либо на универсальном рентгеновском аппарате, либо на специальном штативе, предназначенном только для этого вида исследования. Внутренние стенки кассеты покрыты усиливающими экранами, между которыми и помещается рентгеновская пленка.

Усиливающие экраны содержат люминофор, который под действием рентгеновского излучения светится и, таким образом воздействуя на пленку, усиливает его фотохимическое действие. Основное назначение усиливающих экранов -- уменьшить экспозицию, а значит, и радиационное облучение пациента.

В зависимости от назначения усиливающие экраны делят на стандартные, мелкозернистые (у них мелкое зерно люминофора, пониженная светоотдача, но очень высокое пространственное разрешение), которые применяют в остеологии, и скоростные (с крупными зернами люминофора, высокой светоотдачей, но пониженным разрешением), которые используют при проведении исследования у детей и быстродвижущихся объектов, например сердца.

Исследуемую часть тела помещают максимально близко к кассете, чтобы уменьшить проекционное искажение (в основном увеличение), которое возникает из-за расходящегося характера пучка рентгеновских лучей. Кроме того такое расположение обеспечивает необходимую резкость изображения. Излучатель устанавливают так, чтобы центральный пучок проходил через центр снимаемой части тела и был перпендикулярен пленке. В некоторых случаях, например при исследовании височной кости, применяют наклонное положение излучателя.

Рентгенографию можно производить в вертикальном, горизонтальном и наклонном положении больного, а также в положении на боку. Съемка в разных положениях позволяет судить о смещаемости органов и выявлять некоторые важные диагностические признаки, например растекание жидкости в плевральной полости или уровни жидкости в петлях кишечника.

Методика регистрации рентгеновского излучения.

Схема 1. Условия обычной рентгенографии (I) и телерентгенографии (II):1 - рентгеновская трубка; 2 - пучок рентгеновских лучей;3 - объект исследования; 4 - кассета с пленкой.

Получение изображения основано на ослаблении рентгеновского излучения при его прохождении через различные ткани с последующей регистрацией его на рентгеночувствительную плёнку. В результате прохождения через образования разной плотности и состава пучок излучения рассеивается и тормозится, в связи с чем на пленке формируется изображение разной степени интенсивности. В результате, на плёнке получается усреднённое, суммационное изображение всех тканей (тень). Из этого следует что для получения адекватного рентгеновского снимка необходимо проводить исследование рентгенологически неоднородных образований.

Снимок, на котором изображена часть тела (голова, таз и др.) или весь орган (легкие, желудок), называют обзорным. Снимки, на которых получают изображение интересующей врача части органа в оптимальной проекции, наиболее выгодной для исследования той или иной детали, именуют прицельными. Снимки могут быть одиночными или серийными. Серия может состоять из 2-3 рентгенограмм, на которых зафиксированы разные состояния органа (например, перистальтика желудка).

Рентгеновский снимок по отношению к изображению, видимому на флюоресцентном экране при просвечивании, является негативом. Поэтому прозрачные участки на рентгенограмме называют темными («затемнениями»), а темные - светлыми («просветлениями»). Рентгеновское изображение является суммационным, плоскостным. Это обстоятельство приводит к потере изображения многих элементов объекта, поскольку изображение одних деталей накладывается на тень других. Отсюда вытекает основное правило рентгенологического исследования: исследование любой части тела (органа) должно быть произведено как минимум в двух взаимно перпендикулярных проекциях - прямой и боковой. Дополнительно к ним могут понадобиться снимки в косых и аксиальных (осевых) проекциях.

Для рентгенологического анализа изображения рентгеновский снимок фиксируется на подсвечивающем устройстве с ярким экраном -- негатоскопе.

В качестве приемника рентгеновского изображения ранее применяли селеновые пластины, которые перед экспонированием заряжали на специальных аппаратах. Затем изображение переносили на писчую бумагу. Метод получил название электрорентгенографии.

При электронно-оптической цифровой рентгенографии рентгеновское изображение, полученное в телевизионной камере, после усиления поступает на аналого-цифровой. Все электрические сигналы, несущие информацию об исследуемом объекте, превращаются в череду цифр. Цифровая информация поступает затем в компьютер, где обрабатывается по заранее составленным программам. С помощью компьютера можно улучшить качество изображения, повысить его контрастность, очистить от помех, выделить интересующие врача детали или контуры.

К достоинствам цифровой рентгенографии относятся: высокое качество изображения, пониженная лучевая нагрузка, возможность сохранять изображения на магнитных носителях со всеми вытекающими из этого последствиями: удобство хранения, возможность создания упорядоченных архивов с оперативным доступом к данным и передачи изображения на расстояния -- как внутри больницы, так и за ее пределы.

Недостатки рентгенографии: наличие ионизирующего излучения, способного оказать вредное воздействие на пациента; информативность классической рентгенографии значительно ниже таких современных методов медицинской визуализации, как КТ, МРТ и др. Обычные рентгеновские изображения отражают проекционное наслоение сложных анатомических структур, то есть их суммационную рентгеновскую тень, в отличие от послойных серий изображений, получаемых современными томографическими методами. Без применения контрастирующих веществ рентгенография недостаточно информативна для анализа изменений в мягких тканях, мало отличающихся по плотности (например, при изучении органов брюшной полости).

2.Рентгеноскопия (рентгеновское просвечивание)

Рентгеноскопия - метод рентгенологического исследования, при котором изображение объекта получают на светящемся (флюоресцентном) экране. Интенсивность свечения в каждой точке экрана пропорциональна количеству попавших на него рентгеновских квантов. Со стороны, обращенной к врачу, экран покрыт свинцовым стеклом, предохраняющим врача от прямого воздействия рентгеновского излучения.

В качестве усовершенствованного метода рентгеноскопии применяют рентгенотелевизионное просвечивание. Его выполняют с помощью усилителя рентгеновского изображения (УРИ), в состав которого входят рентгеновский электронно-оптический преобразователь (РЭОП) и замкнутая телевизионная система.

Рентгеноскоп

РЭОП представляет собой вакуумную колбу, внутри которой, с одной стороны, имеется рентгеновский флюоресцентный экран, а с противоположной - катодолюминесцентный экран. Между ними приложено электрическое ускоряющее поле с разницей потенциалов около 25 кВ. Возникающий при просвечивании световой образ на флюоресцентном экране превращается на фотокатоде в поток электронов. Под действием ускоряющего поля и в результате фокусировки (повышения плотности потока) энергия электронов значительно возрастает - в несколько тысяч раз. Попадая на катодолюминесцентный экран, электронный поток создает на нем видимое, аналогичное исходному, но очень яркое изображение.

Это изображение через систему зеркал и линз передается на передающую телевизионную трубку - видикон. Возникающие в ней электрические сигналы поступают для обработки в блок телевизионного канала, а затем - на экран видеоконтрольного устройства или, проще говоря, на экран телевизора. При необходимости изображение может фиксироваться с помощью видеомагнитофона.

3.Флюорография

Флюорография - метод рентгенологического исследования, заключающийся в фотографировании изображения с рентгеновского флюоресцентного экрана или экрана электронно-оптического преобразователя на фотопленку небольшого формата.

Флюорография даёт уменьшенное изображение объекта. Выделяют мелкокадровую (например, 24Ч24 мм или 35Ч35 мм) и крупнокадровую (в частности, 70Ч70 мм или 100Ч100 мм) методики. Последняя по диагностическим возможностям приближается к рентгенографии. Флюорография применяется главным образом для исследования органов грудной клетки, молочных желёз, костной системы.

При наиболее распространенном способе флюорографии уменьшенные рентгеновские снимки - флюорограммы получают на специальном рентгеновском аппарате - флюорографе. В этом аппарате имеется флюоресцентный экран и механизм автоматического перемещения рулонной пленки. Фотографирование изображения осуществляется посредством фотокамеры на эту рулонную пленку с размером кадра 70X70 или 100Х 100 мм.

На флюорограммах детали изображения фиксируются лучше, чем при рентгеноскопии или рентгенотелевизионном просвечивании, но несколько хуже (на 4-5%) по сравнению с обычными рентгенограммами.

Для проверочных исследований применяют флюорографы стационарного и передвижного типа. Первые размещают в поликлиниках, медико-санитарных частях, диспансерах, больницах. Передвижные флюорографы монтируют на автомобильных шасси или в железнодорожных вагонах. Съемку и в тех и в других флюорографах производят на рулонную пленку, которую затем проявляют в специальных бачках. Для исследования пищевода, желудка и двенадцатиперстной кишки созданы специальные гастрофлюорографы.

Готовые флюорограммы рассматривают на специальном фонаре - флюороскопе, который увеличивает изображение. Из общего контингента обследованных отбирают лиц, у которых по флюорограммам заподозрены патологические изменения. Их направляют для дополнительного обследования, которое проводят на рентгенодиагностических установках с применением всех необходимых рентгенологических методов исследования.

Важные достоинства флюорографии - это возможность обследования большого числа лиц в течение короткого времени (высокая пропускная способность), экономичность, удобство хранения флюорограмм, позволяет рано выявлять минимальные патологические изменения в органах.

Наиболее эффективным оказалось применение флюорографии для выявления скрыто протекающих заболеваний легких, в первую очередь туберкулеза и рака. Периодичность проверочных обследований определяют с учетом возраста людей, характера их трудовой деятельности, местных эпидемиологических условий

4.Томография

Томография (от греч. tomos - слой) - метод послойного рентгенологического исследования.

При томографии, благодаря движению во время съемки с определенной скоростью рентгеновской трубки на пленке получается резким изображение только тех структур, которые расположены на определенной, заранее заданной глубине. Тени органов и образований, расположенных на меньшей или большей глубине, получаются «смазанными» и не накладываются на основное изображение. Томография облегчает выявление опухолей, воспалительных инфильтратов и других патологических образований.

Эффект томографии достигается благодаря непрерывному движению во время съемки двух из трех компонентов рентгеновской системы излучатель--пациент--пленка. Чаще всего перемещаются излучатель и пленка, в то время как пациент остается неподвижным. При этом излучатель и пленка двигаются по дуге, прямой линии или более сложной траектории, но обязательно в противоположных направлениях. При таком перемещении изображение большинства деталей на рентгенограмме оказывается нечетким, размазанным, а резким получается изображение только тех образований, которые находятся на уровне центра вращения системы излучатель--пленка.

Конструктивно томографы выполняют в виде дополнительных штативов либо специального приспособления к универсальному поворотному штативу. Если на томографе изменить уровень центра вращения системы излучатель--пленка, то изменится уровень выделяемого слоя. Толщина выбираемого слоя зависит от амплитуды движения упомянутой выше системы: чем она больше, тем тоньше будет томографический слой. Обычная величина этого угла от 20 до 50°. Если же выбирают очень малый угол перемещения, порядка 3--5°, то получают изображение толстого слоя, по существу целой зоны.

Виды томографии

Линейная томография (классическая томография) -- метод рентгенологического исследования, с помощью которого можно производить снимок слоя, лежащего на определённой глубине исследуемого объекта. Данный вид исследования основан на перемещении двух из трёх компонентов (рентгеновская трубка, рентгеновская плёнка, объект исследования). Наиболее близкую к современной линейной томографии систему предложил Маер, в 1914 году он предложил двигать рентгеновскую трубку параллельно телу больного.

Панорамная томография -- метод рентгенологического исследования, с помощью которого можно получить снимок криволинейного слоя, лежащего на определённой глубине исследуемого объекта.

В медицине панорамная томография используется при исследовании лицевого черепа, в первую очередь при диагностике заболеваний зубочелюстной системы. Используя движение рентгеновского излучателя и кассеты с плёнкой по специальным траекториям выделяется изображение в форме цилиндрической поверхности. Это позволяет получить снимок с изображением всех зубов пациента, что необходимо при протезировании, оказывается полезным при пародонтозе, в травматологии и ряде других случаев. Диагностические исследования выполняют с помощью пантомографических дентальных аппаратов.

Компьютерная томография -- это послойное рентгенологическое исследование, основанное на компьютерной реконструкции изображения, получаемого при круговом сканировании объекта (Пє англ. scan -- бегло просматривать) узким пучком рентгеновского излучения.

Аппарат КТ

Изображения при компьютерной томографии (КТ) получают при помощи узкого вращающегося пучка рентгеновских лучей и системы датчиков, расположенных по кругу, который называется гантри. Проходя через ткани, излучение ослабляется соответственно плотности и атомному составу этих тканей. По другую сторону от пациента установлена круговая система датчиков рентгеновского излучения, каждый из которых преобразует энергию излучения в электрические сигналы. После усиления эти сигналы преобразуются в цифровой код, который поступает в память компьютера. Зафиксированные сигналы отражают степень ослабления пучка рентгеновских лучей в каком-либо одном направлении.

Вращаясь вокруг пациента, рентгеновский излучатель ЃбпросматриваетЃв его тело в разных ракурсах, в общей сложности под углом 360°. К концу вращения излучателя в памяти компьютера оказываются зафиксированными все сигналы от всех датчиков. Продолжительность вращения излучателя в современных томографах очень небольшая, всего 1--3 с, что позволяет изучать движущиеся объекты.

Попутно определяют плотность ткани на отдельных участках, которую измеряют в условных единицах -- единицах Хаунсфилда (HU). За нулевую отметку принята плотность воды. Плотность кости составляет +1000 HU, плотность воздуха равна -1000 HU. Все остальные ткани человеческого тела занимают промежуточное положение (обычно от 0 до 200--300 HU).

В отличие от обычного рентгена, на котором лучше всего видны кости и воздухоносные структуры (легкие), на компьютерной томографии (КТ) отлично видны и мягкие ткани (мозг, печень, и т.д.), это дает возможность диагностировать болезни на ранних стадиях, например, обнаружить опухоль пока она еще небольших размеров и поддается хирургическому лечению.

С появлением спиральных и мультиспиральных томографов появилась возможность проводить компьютерную томографию сердца, сосудов, бронхов, кишечника.

Преимущества рентгеновской компьютерной томографии (КТ):

Ч высокая тканевая разрешающая способность - позволяет оценить изменение коэффициент ослабления излучения в пределах 0,5% (в обычной рентгенографии - 10-20%);

Ч отсутствует наложения органов и тканей - нет закрытых зон;

Ч позволяет оценить соотношение органов исследуемой области

Ч пакет прикладных программ для обработки полученного цифрового изображения позволяет получить дополнительную информацию.

Недостатки компьютерной томографии (КТ):

Ч Всегда существует небольшой риск развития рака от чрезмерного облучения. Однако возможность точной диагностики перевешивает этот минимальный риск.

Абсолютных противопоказаний к компьютерной томографии (КТ) нет. Относительные противопоказания к компьютерной томографии (КТ): беременность и младший детский возраст, что связано с лучевой нагрузкой.

Виды компьютерная томография

Спиральная рентгеновская компьютерная томография (СКТ).

Принцип действия метода.

Спиральное сканирование состоит во вращении по спирали рентгеновской трубки и одновременном движения стола с больным. От обычной КТ спиральная отличается тем, что скорость движения стола может быть различной в зависимости от цели исследования. При более высокой скорости больше зона сканирования. Метод существенно сокращает время процедуры и уменьшает лучевую нагрузку на тело пациента.

Принцип действия спиральной компьютерной томографии на организм человека. Изображения получается при помощи следующих операций: Задается в компьютере нужная ширина рентгеновского луча; Происходит сканирование органа пучком рентгеновского излучения; Датчики ловят импульсы и преобразуют их в цифровую информацию; Информация обрабатывается компьютером; Компьютер выдает информацию на экран в виде изображения.

Преимущества спиральной компьютерной томографии. Увеличение скорости процесса сканирования. Метод увеличивает область изучения за более короткое время. Уменьшение дозы облучения на пациента. Возможность получать более четкое и качественное изображение и выявлять даже самые минимальные изменения в тканях организма. С появлением томографов нового поколения стало доступным исследование сложных областей.

Спиральная компьютерная томография головного мозга с детальной точность показывает сосуды и все составные части мозга. Также новым достижение стала возможность изучать бронхи и легкие.

Мультспиральная компьютерная томография (МСКТ).

В мультиспиральных томографах рентгеновские датчики находятся по всей окружности установки и картинка получается за одно вращение. Благодаря этому механизму шум отсутствует, а время процедуры сокращается, по сравнению с предыдущим видом. Этот способ удобен при обследовании больных, которые не могут долго находиться неподвижно (маленькие дети или пациенты в критическом состоянии). Мультиспиральная является усовершенствованным видом спиральной. Спиральные и мультиспиральные томографы дают возможность выполнять исследования сосудов, бронхов, сердца и кишечника.

Принцип действия мультиспиральной компьютерной томографии. Преимущества метода мультиспиральной КТ.

Ч Высокая разрешающая способность, позволяющая детально рассмотреть даже незначительные изменения.

Ч Быстрота исследования. Сканирование не превышает 20 секунд. Метод хорош для пациентов, неспособных долго сохранять неподвижность и находящихся в критическом состоянии.

Ч Неограниченные возможности для исследований больных в тяжелом состоянии, нуждающихся в постоянном контакте с врачом. Возможность построения двухмерных и трехмерных изображений, позволяющих получать максимально полную информацию об изучаемых органах.

Ч Отсутствие шума при сканировании. Благодаря возможности прибора свершать процесс за один оборот.

Ч Уменьшена доза облучения.

КТ-ангиография

КТ-ангиография позволяет получить послойную серию изображений кровеносных сосудов; на основе полученных данных посредством компьютерной постобработки с 3D-реконструкцией строится трёхмерная модель кровеносной системы.

5.Ангиография

Ангиография -- метод контрастного рентгенологического исследования кровеносных сосудов. Ангиография изучает функциональное состояние сосудов, окольного кровотока и протяженность патологического процесса.

Ангиограмма сосудов головного мозга.

Артериограмма

Артериографию производят путем пункции сосуда или его катетеризации. Пункцию применяют при исследовании сонных артерий, артерий и вен нижних конечностей, брюшной аорты и ее крупных ветвей. Однако основным способом ангиографии в настоящее время является, безусловно, катетеризация сосуда, которую выполняют по методике, разработанной шведским врачом Селъдингером

Чаще всего проводят катетеризацию бедренной артерии.

Все манипуляции при ангиографии осуществляют под контролем рентгенотелевидения. Через катетер в исследуемую артерию автоматическим шприцем (инъектором) под давлением вводят контрастное вещество. В тот же момент начинается скоростная рентгеновская съемка. Снимки немедленно проявляют. Убедившись в успехе исследования, катетер удаляют.

Наиболее частое осложнение ангиографии -- развитие гематомы в области катетеризации, где появляется припухлость. Тяжелое, но редкое осложнение -- тромбоэмболия периферической артерии, о возникновении которой свидетельствует ишемия конечности.

В зависимости от цели и места введения контрастного вещества различают аортографию, коронарографию, каротидную и вертебральную артериографию, целиакографию, мезентерикографию и т.д. Для выполнения всех этих видов ангиографии конец рентгеноконтрастного катетера вводят в исследуемый сосуд. Контрастное вещество накапливается в капиллярах, отчего интенсивность тени органов, снабжаемых исследуемым сосудом, возрастает.

Венография может быть выполнена прямым и непрямым способами. При прямой венографии контрастное вещество вводят в кровь путем венопункции или веносекции.

Непрямое контрастирование вен осуществляют одним из трех способов: 1)введением контрастного вещества в артерии, из которых оно через систему капилляров достигает вен; 2) инъекцией контрастного вещества в костномозговое пространство, из которого оно поступает в соответствующие вены; 3) введением контрастного вещества в паренхиму органа путем пункции, при этом на снимках отображаются вены, отводящие кровь от данного органа. К венографии есть ряд специальных показаний: хронический тромбофлебит, тромбоэмболия, посттромбофлебитические изменения вен, подозрение на аномалию развития венозных стволов, различные нарушения венозного кровотока, в том числе из-за недостаточности клапанного аппарата вен, ранение вен, состояния после оперативных вмешательств на венах.

Новой методикой рентгенологического исследования сосудов является дигитальная субтракционная ангиография (ДСА). В основе ее лежит принцип компьютерного вычитания (субтракции) двух изображений, записанных в памяти компьютера, - снимков до и после введения контрастного вещества в сосуд. Здесь вьшелить изображение сосудов из общего изображения исследуемой части тела, в частности убрать мешающие тени мягких тканей и скелета и количественно оценить гемодинамику. Применяется меньше рентгеноконтрастного вещества, поэтому можно получить изображение сосудов при большом разведении контрастного ве щества. А это означает, что можно ввести контрастное вещество внутривенно и на последующей серии снимков получить тень артерий, не прибегая к их катетеризации.

Для выполнения лимфографии контрастное вещество вливают непосредственно в просвет лимфатического сосуда. В клинике в настоящее время проводят главным образом лимфографию нижних конечностей, таза и забрюшинного пространства. Контрастное вещество - жидкую масляную эмульсию йодистого соединения - вводят в сосуд. Рентгенограммы лимфатических сосудов делают спустя 15--20 мин, а рентгенограммы лимфатических узлов -- через 24 ч.

РАДИОНУКЛИДНЫЙ МЕТОД ИССЛЕДОВАНИЯ

Радионуклидный метод - это способ исследования функционального и морфологического состояния органов и систем с помощью радионуклидов и меченных ими индикаторов. Эти индикаторы - их называют радиофармацевтическими препаратами (РФП) - вводят в организм больного, а затем с помощью различных приборов определяют скорость и характер перемещения, фиксации и выведения их из органов и тканей.

Кроме того, для радиометрии могут быть использованы кусочки тканей, кровь и выделения больного. Несмотря на введение ничтожно малых количеств индикатора (сотые и тысячные доли микрограмма) не оказывающих влияния на нормальное течение жизненных процессов, метод обладает исключительно высокой чувствительностью.

Выбирая РФП для исследования, врач должен прежде всего учесть его физиологическую направленность и фармакодинамику. Нужно обязательно принимать во внимание ядерно-физические свойства входящего в его состав радионуклида. Для получения изображения органов применяют только радионуклиды, испускающие Y-лучи или характеристическое рентгеновское излучение, так как эти излучения можно регистрировать при наружной детекции. Чем больше гамма-квантов или рентгеновских квантов образуется при радиоактивном распаде, тем эффективнее данный РФП в диагностическом отношении. В то же время радионуклид должен испускать по возможности меньше корпускулярного излучения - электронов, которые поглощаются в теле пациента и не участвуют в получении изображения органов. Радионуклиды, период полураспада которых - несколько десятков дней, принято считать долгоживущими, несколько дней - среднеживущими, несколько часов - короткоживущими, несколько минут - ультракоротко- живущими. Существует несколько способов получения радионуклидов. Часть из них образуется в реакторах, часть - в ускорителях. Однако наиболее распространенным способом получения радионуклидов является генераторный, т.е. изготовление радионуклидов непосредственно в лаборатории радионуклидной диагностики с помощью генераторов.

Очень важный параметр радионуклида - энергия квантов электромагнитного излучения. Кванты очень низких энергий задерживаются в тканях и, следовательно, не попадают на детектор радиометрического прибора. Кванты же очень высоких энергий частично пролетают детектор насквозь, поэтому эффективность их регистрации также невысока. Оптимальным диапазоном энергии квантов в радионуклидной диагностике считают 70-200 кэВ.

Все радионуклидные диагностические исследования делят на две большие группы: исследования, при которых РФП вводят в организм пациента, - исследования in vivo, и исследования крови, кусочков ткани и выделений больного - исследования in vitro.

СЦИНТИГРАФИЯ ПЕЧЕНИ - проводится в статическом и динамическом режимах. В статическом режиме определяется функциональная активность клеток ретикулоэндотелиальной системы (РЭС) печени, в динамическом - функциональное состояние гепатобилиарной системы. Применяется две группы радиофармпрепаратов (РФП): для исследования РЭС печени - коллоидные растворы на основе 99mTc; для исследования гепатобилиарной соединения на основе имидодиуксусной кислоты 99mTc-ХИДА, мезида.

ГЕПАТОСЦИНТИГРАФИЯ - это методика визуализации печени сцинтиграфическим методом на гамма-камере с целью определения функциональной активности и количества функционирующей паренхимы при использовании коллоидных РФП. 99mTc-коллоид вводят внутривенно активностью 2 МБк/кг. Методика позволяет определить функциональную активность ретикулоэндотелиальных клеток. Механизм накопления РФП в таких клетках - фагоцитоз. Гепатосцинтиграфию проводят через 0,5-1 час после введения РФП. Планарную гепатосцинтиграфию выполняют в трех стандартных проекциях: передней, задней и правой боковой.

Это методика визуализации печени сцинтиграфическим методом на гамма-камере с целью определения функциональной активности гепатоцитов и билиарной системы при помощи РФП на основе имидодиуксусной кислоты.

ГЕПАТОБИЛИСЦИНТИГРАФИЯ

99mTc-ХИДА (мезида) вводится внутривенно активностью 0,5 МБк/кг после укладки больного. Пациент укладывается на спину под детектором гамма-камеры, который устанавливается максимально близко к поверхности живота, чтобы в его поле зрения попала вся печень и часть кишечника. Исследование начинается сразу же после в/в введения РФП и продолжается 60 минут. Одновременно с введением РФП включаются регистрирующие системы. На 30-й минуте исследования больному дают желчегонный завтрак (2 сырых куриных желтка).Нормальные гепатоциты быстро захватывают препарат из крови и экскретируют его с желчью. Механизм накопления РФП - активный транспорт. Проходжение РФП через гепатоцит в норме занимает 2-3 мин. Первые порции его появляются в общем желчном протоке через 10-12 мин. На 2-5 минуте на сцинтиграммах отображаются печеночный и общий желчный проток, а через 2-3 минуты - желчный пузырь. Максимальная радиоактивность над печенью регистрируется в норме приблизительно через 12 минут после введения РФП. К этому времени кривая радиоактивности достигает максимума. Потом она приобретает характер плато: в этот период скорости захвата и выведения РФП приблизительно уравновешены. По мере выведения РФП с желчью радиоактивность печени снижается (на 50% за 30 минут), а интенсивность излучения над желчным пузырем возрастает. Но в кишечник выделяется очень мало РФП. Чтобы вызвать опорожнение желчного пузыря и оценить проходимость желчных путей, пациенту дают желчегонный завтрак. После этого изображение желчного пузыря прогрессивно уменьшается, а над кишечником регистрируется увеличение радиоактивности.

Радиоизотопное исследование почек и мочевыводящих путей радиоизотопный сцинтиграфия желчевыводящий печень.

Заключается в оценке функции почек, её проводят на основании визуальной картины и количественного анализа накопления и выведения паренхимой почек радиофармпрепаратов секретирующимися эпителием канальцев (гиппуран-131I, Технемаг-99mTc) или фильтрующихся почечными клубочками (ДТПА-99mTc).

Динамическая сцинтиграфия почек.

Методика визуализации почек и мочевыводящих путей сцинтиграфическим методом на гамма-камере с целью определения параметров накопления и выведения нефротропных РФП тубулярного и клубочкового механизмов элиминации. Динамическая реносцинтиграфия объединяет преимущества более простых методик и имеет более широкие возможности из-за использования компьютерных систем для обработки полученных данных.

Сканирование почек

Применяется для определения анатомо-топографических особенностей почек, локализации очага поражения и распространенности патологического процесса в них. Основаны на избирательном накоплении 99мТс - цитона (200 МБк) нормально функционирующей паренхимой почек. Применяются при подозрении на объемный процесс в почке, обусловленный злокачественной опухолью, кистой, каверной и пр., для выявления врожденной аномалии почек, выбора объема оперативного вмешательства, оценки жизнеспособности пересаженной почки.

Изотопная ренография

Основана на наружной регистрации g-излучения над областью почек от введенного в/в 131I - гиппурана (0,3-0,4 МБк), который избирательно захватывается и выводится почками. Показана при наличии мочевого синдрома (гематурия, лейкоцитурия, протеинурия, бактериурия и пр.) болевого синдрома в поясничной области, пастозности или отеков на лице, ногах, травме почек и др. Позволяет дать раздельную оценку для каждой почки скорости и интенсивности секреторной и экскреторной функции, определить проходимость мочевыводящих путей, а по клиренсу крови - наличие или отсутствие почечной недостаточности.

Радиоизотопное исследование сердца сцинтиграфия миокарда.

Метод основан на оценке распределения в сердечной мышце внутривенно введенного радиофармпрепарата, который включается в неповрежденные кардиомиоциты пропорционально коронарному кровотоку и метаболической активности миокарда. Таким образом, распределение радиофармпрепарата в миокарде отражает состояние коронарного кровотока. Области миокарда с нормальным кровоснабжением создают картину равномерного распределения радиофармпарепарата. Области миокарда с ограниченным коронарным кровотоком вследствие различных причин определяются как области со сниженным включением радиофармпрепарата, то есть, дефекты перфузии.

Метод постороен на способности меченых радионуклидом фосфатных соединений (монофосфаты, дифосфонаты, пирофосфат) включаться в минеральный обмен и накапливаться в органической матрице (коллаген) и минеральной части (гидроксилаппатит) костной ткани. Распределение радиофосфатов пропорционально кровотоку и интенсивности обмена кальция. Диагностика патологических изменений костной ткани основана на визуализации очагов гиперфиксации или реже дефектов накопления меченых остеотропных соединений в скелете.

5. Радиоизотопное исследование эндокринной системы сцинтиграфия щитовидной железы

Метод основан на визуализации функционирующей ткани щитовидной железы (включая аномально расположенную) с помощью радиофарпрепаратов (Na131I, пертехнетат технеция), которые поглощается эпителиальными клетками щитовидной железы по пути захвата неорганического йода. Интенсивность включения радионуклидных индикаторов в ткань железы характеризует ее функциональную активность, а также отдельных участков ее паренхимы («горячие» и «холодные» узлы).

Сцинтиграфия паращитовидных желез

Сцинтиграфическая визуализация патологически измененных паращитовидных желез основана на накоплении их тканью диагностических радиофармпрепаратов, об дающих повышенной тропностью к опухолевым клеткам. Выявление увеличенных паращитовидных желез проводят путем сравнения сцинтиграфических изображений полученных при максиальном накоплении радиофармпрепарата в щитовидной железе (тиреоидная фаза исследования) и при минимальном его содержании в щитовидной железе с максимумом накопления в патологически измененных паращитовидных железах (паратиреоидная фаза исследования).

Сцинтиграфия молочных желез (маммосцинтиграфия)

Диагностику злокачественных новообразований молочных желез проводят по визуальной картине распределения в ткани железы диагностических радиофарм препаратов, обладающих повышенной тропностью к опухолевым клеткам за счет повышенной проницаемостью гистогематического барьера в сочетании с более высокой плотностью клеток и более высокой васкуляризацией и кровотоком, по сравнению с неизмененной тканью молочной железы; особенностями метаболизма опухолевой ткани - повышением активности мембранной Na+-K+ АТФ-азы; экспрессией на поверхности опухолевой клетки специфических антигенов и рецепторов; усиленным синтезом белка в раковой клетке при пролиферации в опухоли; явлениями дистрофии и повреждения клеток в ткани рака молочной железы, за счет чего, в частности, выше содержание свободного Ca2+, продуктов повреждения клеток опухоли и межклеточного вещества.

Высокая чувствительность и специфичность маммосцинтиграфии определяют высокую прогностическую ценность отрицательного заключения этого метода. Т.е. отсутствие накопления радиофармпрепарата в исследуемых молочных железах указывает на вероятное отсутствие опухолевой жизнеспособной пролифирирующей ткани в них. В связи с этим, по данным мировой литературы многими авторами признается достаточным не выполнять пункционное исследование у пациентки в случае отсутствия накопления 99mTc-Технетрила в узловом «сомнительном» патологическом образовании, а лишь наблюдать за динамикой состояния в течение 4 - 6 мес.

Радиоизотопное исследование дыхательной системы

Перфузионная сцинтиграфия легких

Принцип метода основан на визуализации капиллярного русла легких с помощью меченых технецием макроагрегатов альбумина (МАА), которые при внутривенном введении эмболизируют небольшую часть капилляров легких и распределяются пропорционально кровотоку. Частицы МАА не проникают в паренхиму легких (интерстициально или альвеолярно), а временно окклюзируют капиллярный кровоток, при этом эмболизации подвергается 1:10000 часть легочных капилляров, что не отражается на гемодинамике и вентиляции легких. Эмболизация длится в течение 5-8 часов.

Вентиляция лёгких аэрозолем

Метод основан на вдыхании аэрозолей, полученных из радиофармпрепаратов (РФП), быстро выводимых из организма (чаще всего раствор 99m-Технеций DTPA). Распределение РФП в легких пропорционально регионарной легочной вентиляции, повышенное локальное накопление РФП наблюдается в местах турбулентности воздушного потока. Использование Эмиссионной Компьютерной Томографии (ЭКТ) позволяет локализовать пораженный бронхолегочный сегмент, что в среднем в 1.5 раза увеличивает точность диагностики.

Проницаемость альвеолярной мембраны

Метод основан на определении клиренса раствора радиофармпрепарата (РФП) 99m-Технеций DTPA из всего легкого или выделенного бронхолегочного сегмента после проведения вентиляции легких аэрозолем. Скорость выведения РФП прямо пропорциональна проницаемости легочного эпителия. Метод отличается неинвазивностью и простотой исполнения.

Радионуклидная диагностика in vitro (от лат. vitrum - стекло, поскольку все исследования проводят в пробирках) относится к микроанализу и занимает пограничное положение между радиологией и клинической биохимией. Принцип радиоиммунологического метода состоит в конкурентном связывании искомых стабильных и аналогичных им меченых веществ со специфической воспринимающей системой.

Cвязывающая система (чаще всего это специфические антитела или антисыворотка) вступает во взаимодействие одновременно с двумя антигенами, один из которых искомый, другой - его меченый аналог. Применяют растворы, в которых меченого антигена содержится всегда больше, чем антител. В этом случае разыгрывается настоящая борьба меченого и немеченого антигенов за связь с антителами.

Радионуклидный анализ in vitro стали называть радиоиммунологическим, поскольку он основан на использовании иммунологических реакций антиген-антитело. Так, если в качестве меченой субстанции применяют антитело, а не антиген, анализ называют иммунорадиометрическим; если же в качестве связывающей системы взяты тканевые рецепторы, говорят орадиорецепторном анализе.

Радионуклидное исследование в пробирке состоит из 4 этапов:

1. Первый этап - смешивание анализируемой биологической пробы с реагентами из набора, содержащего антисыворотку (антитела) и связывающую систему. Все манипуляции с растворами проводят специальными полуавтоматическими микропипетками, в некоторых лабораториях их осуществляют с помощью автоматов.

2. Второй этап - инкубация смеси. Она продолжается до достижения динамического равновесия: в зависимости от специфичности антигена ее длительность варьирует от нескольких минут до нескольких часов и даже суток.

3. Третий этап - разделение свободного и связанного радиоактивного вешества. С этой целью используют имеющиеся в наборе сорбенты (ионообменные смолы, уголь и др.), осаждающие более тяжелые комплексы антиген-антитело.

4. Четвертый этап - радиометрия проб, построение калибровочных кривых, определение концентрации искомого вещества. Все эти работы выполняются автоматически с помощью радиометра, оснащенного микропроцессором и печатающим устройством.

Ультразвуковые методы исследования.

Ультразвуковое исследование (УЗИ) - метод диагностики, основанный на принципе отра-жения ультразвуковых волн (эхолокации), передаваемых тканям от специального датчика - источника ультразвука - в мегагерцевом (МГц) диапазоне частоты ультразвука, от поверхностей, обла-дающих различной проницаемостью для ультразвуковых волн. Степень проницаемости зависит от плотности и эластичности тканей.

Ультразвуковые волны -- это упругие колебания среды с частотой, лежащей выше диапазона слышимых человеком звуков -- выше 20 кГц. Верхним пределом ультразвуковых частот можно считать 1 - 10 ГГц. Ультразвуковые волны относятся к числу неионизирующих излучений и в диапазоне, применяемом в диагностике, не вызывают существенных биологических эффектов

Для генерирования УЗ используются устройства, называемые УЗ-излучателями. Наибольшее распространение получили электромеханические излучатели, основанные на явлении обратного пьезоэлектрического эффекта. Обратный пьезоэффект заключается в механической деформации тел под действием электрического поля. Основной частью такого излучателя является пластина или стержень из вещества с хорошо выраженными пьезоэлектрическими свойствами (кварц, сегнетова соль, керамический материал на основе титаната бария и др.). На поверхность пластины в виде проводящих слоев нанесены электроды. Если к электродам приложить, переменное электрическое напряжение от генератора, то пластина благодаря обратному пьезоэффекту начнет вибрировать, излучая механическую волну соответствующей частоты.

Подобные документы

    Рентгенологическая диагностика - способ изучения строения и функций органов и систем человека; методы исследований: флюорография, дигитальная и электрорентгенография, рентгеноскопия, компьютерная томография; химическое действие рентгеновского излучения.

    реферат , добавлен 23.01.2011

    Методы диагностики, основанные на регистрации излучения радиоактивных изотопов и меченых соединений. Классификация видов томографии. Принципы использования радиофармацевтических препаратов в диагностике. Радиоизотопное исследование почечной уродинамики.

    методичка , добавлен 09.12.2010

    Расчет мощности ультразвукового излучателя, обеспечивающего возможность надёжной регистрации границы биологических тканей. Сила анодного тока и величина напряжения рентгеновского излучения в электронной трубке Кулиджа. Нахождение скорости распада таллия.

    контрольная работа , добавлен 09.06.2012

    Принцип получения ультразвукового изображения, способы его регистрации и архивирования. Симптомы патологических изменений при УЗИ. Методика УЗИ. Клиническое применение магнитно-резонансной томографии. Радионуклидная диагностика, регистрирующие устройства.

    презентация , добавлен 08.09.2016

    Внедрение рентгеновских лучей в медицинскую практику. Методы лучевой диагностики туберкулёза: флюорография, рентгеноскопия и рентгенография, продольная, магнитно-резонансная и компьютерная томография, ультразвуковое исследование и радионуклидные способы.

    реферат , добавлен 15.06.2011

    Инструментальные методы медицинской диагностики при рентгенологических, эндоскопических и ультразвуковых исследованиях. Сущность и разработка методов исследований и методика их проведения. Правила подготовки взрослых и детей к процедуре обследования.

    реферат , добавлен 18.02.2015

    Определение необходимости и диагностического значения рентгенологических методов исследования. Характеристика рентгенографии, томографии, рентгеноскопии, флюорографии. Особенности эндоскопических методов исследования при заболеваниях внутренних органов.

    презентация , добавлен 09.03.2016

    Виды рентгенологических исследований. Алгоритм описания здоровых легких, примеры снимков лёгких при пневмонии. Принцип компьютерной томографии. Использование эндоскопии в медицине. Порядок проведения фиброгастродуоденоскопии, показания для её назначения.

    презентация , добавлен 28.02.2016

    Биография и научная деятельность В.К. Рентгена, история открытия им Х-лучей. Характеристика и сравнение двух основных методов в медицинской рентгенодиагностике: рентгеноскопии и рентгенографии. Исследование органов желудочно-кишечного тракта и легких.

    реферат , добавлен 10.03.2013

    Основные разделы лучевой диагностики. Технический прогресс в диагностической радиологии. Искусственное контрастирование. Принцип получения рентгеновского изображения, а также плоскости сечения при томографии. Методика ультразвукового исследования.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ЛУЧЕВОЙ ДИАГНОСТИКИ И ЛУЧЕВОЙ ТЕРАПИИ

ОСНОВЫ И ПРИНЦИПЫ

ЛУЧЕВОЙ ДИАГНОСТИКИ

Учебно-методическое пособие

УДК 616-073.916 (075.8)

А в т о р ы: канд. мед. наук, доц. А.И. Алешкевич; канд. мед. наук, доц. В.В. Рожковская; канд. мед. наук, доц. И.И. Сергеева; канд. мед. наук, доц. Т.Ф. Тихомирова; ассист. Г.А. Алесина

Р е ц е н з е н т ы: д-р мед. наук, проф. Э.Е. Малевич; канд. мед. наук, доц. Ю.Ф. Полойко

О 75 Основы и принципы лучевой диагностики: Учеб-метод. пособие / А.И. Алешкевич [и др.]. – Минск: БГМУ, 2015. – 86 с.

ISBN 985-462-202-9

В учебно-методическом пособии освещены новейшие научные данные по вопросам традиционной рентгенодиагностики, рентгеновской компьютерной томографии, магнитно-резонансной томографии, ультразвуковой диагностики, радионуклидной диагностики, изложены физико-технические основы методов лучевой диагностики, возможности отдельных технологий медицинской визуализации при исследовании различных органов и систем. Представлены их ограничения и недостатки. Даны основы лучевой семиотики.

Рассмотрены аспекты радиационной безопасности при применении различных методов лучевой диагностики.

Учебно-методическое пособие соответствует разделам 2.1., 2.6 типовой и 1.1., 1.6 учебной программы. Предназначено для студентов всех факультетов медицинских вузов, врачей-интернов и клинических ординаторов. Перепишите из другого УМП.

УДК 616-073.916 (075.8)

ББК 53.6 и 73

ISBN 985-462-202-9

© Оформление. Белорусский государственный медицинский университет, 2014

ТЕМА «ОСНОВЫ И ПРИНЦИПЫ ЛУЧЕВОЙ ДИАГНОСТИКИ»

Общее время занятий – 14 часов.

Мотивационная характеристика

Лучевая диагностика и лучевая терапия – учебная дисциплина,

которые используются в медицинской науке и практике. Методы лучевой диагностики отличаются высокой информативностью, достоверностью и занимают одно из ведущих мест в системе клинического и профилактического исследования населения.

С помощью методов лучевой диагностики ставится подавляющее большинство всех первичных диагнозов, а в значительной части заболеваний диагностика вообще немыслима без применения этих методов.

Лучевые методы исследования еще называют интраскопическими методами, т.е. дающими возможность «видеть внутри», они являются основными при диагностике большинства заболеваний у лиц разных возрастных групп в практике терапевтов, ортопедов-травматологов,

неврологов и нейрохирургов, онкологов, хирургов, акушеров-гинекологов,

отоларингологов и многих других. Роль методов лучевой диагностики еще больше возросла с внедрением цифровых методов получения изображения.

Кроме задачи выявления и уточнения природы заболевания перед лучевыми методами также ставятся задачи оценки результатов консервативного и хирургического лечения, динамического наблюдения течения патологического процесса и полноты реконвалесценции.

Лучевая терапия, наряду с хирургическим вмешательством и химиотерапией, является одним из основных методов лечения злокачественных новообразований.

Лучевая диагностика входит также в состав интервенционной радиологии, которая заключается в выполнении лечебных вмешательств на

базе лучевых диагностических методов. В настоящем учебно-методическом пособии авторы постарались осветить новейшие научные данные по вопросам традиционной рентгенодиагностики, рентгеновской компьютерной томографии, магнитно-резонансной томографии, ультразвуковой диагностики, радионуклидной диагностики. Изложены физико-технические основы методов, возможности отдельных технологий медицинской визуализации при исследовании различных органов и систем.

Необходимо помнить, что некоторые методы лучевой диагностики обладают негативным воздействием на живой организм, поэтому целесообразность выбора метода исследования в каждом конкретном случае должен решаться с точки зрения тезиса «ПОЛЬЗА-ВРЕД», что особенно важно при исследовании детей и беременных женщин. И в задачи врача лучевой диагностики совместно с лечащим врачом входят разработка оптимального плана обследования пациента и при необходимости – дополнение или замена одного исследования другим.

В учебно-методическом пособии отражены все основные разделы,

предусмотренные учебной программой по дисциплине «Лучевая диагностика и лучевая терапия» для студентов 3 курса лечебного, педиатрического и медико-профилактического факультетов медицинских ВУЗов РБ.

Цель: ознакомить студентов с основами и принципами методов лучевой диагностики.

Задачи: по представленным материалам первичных исследований

(рентгенограммы, линейные и компьютерные томограммы, эхограммы, МРТ-

изображения, сцинтиграммы) определять метод лучевого исследования,

показания, возможности и ограничения метода.

Требования к исходному уровню знаний.

Успешное изучение темы «Основы и принципы лучевой диагностики» осуществляется на базе приобретенных студентом знаний и умений по разделам следующих дисциплин:

Общая химия. Химические элементы и их соединения. Химические

Медицинская и биологическая физика. Характеристика ионизирующих излучений. Радиоактивность. Взаимодействие ионизирующего излучения с веществом. Дозиметрия ионизирующих

излучений.

Медицинская биология и общая генетика. Биологические основы жизнедеятельности человека. Уровни организации жизни: молекулярно-

генетический, клеточный, организменный, популяционно-видовой,

биогеоценотический.

Анатомия человека. Строение тела человека, составляющих его систем, органов, тканей, половые и возрастные особенности организма.

Радиационная и экологическая медицина. Действие ионизирующих

излучений на живые объекты.

Нормальная физиология. Организм и его защитные системы.

Основные принципы формирования и регуляции физиологических функций.

Патологическая анатомия. Причины, механизмы и важнейшие проявления типичных патологических процессов. Определение понятия

«воспаление», «опухоль». Основные виды атипизма, характеризующие

Патологическая физиология. Этиология. Учение о патогенезе. Роль реактивности организма в патологии.

Фармакология. Принципы классификации противоопухолевых средств. Современные представления о механизме действия химиотерапевтических лекарственных препаратов.

Контрольные вопросы:

1. Какие виды электромагнитных колебаний применяются в лучевой диагностике?

2. Устройство рентгеновской трубки.

3. Основные свойства рентгеновского излучения.

4. Перечислите основные и специальные методы исследования.

5. Принципы рентгеноскопии, рентгенографии, флюорографии.

6. Цифровая (дигитальная) рентгенография.

7. Линейная томография.

8. Методы искусственного контрастирования, виды контрастных веществ.

9. Основы и принципы работы компьютерного томографа.

10.Спиральная и мультиспиральная компьютерная томография.

11.Физические основы и принципы работы магнитно-резонансного томографа.

12.Особенности изображения органов и тканей на магнитно-резонансных томограммах.

13.Основные импульсные последовательности, применяемые в МРТ.

14.Преимущества и ограничения МРТ.

15.Физические основы ультразвука и методики ультразвукового исследования.

16.Возможности допплерографии.

17.Основные термины, используемые при описании ультразвуковых исследований.

18.Ограничение метода УЗД.

19.Принципы противолучевой защиты и меры охраны труда при диагностическом использовании излучений.

ПРИНЦИПЫ И МЕТОДЫ ЛУЧЕВОЙ ДИАГНОСТИКИ

Лучевая диагностика – наука о применении различного вида излучений, а также звуковых колебаний высокой частоты для изучения структуры и функции внутренних органов в норме и при патологии. Лучевая диагностика включает в себярентгенодиагностику или рентгенологию

(сюда относиться и рентгеновская компьютерная томография – РКТ),

интервенционную радиологию.

Рентгенодиагностика (рентгенология) основана на применении

рентгеновского излучения; в основе использования магнитно-резонансной томографии находятся электромагнитные волны радиочастотного диапазона и постоянное магнитное поле;ультразвуковая диагностика (сонография)

в основе – использование ультразвуковых волн. К методам лучевой диагностики относится также радионуклидная диагностика , основанная на принципе регистрации излучений от введенных в организм препаратов,

ФИЗИКО-ТЕХНИЧЕСКИЕ ОСНОВЫ

ЛУЧЕВОЙ ДИАГНОСТИКИ

Методы рентгенодиагностики получили наибольшее распространение среди всех лучевых методов и до настоящего времени занимают лидирующие позиции по количеству исследований. Именно они по-

прежнему являются основой для диагностики травматических повреждений и заболеваний скелета, болезней легких, пищеварительного тракта и др. Это связано с относительно небольшой стоимостью рентгеновских аппаратов,

простотой, надежностью и уже давно сложившейся традиционной школой рентгенологии. Практически все специалисты в той или иной степени сталкиваются с необходимостью интерпретации рентгеновских снимков.

Ультразвуковые, магнитно-резонансные и изотопные исследования развились до уровня полезных для медицинской практики методов диагностики в 70-80 годах XX ст., в то время как рентгеновское излучение было открыто и нашло применение в медицине еще в конце XIX века.

Вильгельм Конрад Рентген и его Х-лучи

В 1894 году профессор физики Вюрцбургского университета Вильгельм Конрад Рентген (рис. 1) приступил к экспериментальным исследованиям электрического заряда в вакуумных трубках. В этой области уже много было сделано другими исследователями (этим вопросом занимались французский физик Антуан-Филибер-Массон, английский физик Уильям Крукс и немецкий физик Филипп фон Ленард.

электровакуумной трубкой, на которую подавался ток высокого напряжения.

Чтобы облегчить наблюдения, Рентген затемнил комнату и обернул трубку плотной непрозрачной черной бумагой. К своему удивлению, он увидел на стоявшем на некотором удалении экране, покрытом платиноцианистым барием, полосу флюоресценции. Удивление его было связано с тем, что на тот момент уже было известно, что катодные лучи были короткодействующими и могли вызывать свечение вещества только вблизи трубки. В данном же случае речь шла о воздействии на расстоянии около двух метров. Рентген тщательно проанализировал и проверил возможность ошибки и убедился, что источником излучения является именно вакуумная трубка, а не часть цепи или индукционная катушка. Флюоресценция появлялась всякий раз только при включении трубки.

Тогда В.К. Рентген предположил, что свечение экрана связано не с катодными лучами, а другим видом лучей, ранее неизвестными, которые способны воздействовать на значительном расстоянии. Эти лучи он так и назвал – Х-лучи (неизвестные лучи).

Последующие семь недель Рентген не выходил из своей лаборатории,

проводя исследования с новым видом неизвестных или Х-лучей.

Широкую известность приобрела выполненная Рентгеном с помощью Х-лучей фотография кисти жены Берты Рентген, выполненная 22 декабря

1895 года (рис. 2). На ней отчетливо видны кости на фоне изображения мягких тканей (задерживающих Х-лучи в меньшей степени) и тень от кольца на пальце. Фактически это была первая рентгенограмма в истории. За очень короткий отрезок времени Рентген изучил и описал все основные свойства новых Х-лучей.

Рентген стал первым (1901 г.) лауреатом Нобелевской премии по физике «в знак признания необычайно важных заслуг перед наукой,

выразившихся в открытии замечательных лучей, названных впоследствии в его честь». Решением I Международного съезда по рентгенологии в 1906 г.

Х-лучи были названы рентгеновскими.

Основные свойства рентгеновского излучения.

Рентгеновская аппаратура

Рентгеновское излучение представляет собой электромагнитные волны

(поток квантов, фотонов), которые в общеволновом спектре расположены между ультрафиолетовыми лучами и γ-лучами. Они отличаются от радиоволн, инфракрасного излучения, видимого света и ультрафиолетового излучения меньшей длиной волны (рис. 3). Длина волны рентгеновских лучей (λ) составляет от 10 нм до 0,005 нм (10-9 -10-12 м).

Рис. 3. Положение рентгеновского излучения в общем спектре электромагнитных излучений.

Поскольку рентгеновские лучи являются электромагнитными волнами,

помимо длины волны, они могут быть описаны частотой и энергией, которые несет каждый квант (фотон). Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от

3х1016 Гц до 6х1019 Гц. Скорость распространения рентгеновских лучей равна скорости света – 300 000 км/с.

Основными свойствами рентгеновских лучейявляются:

1) высокая проникающая способность ;

2) поглощение и рассеивание ;

3) прямолинейность распространения – рентгеновское изображение всегда точно повторяет форму исследуемого объекта;

4) способность вызывать флюоресценцию (свечение) при

прохождении через некоторые вещества – эти вещества называются

1 Методы лучевой диагностики:

R-логический, рентгеновская компьютерная томография, МРТ, УЗИ, РНД – радионуклеидная диагн-ка,.медицинская теплография. Рентген.исследование – через тело больного пропускает пучок рентгеновского излучения. Рентгеновские лучи – электромагнитные колебания, расположенные в той части спектра, которая ограничена УФ и гамма - лучами. Св-ва R-лучей – проникающая способность – это способность R - лучей проходить через объекты. Зависит от длины, чем короче длина тем выше проникающая способность (жесткие с высокой проникающей способностью (череп, гр.клетка); мягкие – с небольшой проникающей способностью (гр. железа)). Лучи проходят через органы и ткани разной величины, плотности и химического состава → на выходе из тела человека пучок излучения совсем не такой каким был на входе, он стал неоднородным. Для того чтобы это выявить на пути выходного пучка устанавливают специальный экран либо кассету с рентгеновской пленкой. На экране или на пленке (после фотообработки) или на дисплее возникает рентгеновское изображение. Рентгенограмма является лишь моделью объекта, которое дает достоверное представление о структуре объекта, о строение органов и систем. Рентгеновская компьютерная томография – это послойное исследование, основанное на компьютерной реконструкции изображения, получаемое при круговом сканировании узким пучком рентген излучения (томографы – шаговые, послойные, мультиспиральные). МРТ - исследование с использованием мощного радиомагнитного сигнала (томографы – открытый и закрытый) Т2 – при повороте на 90º, Т1 – при повороте на 180º. Достоинства – неинвазивность, отсутствие лучевой нагрузки, трехмерный характер получения изображения, естественный контраст от движущейся крови, отсутствие артефактов от костных тканей, высокая дифференциация мягких тканей. недостатки – значительная продолжительность исследования, артефакты от дыхательных движений, нарушение сердечного ритма, ненадежное выявление камней, кальцификатов, высокая стоимость оборудования и его эксплуатации, спец требования к помещению. УЗИ – ультразвук – звуковые колебания частотой выше 20000Гц. УЗ-аппарат – датчик набор пьезоэлементов изучающих ультразвук в импульсном режиме и воспринимающие его после определенной задержки (виды – аналоговые и цифровые). Отображение на экране - эхогенность ткани (хар-ка отображающей способности объекта, акустическая плотность), компенсационное усиление, звукопроводимость (степень затухания и рассеяния УЗ в тканях). доплерография – отражает весь спектр скоростей отдельных элементов в контрольном объеме (скорость, направление кровотока, мочеточниковые выбросы, поток мочи в мочеточнике). Радионуклеидная диагностика – использование ионизирующей радиации – основана на обнаружении излучения испускаемые находящимися внутри пациента радиоактивными в-вами (туморотропными – опухоли, органотропными – органы и системы) главное преимущество – возможность изучения физиологических функций. Термография- каждый человек представляет собой источник теплового излучения. Посредством специального прибора термографа, можно уловить инфракрасное излучение и преобразовывать его в изображение на экране электроннолучевой трубки. Получаемое изображение – термограмма – показывает распределение тепла на поверхности тела человека

9 Лучевая диагностика повреждения костей и суставов, методы и методики, показания к назначению, возможности и противопоказания: рентгенологическое - рентгенография – выполняется в 2-х проекциях прямая и боковая. (дополнительные – прицельные, тенгинциальные). Также проводится искусственное контрастирование (артропневмография – в полость сустава вводится углекислый газ. Лимфография и ангиография. Оценка рентгенограммы – оценка правильного соотношения костей и суставов, форма костей, поверхность, структура, состояние мягких тканей. Методики рентгеновского исследования: 1) основные – обзорная рентгенография – видим все элементы анатомического региона. Прицельные рентгенографии. 2) дополнительные – линейная томография, искусственное контрастирование, телерентгенография, электрорентгенография. 3) специальные. показания практически любое заболевание. Противопоказания: абсолютных не существует, относительные – крайнетяжелое положение больного, беременность, превышение лучевой нагрузки. Рентгеновская компьютерная томография.

17.Осн.формы периостальных наслоений.

Контуры кости в N гладкие и четкие, где прикрепл-ся м-цы – шероховатые; изменения св-ны с периостал. наслоениями – р-ция надкостницы (периостит). По распрост-ти: 1) местные, 2) множествен, 3) генерализован. По форме: 1) линейные (линейная тень, не сращена с костью – при воспал.заб-х →затем срастается с костью – локал.утолщение); 2) луковичные (опухоль Юинга); 3) кружевные или бахромчатые (дополнит. причудливые формы, окутывающие сустав – при третич. сифилисе); 4) игольчатые, или спикулообразные (им-т вид тонких иголочек, распол-х ┴ к ости кости – злок.остеосаркома); 5) по типу «козырька» (окостенение надкост-цы у края опухоли – злок.опухоль кости, когда оп-ль растет изнутри кости).

31.РКТ органов груд.кл-ки. Пок-ния, п/п. Подготовка к иссл-ю. Эффектив-ть.

При иссл-и хорошо видны органы средостения, с-це, магистр. сосуды, а также легкие и л/у корня и средост-я. В перед. средостении легко визуализ-ся загрудин. зоб, дифференц-ся опухоль и аневризма аорты, особ-но после введ-я контраст. в-ва, кот. выз-т коэф-та поглощ-я в просвете аневризмы; удается видеть опухоли лег-х и их МТС в средост-е. Соврем. комп. томографы позвол-т распознать трудно ДЗ-тируемые заб-ния с-ца: опухоль предс-я (миксому), выпот в перикарде, тромбы в лев. предс-и.

П/п: крайне тяж.сост-е б-го, бер-ть, превышение допустимых доз. Подготовка для РКТ органов гр.кл-ки не требуется.

26. R -логич.признаки дивертикулов.

Дивертикул – ограничен.выпячивание стенки полого органа. В это выпяч-е затекает контр.масса, но в противопол-ть нише у див-ла им-ся более узкое место у основания («шейка дивертикула»); в него входят нормал.складки слиз.об., а сам он им-т правил. округлую форму. Дивертикулез – множественные див-лы.

Диверт-лы пищевода. По лок-ции: глоточно-пищеводные (ценкеровские), парабронхиальный, эпифренальный (наддиафрагмал), поддиафрагмальный, эпикардиальный. От мех-зма возник-я: 1)тракционный (после перенесен.воспал.заб-я в окруж-х тк-ях →рубцы, кот.вытяг-т стенку пищ-да в ст-ну поражен.органа) - ∆формы, небол.разм; 2)пульсионные (на месте слабости мыш.стенки, под д-вием выс. в/пищевод. давл-я) – м.достиг-ть бол.размеров, мешотчатый, округлый; 3)смешан.- люб.формы. Разл-т: истинные, псевдо (при эзофагоспазме, при расслабл-и исчез-т).

Контраст. R -логич.иссл-е: наличие, ширина шейки, ст-нь наруш-я прох-ти п-да, пр-ки разв-я в див-ле полипа и рака, формиров-ие свищей.

Див-лы тонк.к-ки. Врожденные (истин) им-т все слои киш.ст-ки, расп-ны чаще на противобрыжееч.стороне; приобрет (ложные) – не им-т мыш.об., чаще у места прикрепл-я брыжецки к к-ке. Див-лы толстой к-ки: врожденные – вслед-е наруш-я гистогенеза в эмбрион.п-де; приобрет (ложные) – в рез-те выпяч-я слиз.об. ч/з дефекты мышечной. R-логически – см.ранее.

37 R признаки нар-я бронхиальной проходимости.

Бронхография- контрастированные бронхи. КТ. Нарушение связано с ↓ просвета либо с закупоркой 1 или неск-х бронхов. R картина разнообразна: м б обширное/ ограниченное затемнение или просветление. Виды бронхостеноза : а) обтурационный- закрытие изнутри б)компрессионный- снаружи Три степени : 1 частичная сквозная закупорка. Воздушная часть легкого вентилируемая этим бронхом ↓. R: умеренное ↓ прозрачности этой части легкого (при сужении главного бронха- всего легкого), а лег рис усилен из-за сближения сосудов. В начальной фазе вдоха небольшое смещение органов средостения в сторону гиповентиляции. 2ст клапанная закупорка бронха (воздух входит, но не выходит). Дистальнее бронхостеноза→ вентиляционное вздутие легкого (обтурационная эмфизема). Если главный бронх- все легкое -но, прозрачность его -на. Органы средостения оттесняются в здоровую сторону (при значительном смещении ↓ прозрачность здорового легкого, т к сдавление). Расширяются межреберья, диафрагма опускается. 3 ст полная закупорка бронха (воздух не проходит)→ спадение легкого. R: ↓ в объеме легкого (или его части), однородное затемнение на R. При вдохе органы средостения смещаются в больную сторону, при кашлевом толчке в момент выдоха - в здоровую. N.B.: строгое соответствие затемнения границам: при поражении долевого бронха- одноименной доле, при поражении сегментарного бронха- одноименному сегменту.

40 Лучевая ds -ка остеопороза.

Начальная фаза артрита (разрежение кости). R симптомы артрита: 1) сужение суставной щели (за счет разрушения хряща) 2) истончение или разрушение замыкающей костной пластинки в обоих суставных концах 3) остеопороз суставных концов 4) деструктивные очаги в подхрящевом слое губчатого костного в-ва эпифизов. 1) R-графия в 2-х стандарт. проекциях (прям и бок.); прицельные снимки, тангенсальные; 2)Искусствен. контрастирование: а)артрография – введ-е в полость сустава контр.в-в (газа, йодсодержащих) для выявл-ия измен-ий контуров мягк.тк-ей (синовиал.оболочка, мениски); б) лимфография, в)ангиогр-я; 3)Артроскопия – при налич-и электронно-оптич.преобразователя.

48 Лучевая ds -ка травматических повреждений гр кл.

1) Рентгенография в 2-х проекциях. 2) Рентгеноскопия. Часто сразу дают пост-ть оконч. ДЗ патол. проц-са, опред-ть лок-цию пораж-я для провед-я направленного иссл-я. 3) КТ- позвол-т получить R-изображ-е попереч-х срезов гр.кл-ки и ее органов с бол.четкостью изображ-я и разрешающей спос-тью 4) УЗ-сканиров-ие (при налич-и жид-ти в плев. п-ти). 5) Контрастир-ие бронх. дерева (бронхогр-я, трахеобронхоскопия). 6) Ангиопульмоногр-я, артериогр-я бронх.арт-й.

43 Основные методики R -го исследования.

R- скопия, R-графия: аналоговая и цифровая. 4 элемента R-го исследования: источник излучения, объект исследования, приемник излучения и специалист. Простейшим приемником служит флюороскопический экран, он покрыт спец составом кот светиться под R лучами - R - скопия. Приемником м б R пленка, в эмульсии кот сод галоидные соед-я серебра, кот разлагают R лучи - R -графия. Методики: 1 Основные: обзорная (все элементы одного анатомического региона) и прицельная R- графии 2 Дополнительные: линейная томография, искусст контрастирование, телеR-графия, электроR-графия 3 Спец-е: маммография, ортопантомография (снимки зубов), радиовизиография (снимки внутри п-ти рта) Требования к R -граммам : снимки в двух взаимно перпендикулярных объектах.

47 R КТ. Возможности метода, недостатки, показания к применению.

КТ- послойное исслед-е основанное на компьютерной реконструкции изображения, получаемого при круговом сканировании объекта узким пучком R-го излучения.

Самый чувствительный приемник это набор ионизирующих камер, их показания излучения во всех частях R-го пучка передается на компьютер. Стол и рама. Томографы: шаговые, спиральные, мультиспиральные. Особенности: 1 отсут суперпозиционности (суммация эффекта) 2 попереч ориентация слоя 3 высокое контрастное разрешение 4 опред-е коэф-та поглощения 5 различные виды обработки изображения. Ед измерения: Хаунсфилд. Недостатки: стр-ры зад черепной ямки (мозжечок, ствол мозга), СМ, ЖКТ. Трудности: когда в области исслед-я нах-ся металлические предметы. Подготовка: для КТ бр п-ти: вечером и за 1,5 дают контрастное в-во.

Методическая разработка № 2

к практическому занятию по лучевой диагностике для студентов 3 курса лечебного факультета

Тема: Основные методы лучевой диагностики

Выполнила: интерн Пекшева М.С.


Основные методы лучевой диагностики:

1. Методы на основе рентгеновского излучения:

· Флюорография

· Традиционная рентгенография, рентгеноскопия

· Рентгеновская компьютерная томография

· Ангиография (рентгеноконтрастные исследования)

2. Методы на основе ультразвука:

· Общее ультразвуковое исследование

· Эхокардиография

· Доплерография

3. Методы, основанные на эффекте ЯМР:

· МР-спектроскопия

4. Методы, основанные на использовании радионуклидных препаратов

· Радионуклидная диагностика

· Позитронно-эмиссионная томография

· Радиоиммунологическое исследование in vitro

5. Инвазивные процедуры в лечении и диагностике, проводимые под контролем лучевых методов исследования:

· Интервенционная радиология.

Свойства рентгеновских лучей:

· Способны проникать через тела и предметы, которые поглощают или отражают (т.е. не пропускают) видимые световые лучи.

· Как и видимый свет могут создавать на светочувствительном материале (фото- или рентгеновской пленке) скрытое изображение, которое после проявления становится видимым

· Вызывают флюоресценцию (свечение) ряда химических соединений используемых в рентгеноскопических экранах

· Обладают высокой энергией и способны вызывать распад нейтральных атомов на + и – заряженные частицы (ионизирующее излучение).

Традиционная рентгенография .

Рентгенография (рентгеновская съемка) - способ рентгенологического исследования, при котором фиксированное рентгеновское изображение объекта получают на твердом носителе, в подавляющем большинстве случаев на рентгеновской пленке. В цифровых рентгеновских аппаратах это изображение может быть зафиксировано на бумаге, в магнитной или магнитно-оптической памяти, получено на экране дисплея.

Рентгеновская трубка представляет собой вакуумный стеклянный сосуд, в концы которого впаяны два электрода - катод и анод. Последний выполнен в виде тонкой вольфрамовой спирали, вокруг которой при ее нагревании образуется облако свободных электронов (термоэлектронная эмиссия). Под действием высокого напряжения, приложенного к полюсам рентгеновской трубки, они разгоняются и фокусируются на аноде. Последний вращается с огромной скоростью - до 10 тыс. оборотов в 1 мин, чтобы поток электронов не попадал в одну точку и не вызвал расплавления анода из-за его перегрева. В результате торможения электронов на аноде часть их кинетической энергии превращается в электромагнитное излучение.

В состав типового рентгенодиагностического аппарата входят питающее устройство, излучатель (рентгеновская трубка), устройство для коллимации пучка, рентгеноэкспонометр и приемники излучения.

На рентгенограммах можно получить изображение любой части тела. Некоторые органы хорошо различимы на снимках благодаря естественной контрастности (кости, сердце, легкие). Другие органы достаточно четко отображаются только после их искусственного контрастирования (бронхи, сосуды, желчные протоки, полости сердца, желудок, кишечник). В любом случае рентгенологическая картина формируется из светлых и темных участков. Почернение рентгеновской пленки, как и фотопленки, происходит вследствие восстановления металлического серебра в ее экспонированном эмульсионном слое. Для этого пленку подвергают химической и физической обработке: проявляют, фиксируют, промывают, сушат. В современных рентгеновских кабинетах весь процесс обработки пленки автоматизирован благодаря наличию проявочных машин. Следует помнить, что рентгеновский снимок является негативом по отношению к изображению, видимому на флюоресцентном экране при просвечивании, поэтому прозрачные для рентгеновских лучей участки тела на рентгенограммах получаются темными («затемнения»), а более плотные - светлыми («просветления»).

Показания к рентгенографии весьма широки, но в каждом конкретном случае должны быть обоснованы, так как рентгенологическое исследование сопряжено с лучевой нагрузкой. Относительными противопоказаниями служат крайне тяжелое состояние или сильное возбуждение больного, а также острые состояния, при которых требуется экстренная хирургическая помощь (например, кровотечение из крупного сосуда, открытый пневмоторакс).

Методу рентгенографии присущи следующие достоинства:

· метод довольно прост при выполнении и широко применяется;

· рентгеновский снимок - объективный документ, который может длительно храниться;

· сопоставление особенностей изображения на повторных снимках, выполненных в различные сроки, позволяет изучить динамику возможных изменений патологического процесса;

· относительная малая лучевая нагрузка (по сравнению с режимом просвечивания) на больного.

Недостатки рентгенографии



· сложность оценки функции органа.

· Наличие ионизирующего излучения, способного оказать вредное воздействие на исследуемый организм.

· Информативность классической рентгенографии значительно ниже таких современных методов медицинской визуализации, как КТ, МРТ и др. Обычные рентгеновские изображения отражают проекционное наслоение сложных анатомических структур, то есть их суммационную рентгеновскую тень, в отличие от послойных серий изображений, получаемых современными томографическими методами.

· Без применения контрастирующих веществ рентгенография мало информативна для анализа изменений в мягких тканях.

Рентгеноскопия – метод получение рентгеновского изображения на светящемся экране.

В современных условиях применение флюоресцентного экрана не обосновано в связи с его малой светимостью, что вынуждает проводить исследования в хорошо затемненном помещении и после длительной адаптации исследователя к темноте (10-15 минут) для различения малоинтенсивного изображения. Вместо классической рентгеноскопии применяется рентгенотелевизионное просвечивание, при котором рентгеновские лучи попадают на УРИ (усилитель рентгеновского изображения), в состав последнего входит ЭОП (электронно-оптический преобразователь). Получаемое изображение выводится на экран монитора. Вывод изображения на экран монитора не требует световой адаптации исследователя, а также затемненного помещения. В дополнение, возможна дополнительная обработка изображения и его регистрация на видеопленке или памяти аппарата.

Преимущества:

· Методика рентгеноскопии проста и экономична, позволяет исследовать больного в различных проекциях и положениях (многоосевое и полипозиционное исследование), оценить анатомо-морфологические и функциональные особенности изучаемого органа.

· Главным преимуществом перед рентгенографией является факт исследования в реальном масштабе времени. Это позволяет оценить не только структуру органа, но и его смещаемость, сократимость или растяжимость, прохождение контрастного вещества, наполняемость.

· Рентгеноскопия позволяет контролировать проведение некоторых инструментальных процедур - постановка катетеров, ангиопластика (см. ангиография), фистулография.

Вместе с тем, для метода характерны определенные недостатки:

· значительная лучевая нагрузка на больного, величина которой находится в прямой зависимости от размеров изучаемого поля, продолжительности исследования и ряда других факторов; относительно низкая разрешающая способность

· необходимость специального обустройства рентген-кабинета (его расположения по отношению к другим отделениям, улице и т.д)

· необходимость использования защитных устройств (фартуки, ширмы)

Цифровые технологии в рентгеноскопии можно разделить на:

Полнокадровый метод

Этот метод характеризуется получением проекции полного участка исследуемого объекта на рентгеночувствительный приёмник (пленка или матрица) размера близкого к размеру участка. Главным недостатком метода является рассеянное рентгеновское излучение. При первичном облучении всего участка объекта (например, тело человека) часть лучей поглощается телом, а часть рассеивается в стороны, при этом дополнительно засвечивает участки, поглотившие первоначально прошедшие рентгеновские лучом. Тем самым уменьшается разрешающая способность, образуются участки с засветкой проецируемых точек. В итоге получается рентгеновское изображение с уменьшением диапазона яркостей, контрастности и разрешающей способности изображения. При полнокадровом исследовании участка тела одновременно облучается весь участок. Попытки уменьшить величину вторичного рассеянного облучения применением радиографического растра приводит к частичному поглощению рентгеновских лучей, но и увеличению интенсивности источника, увеличению дозировки облучения.[править]

Сканирующий метод

Однострочный сканирующий метод: Наиболее перспективным является сканирующий метод получения рентгеновского изображения. То есть рентгеновское изображение получают движущимся с постоянной скоростью определенным пучком рентгеновских лучей. Изображение фиксируется построчно (однострочный метод) узкой линейной рентгеночувствительной матрицей и передаётся в компьютер. При этом в сотни и более раз уменьшается дозировка облучения, изображения получаются практически без потерь диапазона яркости, контрастности и, главное, объёмной (пространственной) разрешающей способности.

Многострочный сканирующий метод: В отличие от однострочного сканирующего метода, многострочный наиболее эффективен. При однострочном методе сканирования из-за минимальной величины размера пучка рентгеновского луча (1-2мм), ширины однострочной матрицы 100мкм, наличием разного рода вибраций, люфтов аппаратуры, получаются дополнительные повторные облучения. Применив многострочную технологию сканирующего метода, удалось в сотни раз уменьшить вторичное рассеянное облучение и во столько же раз снизить интенсивность рентгеновского луча. Одновременно улучшены все прочие показатели получаемого рентгеновского изображения: диапазон яркости, контраст и разрешение.

Рентгеновская флюорография - представляет крупнокадровое фотографирование изображения с рентгеновского экрана (формат кадра 70x70 мм, 100x100 мм, 110x110 мм). Метод предназначен для проведения массовых профилактических исследований органов грудной клетки. Достаточно высокое разрешение изображения крупноформатных флюорограмм и меньшая затратность позволяют также использовать метод для исследования больных в условиях поликлиники или стационара.

Цифровая рентгенография : (МЦРУ)

основанная на прямом преобразовании энергии рентгеновских фотонов в свободные электроны. Подобная трансформация происходит при действии рентгеновского пучка, прошедшего через объект, на пластины из аморфного селена или аморфного полукристаллического силикона. По ряду соображений такой метод рентгенографии пока используют только для исследования грудной клетки. Независимо от вида цифровой рентгенографии окончательное изображение при ней сохраняется на различного рода носителях либо в виде твердой копии (воспроизводится с помощью мультиформатной камеры на специальной фотопленке), либо с помощью лазерного принтера на писчей бумаге.

К достоинствам цифровой рентгенографии относятся

· высокое качествоизображения,

· возможность сохранять изображения на магнитных носителях со всеми вытекающими из этого последствиями: удобство хранения, возможность создания упорядоченных архивов с оперативным доступом к данным и передачи изображения на расстояния - как внутри больницы, так и за ее пределы.

К недостаткам помимо обще-рентгенологических (обустройство и расположение кабинета), относится высокая стоимость оборудования.

Линейная томография:

Томография (от греч. tomos - слой) - метод послойного рентгенологического исследования.

Эффект томографии достигается благодаря непрерывному движению во время съемки двух из трех компонентов рентгеновской системы излучатель-пациент-пленка. Чаще всего перемещаются излучатель и пленка, в то время как пациент остается неподвижным. При этом излучатель и пленка двигаются по дуге, прямой линии или более сложной траектории, но обязательно в противоположных направлениях. При таком перемещении изображение большинства деталей на рентгенограмме оказывается нечетким, размазанным, а резким получается изображение только тех образований, которые находятся на уровне центра вращения системы излучатель-пленка. Показания к томографии достаточно широки, особенно в учреждениях, в которых нет компьютерного томографа. Наиболее широкое распространение томография получила в пульмонологии. На томограммах получают изображение трахеи и крупных бронхов, не прибегая к их искусственному контрастированию. Томография легких очень ценна для выявления полостей распада на участках инфильтрации или в опухолях, а также для обнаружения гиперплазии внутригрудных лимфатических узлов. Она также дает возможность изучить структуру околоносовых пазух, гортани, получить изображение отдельных деталей такого сложного объекта, каким является позвоночник.

В основе качества изображения лежат:

· Характеристики рентгеновского излучения (mV, mA, время, доза (ЭЭД), однородность)

· Геометрия (размер фокусного пятна, фокусное расстояние, размер объекта)

· Тип устройства (экранно-пленочный аппарат, запоминающий люминофор, система детекторов)

Непосредственно определяют качество изображения:

· Динамический диапазон

· Контрастная чувствительность

· Соотношение сигнал-шум

· Пространственное разрешение

Косвенно влияют на качество изображения:

· Физиология

· Психология

· Воображение\фантазия

· Опыт\информированность

Классификация рентгеновских детекторов:

1. Экранно-пленочные

2. Цифровые

· На основе запоминающих люминофоров

· На основе УРИ

· На основе газоразрядных камер

· На основе полупроводников (матрицы)

На фосф пластинах: специальные кассеты на которые можно делать много изображений (считывание изображений с пластины на монитор, пластина хранит изображение до 6 часов)

Компьютерная томография - это послойное рентгенологическое исследование, основанное на компьютерной реконструкции изображения, получаемого при круговом сканировании объекта узким пучком рентгеновского излучения.

Узкий пучок рентгеновского излучения сканирует человеческое тело по окружности. Проходя через ткани, излучение ослабляется соответственно плотности и атомному составу этих тканей. По другую сторону от пациента установлена круговая система датчиков рентгеновского излучения, каждый из которых (а их количество может достигать нескольких тысяч) преобразует энергию излучения в электрические сигналы. После усиления эти сигналы преобразуются в цифровой код, который поступает в память компьютера. Зафиксированные сигналы отражают степень ослабления пучка рентгеновских лучей (и, следовательно, степень поглощения излучения) в каком либо одном направлении. Вращаясь вокруг пациента, рентгеновский излучатель «просматривает» его тело в разных ракурсах, в общей сложности под углом 360°. К концу вращения излучателя в памяти компьютера оказываются зафиксированными все сигналы от всех датчиков. Продолжительность вращения излучателя в современных томографах очень небольшая, всего 1-3 с, что позволяет изучать движущиеся объекты. При использовании стандартных программ компьютер реконструирует внутреннюю структуру объекта. В результате этого получается изображение тонкого слоя изучаемого органа, обычно порядка нескольких миллиметров, которое выводится на дисплей, и врач обрабатывает его применительно к поставленной перед ним задаче: может масштабировать изображение (увеличивать и уменьшать), выделять интересующие его области (зоны интереса), определять размеры органа, число или характер патологических образований. Попутно определяют плотность ткани на отдельных участках, которую измеряют в условных единицах - единицах Хаунсфилда (HU). За нулевую отметку принята плотность воды. Плотность кости составляет +1000 HU, плотность воздуха равна -1000 HU. Все остальные ткани человеческого тела занимают промежуточное положение (обычно от 0 до 200-300 HU). Естественно, такой диапазон плотностей отобразить ни на дисплее, ни на фотопленке нельзя, поэтому врач выбирает ограниченный диапазон на шкале Хаунсфилда - «окно», размеры которого обычно не превышают нескольких десятков единиц Хаунсфилда. Параметры окна (ширина и расположение на всей шкале Хаунсфилда) всегда обозначают на компьютерных томограммах. После такой обработки изображение помещают в долговременную память компьютера или сбрасывают на твердый носитель - фотопленку.

Бурно развивается спиральная томография, при которой излучатель движется по спирали по отношению к телу пациента и захватывает, таким образом, за короткий промежуток времени, измеряемый несколькими секундами, определенный объем тела, который в последующем может быть представлен отдельными дискретными слоями.

Спиральная томография инициировала создание новых способов визуализации - компьютерной ангиографии, трехмерного (объемного) изображения органов и, наконец, виртуальной эндоскопии.

Поколения компьютерных томографов: от первого до четвёртого

Прогресс КТ томографов напрямую связан с увеличением количества детекторов, то есть с увеличением числа одновременно собираемых проекций.

1. Аппарат 1-го поколения появился в 1973 г. КТ аппараты первого поколения были пошаговыми. Была одна трубка, направленная на один детектор. Сканирование производилось шаг за шагом, делая по одному обороту на слой. Один слой изображения обрабатывался около 4 минут.

2. Во 2-ом поколении КТ аппаратов использовался веерный тип конструкции. На кольце вращения напротив рентгеновской трубки устанавливалось несколько детекторов. Время обработки изображения составило 20 секунд.

3. 3-е поколение компьютерных томографов ввело понятие спиральной компьютерной томографии. Трубка и детекторы за один шаг стола синхронно осуществляли полное вращение по часовой стрелке, что значительно уменьшило время исследования. Увеличилось и количество детекторов. Время обработки и реконструкций заметно уменьшилось.

4. 4-ое поколение имеет 1088 люминесцентных датчика, расположенных по всему кольцу гентри. Вращается лишь рентгеновская трубка. Благодаря этому методу время вращения сократилось до 0,7 секунд. Но существенного отличия в качестве изображений с КТ аппаратами 3-го поколения не имеет.

Спиральная компьютерная томография

Спиральная КТ используется в клинической практике с 1988 года, когда компания Siemens Medical Solutions представила первый спиральный компьютерный томограф. Спиральное сканирование заключается в одновременном выполнении двух действий: непрерывного вращения источника - рентгеновской трубки, генерирующей излучение, вокруг тела пациента, и непрерывного поступательного движения стола с пациентом вдоль продольной оси сканирования z через апертуру гентри. В этом случае траектория движения рентгеновской трубки, относительно оси z - направления движения стола с телом пациента, примет форму спирали. В отличие от последовательной КТ скорость движения стола с телом пациента может принимать произвольные значения, определяемые целями исследования. Чем выше скорость движения стола, тем больше протяженность области сканирования. Важно то, что длина пути стола за один оборот рентгеновской трубки может быть в 1,5-2 раза больше толщины томографического слоя без ухудшения пространственного разрешения изображения. Технология спирального сканирования позволила значительно сократить время, затрачиваемое на КТ-исследование и существенно уменьшить лучевую нагрузку на пациента.

Многослойная компьютерная томография (МСКТ). Многослойная («мультиспиральная») компьютерная томография с внутривенным контрастным усилением и трёхмерной реконструкцией изображения. Многослойная («мультиспиральная», «мультисрезовая» компьютерная томография - мсКТ) была впервые представлена компанией Elscint Co. в1992 году. Принципиальное отличие мсКТ томографов от спиральных томографов предыдущих поколений в том, что по окружности гантри расположены не один, а два и более ряда детекторов. Для того, чтобы рентгеновское излучение могло одновременно приниматься детекторами, расположенными на разных рядах, была разработана новая - объёмная геометрическая форма пучка. В 1992 году появились первые двухсрезовые (двухспиральные) МСКТ томографы с двумя рядами детекторов, а в 1998 году - четырёхсрезовые (четырёхспиральные), с четырьмя рядами детекторов соответственно. Кроме вышеотмеченных особенностей, было увеличено количество оборотов рентгеновской трубки с одного до двух в секунду. Таким образом, четырёхспиральные мсКТ томографы пятого поколения на сегодняшний день в восемь раз быстрее, чем обычные спиральные КТ томографы четвертого поколения. В 2004-2005 годах были представлены 32-, 64- и 128-срезовые мсКТ томографы, в том числе - с двумя рентгеновскими трубками. Сегодня же в некоторых больницах уже имеются 320-срезовые компьютерные томографы. Эти томографы, впервые представленные в 2007 году компанией Toshiba, являются новым витком эволюции рентгеновской компьютерной томографии. Они позволяют не только получать изображения, но и дают возможность наблюдать почти что «в реальном» времени физиологические процессы, происходящие в головном мозге и в сердце. Особенностью подобной системы является возможность сканирования целого органа (сердце, суставы, головной мозг и т.д.)за один оборот лучевой трубки, что значительно сокращает время обследования, а так же возможность сканировать сердце даже у пациентов, страдающих аритмиями. Несколько 320-ти срезовых сканеров уже установлены и функционируют в России.

Подготовка:

Специальной подготовки больного к КТ органов головы, шеи, грудной полости и конечностей не требуется. При исследовании аорты, нижней полой вены, печени, селезенки, почек больному рекомендуется ограничиться легким завтраком. На исследование желчного пузыря пациент должен явиться натощак. Перед КТ поджелудочной железы и печени необходимо принять меры для уменьшения метеоризма. Для более четкого дифференцирования желудка и кишечника при КТ брюшной полости их контрастируют путем дробного приема внутрь пациентом до исследования около 500 мл 2,5 % раствора водорастворимого йодистого контрастного вещества. Следует также учесть, что если накануне проведения КТ больному выполняли рентгенологическое исследование желудка или кишечника, то скопившийся в них барий будет создавать артефакты на изображении. В связи с этим не следует назначать КТ до полного опорожнения пищеварительного канала от этого контрастного вещества.

Разработана дополнительная методика выполнения КТ - усиленная КТ . Она заключается в проведении томографии после внутривенного введения больному водорастворимого контрастного вещества (перфузия). Этот прием способствует увеличению поглощения рентгеновского излучения в связи с появлением контрастного раствора в сосудистой системе и паренхиме органа. При этом, с одной стороны, повышается контрастность изображения, а с другой - выделяются сильно васкуляризованные образования, например сосудистые опухоли, метастазы некоторых опухолей. Естественно, на фоне усиленного теневого изображения паренхимы органа в ней лучше выявляются малососудистые или вовсе бессосудистые зоны (кисты, опухоли).

Некоторые модели компьютерных томографов снабжены кардиосинхронизаторами . Они включают излучатель в точно заданные моменты времени-в систолу и диастолу. Полученные в результате такого исследования поперечные срезы сердца позволяют визуально оценить состояние сердца в систолу и диастолу, провести расчет объема камер сердца и фракции выброса, проанализировать показатели общей и регионарной сократительной функции миокарда.

Компьютерная томография с двумя источниками излучения. DSCT - Dual Source Computed Tomography.

В 2005 году компанией Siemens Medical Solutions представлен первый аппарат с двумя источниками рентгеновского излучения. Теоретические предпосылки к его созданию были еще в 1979 году, но технически его реализация в тот момент была невозможна. По сути он является одним из логичных продолжений технологии МСКТ. Дело в том, что при исследовании сердца (КТ-коронарография) необходимо получение изображений объектов находящихся в постоянном и быстром движении, что требует очень короткого периода сканирования. В МСКТ это достигалось синхронизацией ЭКГ и обычного исследования при быстром вращении трубки. Но минимальный промежуток времени, требуемый для регистрации относительно неподвижного среза для МСКТ при времени обращения трубки, равном 0,33 с (≈3 оборота в секунду), равен 173 мс, то есть время полуоборота трубки. Такое временное разрешение вполне достаточно для нормальной частоты сердечных сокращений (в исследованиях показана эффективность при частотах менее 65 ударов в минуту и около 80, с промежутком малой эффективности между этими показателями и при больших значениях). Некоторое время пытались увеличить скорость вращения трубки в гентри томографа. В настоящее время достигнут предел технических возможностей для ее увеличения, так как при обороте трубки в 0,33 с ее вес возрастает в 28 раз (перегрузки 28 g). Чтобы получить временное разрешение менее 100 мс, требуется преодоление перегрузок более чем 75 g. Использование же двух рентгеновских трубок, расположенных под углом 90°, дает временное разрешение, равное четверти периода обращения трубки (83 мс при обороте за 0,33 с). Это позволило получать изображения сердца независимо от частоты сокращений. Также такой аппарат имеет еще одно значительное преимущество: каждая трубка может работать в своем режиме (при различных значениях напряжения и тока, кВ и мА соответственно). Это позволяет лучше дифференцировать на изображении близкорасположенные объекты различных плотностей. Особенно это важно при контрастировании сосудов и образований, находящихся близко от костей или металлоконструкций. Данный эффект основан на различном поглощении излучения при изменении его параметров у смеси кровь + йодсодержащее контрастное вещество при неизменности этого параметра у гидроксиапатита (основа кости) или металлов. В остальном аппараты являются обычными МСКТ аппаратами и обладают всеми их преимуществами.

Показания:

· Головная боль

· Травма головы, не сопровождающаяся потерей сознания

· Обморок

· Исключение рака легких. В случае использования компьютерной томографии для скрининга, исследование делается в плановом порядке.

· Тяжелые травмы

· Подозрение на кровоизлияние в мозг

· Подозрение на повреждение сосуда (например, расслаивающая аневризма аорты)

· Подозрение на некоторые другие острые повреждения полых и паренхиматозных органов (осложнения как основного заболевания, так и в результате проводимого лечения)

· Большинство КТ исследований делается в плановом порядке, по направлению врача, для окончательного подтверждения диагноза. Как правило, перед проведением компьютерной томографии, делаются более простые исследования - рентген, УЗИ, анализы и т. д.

· Для контроля результатов лечения.

· Для проведения лечебных и диагностических манипуляций, например пункция под контролем компьютерной томографии и др.

Преимущества:

· Наличие компьютера оператора аппарата, который заменяет собой пультовую комнату. Это улучшает контроль за ходом исследования, т.к. оператор располагается непосредственно перед смотровым просвинцованым окном, также оператор может отслеживать параметры жизнедеятельности больного непосредственно во время исследования.

· Отпала необходимость в обустройстве фотолаборатории в связи с внедрением проявочной машины. Больше нет необходимости в ручном проявлении снимков в танках с проявителем и фиксажем. Также не требуется темновой адаптации зрения для работы в фотолаборатории. В проявочную машину заблаговременно загружается запас пленки (как в обычный принтер). Соответственно улучшились характеристики циркулирующего в помещении воздуха, и повысился комфорт работы для персонала. Ускорился процесс проявки снимков и их качество.

· Значительно повысилось качество изображения, которое стало возможным подвергать компьютерной обработке, хранить в памяти. Отпала необходимость в рентгеновской пленке, архивах. Появилась возможность передачи изображения по кабельным сетям, обработка на мониторе. Появились методы объемной визуализации.

· Высокое пространственное разрешение

· Быстрота обследования

· Возможность 3-мерной и многоплоскостной реконструкции изображений

· Низкая оператор-зависимость метода

· Возможность стандартизации исследования

· Относительная доступность оборудования (по количеству аппаратов и стоимости обследования)

· Преимущества МСКТ перед обычной спиральной КТ

o улучшение временного разрешения

o улучшение пространственного разрешения вдоль продольной оси z

o увеличение скорости сканирования

o улучшение контрастного разрешения

o увеличение отношения сигнал/шум

o эффективное использование рентгеновской трубки

o большая зона анатомического покрытия

o уменьшение лучевой нагрузки на пациента

Недостатки:

· Относительный недостаток КТ - высокая стоимость исследования по сравнению с обычными рентгеновскими методами. Это ограничивает широкое применение КТ строгими показаниями.

· Наличие ионизирующего излучения и использование рентгеноконтрастных средств

Некоторые абсолютные и относительные противопоказания :

Без контраста

· Беременность

С контрастом

· Наличие аллергии на контрастный препарат

· Почечная недостаточность

· Тяжёлый сахарный диабет

· Беременность (тератогенное воздействие рентгеновского излучения)

· Тяжёлое общее состояние пациента

· Масса тела более максимальной для прибора

· Заболевания щитовидной железы

· Миеломная болезнь

Ангиографией называют рентгенологическое исследование кровеносных сосудов, производимое с применением контрастных веществ. Для искусственного контрастирования в кровяное и лимфатическое русло вводят раствор органического соединения йода, предназначенного для этой цели. В зависимости от того, какую часть сосудистой системы контрастируют, различают артериографию, венографию (флебографию) и лимфографию. Ангиографию выполняют только после общеклинического обследования и лишь в тех случаях, когда с помощью неинвазивных методов не удается диагностировать болезнь и предполагается, что на основании картины сосудов или изучения кровотока можно выявить поражение собственно сосудов или их изменения при заболеваниях других органов.

Показания:

· для исследования гемодинамики и выявления собственно сосудистой патологии,

· диагностики повреждений и пороков развития органов,

· распознавания воспалительных, дистрофических и опухолевых поражений, вызываю-

· их нарушение функции и морфологии сосудов.

· Ангиография является небходимым этапом при проведении эндоваскулярных операций.

Противопоказания:

· крайне тяжелое состояние больного,

· острые инфекционные, воспалительные и психические заболевания,

· выраженная сердечная, печеночная и почечная недостаточность,

· повышенная чувствительность к препаратам йода.

Подготовка:

· Перед исследованием врач должен разъяснить пациенту необходимость и характер процедуры и получить его согласие на ее проведение.

· Вечером накануне ангиографии назначают транквилизаторы.

· Утром отменяют завтрак.

· В области пункции выбривают волосы.

· За 30 мин до исследования выполняют премедикацию (антигистаминные препараты,

· транквилизаторы, анальгетики).

Излюбленным местом для катетеризации служит область бедренной артерии. Больного укладывают на спину. Операционное поле обрабатывают и отграничивают стерильными простынями. Прощупывают пульсирующую бедренную артерию. После местной паравазальной анестезии 0,5 % раствором новокаина делают разрез кожи длиной 0,3-0,4 см. Из него тупым путем прокладывают узкий ход к артерии. В проделанный ход с небольшим наклоном вводят специальную иглу с широким просветом. Ею прокалывают стенку артерии, после чего колющий стилет удаляют. Подтягивая иглу, локализуют ее конец в просвете артерии. В этот момент из павильона иглы появляется сильная струя крови. Через иглу в артерию вводят металлический проводник, который затем продвигают во внутреннюю и общую подвздошную артерии и аорту до избранного уровня. Иглу удаляют, а по проводнику в необходимую точку артериальной системы вводят рентгеноконтрастный катетер. За его продвижением наблюдают на дисплее. После уда- ления проводника свободный (наружный) конец катетера присоединяют к адаптеру и катетер сразу же промывают изотоническим раствором натрия хлорида с гепарином. Все манипуляции при ангиографии осуществляют под контролем рентгенотелевидения. Участники катетеризации работают в защитных фартуках, поверх которых надеты стерильные халаты. В процессе ангиографии ведут постоянное наблюдение за состоянием больного. Через катетер в исследуемую артерию автоматическим шприцем (инъектором) под давлением вводят контрастное вещество. В тот же момент начинается скоростная рентгеновская съемка. Ее программа - число и время выполнения снимков - установлена на пульте управления аппаратом. Снимки немедленно проявляют. Убедившись в успехе исследования, катетер удаляют. Место пункции прижимают на 8-10 мин для остановки кровотечения. На область пункции на сутки накладывают давящую повязку. Больному на тот же срок предписывается постельный режим. Спустя сутки повязку заменяют асептической наклейкой. За состоянием больного постоянно следит лечащий врач. Обязательны измерение температуры тела и осмотр места оперативного вмешательства.

Новой методикой рентгенологического исследования сосудов является дигитальная субтракционная ангиография (ДСА) . В основе ее лежит принцип компьютерного вычитания (субтракции) двух изображений, записанных в памяти компьютера,- снимков до и после введения контрастного вещества в сосуд. Благодаря компьютерной обработке итоговая рентгенологическая картина сердца и сосудов отличается высоким качеством, но главное - на ней можно выделить изображение сосудов из общего изображения исследуемой части тела, в частности убрать мешающие тени мягких тканей и скелета и количественно оценить гемодинамику. Существенным преимуществом ДСА по сравнению с другими методиками является уменьшение необходимого количества рентгеноконтрастного вещества, поэтому можно получить изображение сосудов при большом разведении контрастного вещества. А это означает (внимание!), что можно ввести контрастное вещество внутривенно и на последующей серии снимков получить тень артерий, не прибегая к их катетеризации. В настоящее время почти повсеместно обычную ангиографию заменяют на ДСА.

Радионуклидный метод - это способ исследования функционального и морфологического состояния органов и систем с помощью радионуклидов и меченных ими индикаторов. Эти индикаторы - их называют радиофармацевтическими препаратами (РФП) - вводят в организм больного, а затем с помощью различных приборов определяют скорость и характер перемещения, фиксации и выведения их из органов и тканей.

Радиофармацевтическим препаратом называют разрешенное для введения человеку с диагностической целью химическое соединение, в молекуле которого содержится радионуклид. радионуклид должен обладать спектром излучения определенной энергии, обусловливать минимальную лучевую нагрузку и отражать состояние исследуемого органа.

Для получения изображения органов применяют только радионуклиды, испускающие γ-лучи или характеристическое рентгеновское излучение, так как эти излучения можно регистрировать при наружной детекции. Чем больше γ-квантов или рентгеновских квантов образуется при радиоактивном распаде, тем эффективнее данный РФП в диагностическом отношении. В то же время радионуклид должен испускать по возможности меньше корпускулярного излучения - электронов, которые поглощаются в теле пациента и не участвуют в получении изображения органов. С этих позиций предпочтительны радионуклиды с ядерным превращением по типу изомерного перехода - Тс, In. Оптимальным диапазоном энергии квантов в радионуклидной диагностике считают 70-200 кэВ. Время, в течение которого активность введенного в организм РФП уменьшается наполовину вследствие физического распада и выведения, называют эффективным периодом полувыведения (Тм.)

Для выполнения радионуклидных исследований разработаны разнообразные диагностические приборы. Независимо от их конкретного назначения все эти приборы устроены по единому принципу: в них есть детектор, преобразующий ионизирующее излучение в электрические импульсы, блок электронной обработки и блок представления данных. Многие радиодиагностические приборы оснащены компьютерами и микропроцессорами. В качестве детектора обычно используют сцинтилляторы или, реже, газовые счетчики. Сцинтиллятор - это вещество, в котором под действием быстро заряженных частиц или фотонов возникают световые вспышки - сцинтилляции. Эти сцинтилляции улавливаются фотоэлектронными умножителями (ФЭУ), которые превращают световые вспышки в электрические сигналы. Сцинтилляционный кристалл и ФЭУ помещают в защитный металлический кожух - коллиматор, ограничивающий «поле видения» кристалла размерами органа или изучаемой части тела пациента. В коллиматоре имеется одно большое или несколько мелких отверстий, через которые радиоактивное излучение проникает в детектор.

В приборах, предназначенных для определения радиоактивности биологических проб (in vitro), применяют сцинтилляционные детекторы в виде так называемых колодезных счетчиков. Внутри кристалла имеется цилиндрический канал, в который помещают пробирку с исследуемым материалом. Такое устройство детектора значительно повышает его способность улавливать слабые излучения биологических проб. Для измерения радиоактивности биологических жидкостей, содержащих радионуклиды с мягким β-излучением, применяют жидкие сцинтилляторы.

Специальной подготовки больного не требуется.

Показания к радионуклидному исследованию определяет лечащий врач после консультации с радиологом. Как правило, его проводят после других клинических, лабораторных и неинвазивных лучевых процедур, когда становится ясна необходимость радионуклидных данных о функции и морфологии того иди иного органа.

Противопоказаний к радионуклидной диагностике нет, имеются лишь ограничения, предусмотренные инструкциями Министерства здравоохранения Российской Федерации.

Термин «визуализация» образован от английского слова vision (зрение). Им обозначают получение изображения, в данном случае с помощью радиоактивных нуклидов. Радионуклидная визуализация - это создание картины пространственного распределения РФП в органах и тканях при введении его в организм пациента. Основным методом радионуклидной визуализации является гаммасцинтиграфия (или просто сцинтиграфия), которую проводят на аппарате, называемом гамма-камерой. Вариантом сцинтиграфии, выполняемой на специальной гамма-камере (с подвижным детектором), является послойная радионуклидная визуализация - однофотонная эмиссионная томография. Редко, главным образом из-за технической сложности получения ультракороткоживущих позитронизлучающих радионуклидов, проводят двухфотонную эмиссионную томографию также на специальной гамма-камере. Иногда применяют уже устаревший метод радионуклидной визуализации - сканирование; его выполняют на аппарате, называемом сканером.

Сцинтиграфия - это получение изображения органов и тканей пациента посредством регистрации на гамма-камере излучения, испускаемого инкорпорированным радионуклидом. Гамма-камера: В качестве детектора радиоактивных излучений применяют сцинтилляционный кристалл (обычно йодид натрия) больших размеров – диаметром до 50 см. Это обеспечивает регистрацию излучения одномоментно над всей исследуемой частью тела. Исходящие из органа гамма-кванты вызывают в кристалле световые вспышки. Эти вспышки регистрируются несколькими ФЭУ, которые равномерно расположены над поверхностью кристалла. Электрические импульсы из ФЭУ через усилитель и дискриминатор передаются в блок анализатора, который формирует сигнал на экране дисплея. При этом координаты светящейся на экране точки точно соответствуют координатам световой вспышки в сцинтилляторе и, следовательно, расположению радионуклида в органе. Одновременно с помощью электроники анализируется момент возникновения каждой сцинтилляции, что дает возможность определить время прохождения радионуклида по органу. Важнейшей составной частью гамма-камеры, безусловно является специализированный компьютер, который позволяет производить разнообразную компьютерную обработку изображения: выделять на нем заслуживающие внимания поля - так называемые зоны интереса - и проводить в них различные процедуры: измерение радиоактивности (общей и локальной), определение размеров органа или его частей, изучение скорости прохождения РФП в этом поле. С помощью компьютера можно улучшить качество изображения, выделить на нем интересующие детали, например питающие орган сосуды.

Сцинтиграмма - это функционально-анатомическое изображение. В этом уникальность радионуклидных изображений, отличающая их от получаемых при рентгенологическом и ультразвуковом исследованиях, магнитно-резонансной томографии. Отсюда вытекает и основ-ное условие для назначения сцинтиграфии - исследуемый орган обязательно должен быть хотя бы в ограниченной степени функционально активным. В противном случае сцинтиграфическое изображение не получится.

При анализе сцинтиграмм, в основном статических, наряду с топографией органа, его размерами и формой определяют степень однородности его изображения. Участки с повышенным накоплением РФП называют горячими очагами, или горячими узлами. Обычно им соответствуют избыточно активно функционирующие участки органа - воспалительно измененные ткани, некоторые виды опухолей, зоны гиперплазии. Если же на сиинтиграмме выявляется область пониженного накопления РФП, то, значит, речь идет о каком-то объемном образовании, заместившем нормально функционирующую паренхиму органа,- так называемые холодные узлы. Они наблюдаются при кистах, метастазах, очаговом склерозе, некоторых опухолях.

Однофотонная эмиссионная томография (ОФЭТ) постепенно вытесняет обычную статическую сцинтиграфию, так как позволяет с таким же количеством того же РФП добиться лучшего пространственного разрешения, т.е. выявлять значительно более мелкие участки поражения органа - горячие и холодные узлы. Для выполнения ОФЭТ применяют специальные гамма-камеры. От обычных они отличаются тем, что детекторы (чаще два) камеры вращаются вокруг тела больного. В процессе вращения сцинтилляционные сигналы поступают на компьютер из разных ракурсов съемки, что дает возможность построить на экране дисплея послойное изображение органа.

ОФЭТ отличается от сцинтиграфии более высоким качеством изображения. Она позволяет выявить более мелкие детали и, следовательно, распознать заболевание на более ранних стадиях и с большей достоверностью. При наличии достаточного числа поперечных «срезов», полученных за короткий период времени, с помощью компьютера можно построить на экране дисплея трех-мерное объемное изображение органа, позволяющее получить более точноепредставление о его структуре и функции.

Существует еще один вид послойной радионуклидной визуализации - позитронная двухфотонная эмиссионная томография (ПЭТ) . В качестве РФП используют радионуклиды, испускающие позитроны, в основном ультракороткоживущие нуклиды, период полураспада которых составляет несколько минут,- С (20,4 мин), N (10 мин),О (2,03 мин),F(1О мин). Испускаемые этими радионуклидами позитроны аннигилируют вблизи атомов с электронами, следствием чего является возникновение двух гамма-квантов - фотонов (отсюда и название метода), разлетающихся из точки аннигиляции в строго противоположных направлениях. Разлетающиеся кванты регистрируются несколькими детекторами гамма-камеры, располагающимися вокруг обследуемого. Основным достоинством ПЭТ является то, что используемыми при ней радионуклидами можно метить очень важные в физиологическом отношении лекарственные препараты, например глюкозу, которая, как известно, активно участвует во многих метаболических процессах. При введении в организм пациента меченой глюкозы она активно включается в тканевый обмен головного мозга и сердечной мышцы.

Распространение этого важного и весьма перспективного метода в клинике сдерживается тем обстоятельством, что ультракороткоживушие радионуклиды производят на ускорителях ядерных частиц - циклотронах.

Преимущества:

· Получение данных о функции органа

· Получение данных о наличии опухоли и метастазов с высокой достоверностью на ранних стадиях

Недостатки:

· Все медицинские исследования, связанные с использованием радионуклидов, проводят в специальных лабораториях радиоиммунной диагностики.

· Лаборатории оснащаются средствами и оборудованием, обеспечивающими защиту персонала от излучения и предотвращение загрязнения радиоактивными веществами.

· Проведение радиодиагностических процедур регламентируется нормами радиационной безопасности для пациентов при использовании радиоактивных веществ с диагностической целью.

· В соответствии с этими нормами выделены 3 группы обследуемых лиц - АД, БД и ВД. К категории АД относятся лица, которым радионуклидная диагностическая процедура назначается в связи с онкологическим заболеванием или подозрением на него, к категории БД - лица, которым диагностическая процедура проводится в связи с заболеваниями неонкологического характера, к категории ВД - лица. подлежащие обследованию, например с профилактической целью, по специальным таблицам лучевых нагрузок врач-радиолог определяет допустимость с точки зрения радиационной безопасности выполнения того и иного радионуклидного диагностического исследования.

Ультразвуковой метод - способ дистантного определения положения, формы, величины, структуры и движения органов и тканей, а также патологических очагов с помощью ультразвукового излучения.

Противопоказаний к применению нет.

Достоинства:

· относятся к числу неионизирующих излучений и в применяемом в диагностике диапазоне не вызывают выраженных биологических эффектов.

· Процедура ультразвуковой диагностики непродолжительна, безболезненна, может быть многократно повторена.

· Ультразвуковой аппарат занимает мало места и может быть использован для обследования как стационарных, так и амбулаторных больных.

· Низкая стоимость исследования и аппаратуры.

· Нет необходимости в защите доктора и пациента и специальном обустройстве кабинета.

· безопасность в плане дозовой нагрузки (обследование беременных и кормящих женщин);

· высокая разрешающая способность,

· дифференциальная диагностика солидного и полостного образования

· визуализация регионарных лимфатических узлов;

· проведение прицельных пункционных биопсий пальпируемых и непальпируемых образований под объективным визуальным контролем, многократное динамическое исследование в процессе лечения.

Недостатки:

· отсутствие визуализации органа в целом (только томографический срез);

· малая информативность при жировой инволюции (ультразвуковая контрастность между опухолевой и жировой тканями слабая);

· субъективность интерпретации полученного изображения (операторозависимый метод);

Аппарат для ультразвукового исследования представляет собой сложное и достаточно портативное устройство, выполняемое в стационарном или переносном варианте. Датчик аппарата, называемый также трансдюсером, включает в себя ультразвуковой преобразователь. основной частью которого является пьезокерамический кристалл. Короткие электрические импульсы, поступающие из электронного блока прибора, возбуждают в нем ультразвуковые колебния - обратный пьезоэлектрический эффект. Применяемые для диагностики колебания характеризуются небольшой длиной волны, что позволяет формировать из них узкий пучок, направленный на исследуемую часть тела. Отраженные волны («эхо») воспринимаются тем же пьезоэлементом и преобразуются в электрические сигналы - прямой пьезоэлектрический эффект. Последние поступают в высокочастотны усилитель, обрабатываются в электронном блоке прибора и выдаются пользователю в виде одномерного (в форме кривой) или двухмерного (в форме картинки) изображения. Первое называют эхограммой, а второе - сонограммой (синонимы: улыпрасонограмма, ультразвуковая сканограмма). В зависимости от формы получаемого изображения различают секторные, линейные и конвексные (выпуклые) датчики.

По принципу действия все ультразвуковые датчики делят на две группы: эхоимпульсные и допплеровские. Приборы первой группы служат для определения анатомических структур, их визуализации и измерения Допплеровские датчики позволяют получать кинематическую характеристику быстро протекающих процессов - кровотока в сосудах, сокращений сердца. Однако такое деление условно. Многие установки дают возможность одновременно изучать как анатомические, так и функциональные параметры.

Подготовка:

· Для исследования головного мозга, глаза, щитовидной, слюнных и молочной желез, сердца, почек, обследования беременных со сроком более 20 нед специальной подготовки не требуется.

· При изучении органов брюшной полости, особенно поджелудочной железы, следует тщательно подготовить кишечник, чтобы в нем не было скопления газа.

· Больной должен явиться в ультразвуковой кабинет натощак.

Наибольшее распространение в мимической практике нашли три метода ультразвуковой диагностики: одномерное исследование (эхография), двухмерное исследование (сонография, сканирование) и допплерография. Все они основаны на регистрации отраженных от объекта эхосигналов.

Различают два варианта одномерного ультразвукового исследования: А- и М-методы.

Принцип Α-метода : Датчик находится в фиксированном положении для регистрации эхосигнала в направлении излучения. Эхосигналы представляются в одномерном виде как амплитудные отметки на оси времени. Отсюда, кстати, и название метода (от англ. amplitude - амплитуда). Иными словами, отраженный сигнал образует на экране индикатора фигуру в виде пика на прямой линии. Количество и расположение пиков на горизонтальной прямой соответствуют расположению отражающих ультразвук элементов объекта. Следовательно, одномерный Α-метод позволяет определить расстояние между слоями тканей на пути ультразвукового импульса. Основное клиническое применение А-метода - офтальмология и неврология. Α-метод ультразвуковой биолокации по-прежнему достаточно широко применяют в клинике, так как его отличают простота, дешевизна и мобильность исследования.

М-метод (от английского motion - движение) также относится к одномерным ультразвуковым исследованиям. Он предназначен для исследования движущегося объекта - сердца. Датчик также находится в фиксированном положении.Частота посылки ультразвуковых импульсов очень высокая - около 1000 в 1 с, а продолжительность импульса очень небольшая, всего I мкс. Отраженные от движущихся стенок сердца эхосигналы записываются на диаграммную бумагу. По форме и расположению зарегистрированных кривых можно составить представление о характере сокращений сердца. Данный метод ультразвуковой биолокации получил также название «эхокардиография» и, как следует из его описания, применяется в кардиологической практике.

Ультразвуковое сканирование позволяет получать двухмерное изображении органов (сонография). Этот метод известен также под названием В-метод (от англ. bright - яркость). Сущность метода заключается в перемещении ультразвукового пучка по поверхности тела во время исследования. Этим обеспечивается регистрация сигналов одновременно или последовательно от многих объектов. Получаемая серия сигналов служит для формирования изображения. Оно возникает на дисплее и может быть зафиксировано на бумаге. Это изображение можно подвергнуть математической обработке, определяя размеры (площадь периметр, поверхность и объем) исследуемого органа. При ультразвуковом сканировании яркость каждой светящейся точки на экране индикатора находится в прямой зависимости от интенсивности эхосигнала. Сигналы разной силы обусловливают на экране участки потемнения различной степени (от белого до черного цвета). На аппаратах с такими индикаторами плотные камни выглядят ярко-белыми, а образования, содержащие жидкость,- черными.

Допплерография -основана на эффекте Допплера, эффект состоит в изменении длины волны (или частоты) при движении источника волн относительно принимающего их устройства.

Существуют два вида допплерографических исследований - непрерывный (постоянноволновой) и импульсный. При первом генерация ультразвуковых волн осуществляется непрерывно одним пьезокристаллическим элементом а регистрация отраженных волн - другим. В электронном блоке прибора производится сравнение двух частот ультразвуковых колебаний: направленных на больного и отраженных от него. По сдвигу частот этих колебаний судят о скорости движения анатомических структур. Анализ сдвига частот может производиться акустически или с помощью самописцев.

Непрерывная допплерография - простой и доступный метод исследования. Он наиболее эффективен при высоких скоростях движения крови, например в местах сужения сосудов. Однако у этого метода имеется существенный недостаток: частота отраженного сигнала изменяется не только вследствие движения крови в исследуемом сосуде, но и из-за любых других движущихся структур, которые встречаются на пути падающей ультразвуковой волны. Таким образом, при непрерывной допплерографии определяется суммарная скорость движения этих объектов.

От указанного недостатка свободна импульсная допплерография . Она позволяет измерить скорость в заданном врачом участке контрольного объема (до 10 точек)

Большое значение в клинической медицине, особенно в ангиологии, получила ультразвуковая ангиография, или цветное допплеровское картирование . Метод основан на кодировании в цвете среднего значения допплеровского сдвига излучаемой частоты. При этом кровь, движущаяся к датчику, окрашивается в красный цвет, а от датчика - в синий. Интенсивность цвета возрастает с увеличением скорости кровотока.

Дальнейшим развитием допплеровского картирования стал энергетический допплер . При этом методе в цвете кодируется не средняя величина допплеровского сдвига, как при обычном допплеровском картировании, а интеграл амплитуд всех эхосигналов допплеровского спектра. Это дает возможность получать изображение кровеносного сосуда на значительно большем протяжении, визуализировать сосуды даже очень небольшого диаметра (ультразвуковая ангиография). На ангиограммах, полученных с помощью энергетического допплера, отражается не скорость движения эритроцитов, как при обычном цветовом картировании, а плотность эритроцитов в заданном объеме.

Еще один вид допплеровского картирования - тканевый допплер . Он основан на визуализации нативных тканевых гармоник. Они возникают какдополнительные частоты при распространении волнового сигнала в материальной среде, являются составной частью этого сигнала и кратны его основной (фундаментальной) частоте. Регистрируя только тканевые гармоники (без основного сигнала), удается получить изолированное изображение сердечной мышцы без изображения содержащейся в полостях сердца крови.

МРТ основана на явлении ядерно-магнитного резонанса. Если тело,находящееся в постоянном магнитном поле, облучить внешним переменным магнитным полем, частота которого точно равна частоте перехода между энергетическими уровнями ядер атомов, то ядра начнут переходить в вышележащие по энергии квантовые состояния. Иными словами, наблюдается избирательное (резонансное) поглощение энергии электромагнитного поля. При прекращении воздействия переменного электромагнитного поля возникает резонансное выделение энергии.

Современные МР-томографы «настроены» на ядра водорода, т.е. на протоны. Протон постоянно вращается. Следовательно, вокруг него тоже образуется магнитное поле, которое имеет магнитный момент, или спин. При помещении вращающегося протона в магнитное поле возникает прецессирование протона. Прецессией называется движение оси вращения протона, при котором она описывает круговую коническую поверхность наподобие оси вращающегося волчка.Обычно дополнительное радиочастотное поле действует в виде импульса, причем в двух вариантах: более короткого, который поворачивает протон на 90°, и более продолжительного, поворачивающего протон на 180°. Когда радиочастотный импульс заканчивается, протон возвращается в исходное положение (наступает его релаксация), что сопровождается излучением порции энергии. Каждый элемент объема исследуемого объекта (т.е. каждый воксел - от англ. volume - объем, cell - клетка) за счет релаксации распределенных в нем протонов возбуждает электрический ток («МР-сигналы») в приемной катушке, находящейся вне объекта. Магнитно-резонансными характеристиками объекта служат 3 параметра: плотность протонов, время Τι и время Т2. Τ1 называют спин-решетчатой, или продольной, релаксацией, а Т2 - спин-спиновой, или поперечной. Амплитуда зарегистрированного сигнала характеризует плотность протонов или, что то же самое, концентрацию элемента в исследуемой среде.

Система для МРТ состоит из сильного магнита, создающего статическое магнитное поле. Магнит полый, в нем имеется туннель, в котором располагается пациент. Стол для пациента имеет автоматическую систему управления движением в продольном и вертикальном направлениях Для радиоволнового возбуждения ядер водорода дополнительно устанавливают высокочастотную катушку, которая одновременно служит для приема сигнала релаксации. С помощью специальных градиентных катушек накладывается дополнительное магнитное поле которое служит для кодирования МР-сигнала от пациента, в частности оно задает уровень и толщину выделяемого слоя.

При МРТ можно применять искусственное контрастирование тканей. С этой целью используют химические вещества, обладающие магнитными свойствами и содержащие ядра с нечетным числом протонов и нейтронов, например соединения фтора, или же парамагнетики, которые изменяют время релаксации воды и тем самым усиливают контрастность изображения на МР-томограммах. Одним из наиболее распространенных контрастных веществ, используемых в МРТ, является соединение гадолиния Gd-DTPA.

Недостатки:

· к размещению МР-томографа в лечебном учреждении предъявляются очень строгие требования. Необходимы отдельные помещения, тщательно экранированные от внешних магнитных и радиочастотных полей.

· процедурная комната, где находится МР-томограф, заключена в металлическую сетчатую клетку (клетка Фарадея), поверх которой нанесен отделочный материал (пола, потолка, стен).

· Трудности в визуализации полых органов и органов грудной клетки

· Большое количество времени затрачивается на исследование (по сравнению с МСКТ)

· У детей в возрасте от периода новорожденности до 5–6 лет обследование обычно может быть проведено только на фоне седации под контролем анестезиолога.

· Дополнительным ограничением может оказаться окружность талии, несовместимая с диаметром туннеля томографа(для каждого вида МР-томографа свой лимит веса пациента).

· Основными диагностическими ограничениями МРТ является невозможность достоверного выявления кальцинатов, оценки минеральной структуры костной ткани (плоские кости, кортикальная пластинка).

· Также МРТ значительно в большей степени, чем КТ, подвержена возникновению артефактов от движений.

Достоинства:

· позволяет получать изображение тонких слоев тела человека в любом сечении -фронтальном, сагиттальном, аксиальном (как известно, при рентгеновской компьютерной томографии, за исключением спиральной КТ, может быть использовано только аксиальное сечение).

· Исследование необременительно для больного, абсолютно безвредно, не вызывает осложнений.

· На МР-томограммах лучше, чем на рентгеновских компьютерных томограммах, отображаются мягкие ткани: мышцы, хрящи, жировые прослойки.

· МРТ позволяет выявлять инфильтрацию и деструкцию костной ткани, замещение костного мозга задолго до появления рентгенологических (в том числе КТ) признаков.

· При МРТ можно получать изображение сосудов, не вводя в них контрастное вещество.

· С помощью специальных алгоритмов и подбора радиочастотных импульсов современные высокопольные МР-томографы позволяют получать двухмерное и трехмерное (объемное) изображения сосудистого русла - магнитно-резонансная ангиография.

· Крупные сосуды и их разветвления среднего калибра удается достаточно четко визуализировать на МР-томограммах без дополнительного введения контрастного вещества.

· Для получения изображения мелких сосудов дополнительно вводят препараты гадолиния.

· Разработаны ультравысокоскоростные МР-томографы, позволяющие наблюдать движение сердца и крови в его полостях и сосудах и получать матрицы повышенной разрешающей способности для визуализации очень тонких слоев.

· С целью предотвращения развития у пациентов клаустрофобии освоен выпуск открытых МР-томографов. В них нет длинного магнитного туннеля, а постоянное магнитное поле создается путем размещения магнитов сбоку от больного. Подобное конструктивное решение не только позволило избавить пациента от необходимости длительное время находиться в относительно замкнутом пространстве, но и создало предпосылки для проведения инструментальных вмешательств под контролем МРТ.

Противопоказания:

· Клаустрофобия и томограф закрытого типа

· Наличие металлических (ферромагнитных) имплантов и инородных тел в полостях и тканях. В особенности внутричерепных ферромагнитных гемостатических клипс (при смещении может произойти повреждение сосуда и кровотечение), периорбитальных ферромагнитных инородных тел (при смещении может произойти повреждение глазного яблока)

· Наличие кардиостимуляторов

· Беременным в 1 триместре.

МР-спектроскопия , как и МРТ, основана на явлении ядерно-магнитного резонанса. Обычно исследуют резонанс ядер водорода, реже - углерода, фосфора и других элементов.

Сущность метода состоит в следующем. Исследуемый образец ткани или жидкости помешают в стабильное магнитное поле напряженностью около 10 Т. На образец воздействуют импульсными радиочастотными колебаниями. Изменяя напряженность магнитного поля, создают резонансные условия для разных элементов в спектре магнитного резонанса. Возникающие в образце МР- сигналы улавливаются катушкой приемника излучений, усиливаются и передаются в компьютер для анализа. Итоговая спектрограмма имеет вид кривой, для получения которой по оси абсцисс откладывают доли (обычно миллионные) напряжения приложенного магнитного поля, а по оси ординат - значения амплитуды сигналов. Интенсивность и форма ответного сигнала зависят от плотности протонов и времени релаксации. Последняя определяется местоположением и взаимоотношением ядер водорода и других элементов в макромолекулах Разным ядрам свойственны различные частоты резонанса поэтому МР-спектроскопия позволяет получить представление о химической и пространственной структуре вещества. С ее помощью можно определить структуру биополимеров, липидный состав мембран и их фазовое состояние, проницаемость мембран. По виду МР-спектра удается дифференцировать зрелые