Скорость волны в пресной воде. Волны воды

> Волны воды

Изучите волны на воде и перемещение элементов по кругу. Узнайте, что такое фазовая и групповая скорость, плоская волна, пример движения по окружности.

Обычно водные волны (поперечное и продольное движения) можно рассмотреть в реальной жизни.

Задача обучения

  • Охарактеризовать перемещение частичек в водных волнах.

Основные пункты

  • Частички в водных волнах перемещаются по кругу.
  • Если волны перемещаются медленнее расположенного над ними ветра, то энергия передается от ветра к волнам.
  • На поверхности колебания набирают максимальную силу и теряют ее по мере погружения.

Термины

  • Фазовая скорость – темп распространения чистой синусоидальной волны бесконечной протяжности и крошечной амплитуды.
  • Групповая скорость – темп распространения огибающей модулированный волны. Ее рассматривают в качестве скорости передачи информации или энергии.
  • Плоская волна – волновые фотоны выступают бесконечными параллельными плоскостями постоянной амплитуды от пика до пика, расположенных перпендикулярно вектору фазовой скорости.

Пример

Проще всего отправиться к морю, озеру или даже зайти в ванную. Просто подуйте в чашку с водой и заметите, что создаете волны.

Волны воды представляют богатую площадь для изучения физиками. Причем их описание выходит далеко за рамки вводного курса. Мы часто наблюдаем за волнами в 2D, но здесь обсудим 1D.

Поверхностные волны в воде

Уникальность этих явлений заключается в том, что им удается включать в себя поперечное и продольное движения. Из-за этого частички совершают круговые движения (по часовой стрелке). Максимально высоким осцилляторное перемещение выступает на поверхности и ослабевает с углублением.

Волны генерируются ветром, проходящим по морской поверхности. Если скорость распространения волн уступает ветру, то энергия переносится от ветра к волнам.

Если мы сталкиваемся с монохроматическими линейными плоскими волнами на глубине, то частички возле поверхности перемещаются по кругу, формируя продольное (назад и вперед) и поперечное (вверх и вниз) волновые движения. Когда волновое распространение происходит на мелководье, траектории частичек сжимаются в эллипсы. Чем выше амплитуда, тем слабее замкнутая орбита. После прохождения по гребням частички смещаются от предыдущей позиции и формируют стоксовый дрейф.

Перед вами волна, распространяющая в сторону фазовой скорости

Водные волны транспортируют энергию, поэтому используют физическое движение, чтобы генерировать ее. Мощность волны зависит от крупности, длины и плотности воды. Глубокая волна соответствует глубине воды, превышающей половину длины волны. Чем глубже волна, тем стремительнее распространяется. В мелководье групповая скорость достигает фазовой. Сейчас они не обеспечивают устойчивой формы, чтобы использовать как стабильные возобновляемые источники энергии.

Движение воды заставляет частички путешествовать по круговой траектории (по часовой стрелке). Все дело в том, что волна обладает одновременно поперечными и продольными свойствами

Пока мы рассмотрели только одномерные (1-d ) волны, то есть волны, распространяющиесяв струне, в линейной среде. Не менее знакомы нам двумерные волны в форме длинных горных хребтов и впадин на двумерной поверхности воды. Следующий шаг при обсуждении волн нам предстоит сделать в пространство двух (2-d ) и трех (3-d ) измерений. Опять-таки никакие новые физические принципы не будут использоваться; задача состоит просто в описании волновых процессов.

Мы начнем обсуждение, вернувшись к той простой ситуации, с которой начиналась эта глава - одиночный волновой импульс . Однако теперь это будет не возмущение на струне, а всплеск на поверхности водоема. Всплеск оседает под своим собственным весом, а смежные с ним области, испытывая повышенное давление, подымаются , начиная распространение волны. Этот процесс “в разрезе” изображен на рис. 7-7(a) . Дальнейшая логика рассмотрения ситуации точно такая же, что уже была использована при изучении эффектов, возникающих после резкого удара по центральной части струны. Но на сей раз волна может перемещаться во всех направлениях. Не имея причин предпочесть одно какое-то направление другому, волна распространяется во всехнаправлениях. Результат - знакомый всем расширяющийся круг ряби на поверхности тихого водоема, см. рис. 7-7 (b) .

Хорошо знакомы нам и плоские волны на поверхности воды - те волны, гребни которых образуют длинные, иногда практически параллельные, линии на поверхности воды. Это те самые волны, которые периодически накатывают на берег. Интересной особенностью волн такого типа является тот способ, которым они преодолевают препятст-вия - например, дыры в непрерывной стене волнолома . Рисунок 7-8 иллюстрирует этот процесс. Если размер отверстия сравним с длиной волны, то каждая последовательная волна создает в пределах отверстия всплеск, который, как и на рис. 7-7, служит источником круглой ряби в акватории порта. В результате между волнорезом и берегом возникают концентрические , “кольцевые ” волны.

Это явление известно как дифракция волн. Если же ширина дыры в волноломе будет намного больше, чем длина волны, то этого не случится - прошедшие через препятствие волны сохранят свою плоскую форму, разве что на краях волны возникнут слабые искажения

Подобно волнам на поверхности воды, существуют и трехмерные волны (3-d –волны). Здесь самый знакомый пример - это звуковые волны. Гребень звуковой волны - это область сгущения молекул воздуха. Рисунок, аналогичный рис. 7-7 для трехмерного случая представлял бы расширяющуюся волну в форме сферы.

Все волны обладают свойством преломления . Это эффект, который возникает когда волна проходит через границу двух сред, и попадает в среду, в которой она движется более медленно. Особенно наглядно выглядит этот эффект в случае плоских волн (см. рис. 7-9 ). Та часть плоской волны, которая оказалась в новой, “медленной”, среде движется в ней с меньшей скоростью. Но поскольку эта часть волны неизбежно остается связанной с волной в “быстрой” среде, её фронт (пунктирная линия в нижней части рис.7-9) должен изломиться, то есть приблизиться к границе раздела двух сред, как это и показано на рис. 7-9.

Если же изменение скорости распространения волны происходит не скачком, а постепенно, то и поворот фронта волны будет происходить тоже плавно. Это, кстати, объясняет причину того, почему волны прибоя, независимо от того, как они двигались в открытой воде, почти всегда параллельны береговой линии. Дело в том, что с уменьшением толщины водного слоя скорость волн на его поверхности уменьшается , поэтому у берега, где волны попадают в область мелководья, они замедляются. Постепенный поворот их фронта и делает волны практически параллельными береговой линии.


Образование волн на поверхности воды называется волнением.

Волны, наблюдаемые на поверхности воды, делятся на:

  • Волны трения:

    • ветровые, образующиеся в результате действия ветра

    • глубинные


  • Приливные волны.

  • Гравитационные волны:

    • гравитационные волны на мелкой воде

    • гравитационные волны на глубокой воде

    • сейсмические волны (цунами), возникающие в океанах в результате землетрясения (или вулканической деятельности) и достигающие у берегов высоты 10-30 м.

    • корабельные волны


Волны состоят из чередующихся между собой валов и впадин. Верх волны называется гребнем, основание волны - подошвой.
В прибрежных районах моря существенны только ветровые волны (волны трения).

Ветровые волны возникают с ветром, с прекращением ветра эти волны в виде мертвой зыби, постепенно затухая, продолжают двигаться в прежнем направлении. Ветровое волнение зависит от величины водного пространства, открытого для разгона волны, скорости ветра и времени действия его в одном направлении, а также глубины. С уменьшением глубины волна становится крутой.
Ветровые волны несимметричны, наветренный склон их пологий, подветренный - крутой. Так как ветер на верхнюю часть волны действует сильнее, чем на нижнюю, гребень волны рассыпается, образуя «барашки». В открытом море "барашки" образуются при ветре, который называется "свежим" (ветер силой 5 баллов и скоростью 8,0-10,7 м/с, или 33 км/ч).
Зыбь - волнение, продолжающееся после ветра уже затихшего, ослабевшего или изменившего направление. Волнение, распространяющееся по инерции при полном безветрии, называется мертвой зыбью.
При встрече волн с разных румбов на некоторой площади образуется толчея . Хаотическое нагромождение волн, образующихся при встрече прямых волн с отраженными - это тоже толчея .
При прохождении волн над банками, рифами и камнями образуются буруны .
Набегание волн на берег с увеличением по высоте и крутизне и последующим опрокидыванием называется прибоем .

Прибой получает разный характер в зависимости от того, какой берег: отмелый (имеющий малые углы наклона и большую ширину подводного склона) или приглубый (имеющий значительные уклоны подводного склона).

Опрокидывание гребня идущей волны на крутой берег образует взбросы , имеющие большую разрушительную силу.

© Юрий Данилевский: Ноябрьский шторм. Севастополь

Когда прибой случается у приглубого берега, круто поднимающегося из воды, то рассыпание волны происходит только при ударе о берег. При этом образуется обратная волна, встречающаяся со следующей за ней и уменьшающая ее силу удара, а затем набегает новая волна и снова ударяет в берег.
Такие удары волн в случае большой зыби или сильного волнения сопровождаются нередко взбросами волн на значительную высоту.

© Шторм в Севастополе, 11 ноября 2007г.

На берегах Черного моря сила удара волны может достигать 25 т на 1 м 2 .
При взбросе волна получает огромную силу. На Шетландских островах, к северу от Шотландии, встречаются обломки гнейсовых скал, доходящие до 6-13 т весом, выброшенные прибоем на высоту до 20 м над уровнем моря.

Бурное продвижение волн и зыби на берег называется накат .

Волны бывают правильные, когда их гребни ясно различимы, и неправильные, когда волны не имеют ясно выраженных гребней и образуются без всякой видимой закономерности.
Гребни волн перпендикулярны направлению ветра в открытом море, озере, водохранилище, но у берега они принимают положение, параллельное береговой черте , набегая на берега.
Направление распространения волны в открытом море обозначается на поверхности воды семейством параллельных полос пены - следа разрушающихся гребней волны.

Волны, образующиеся на свободной поверхности воды, приводят в движение соприкасающийся с ними воздух. В большинстве случаев массой этого воздуха можно пренебречь по сравнению с массой жидкости. Тогда давление на свободной поверхности жидкости будет равно атмосферному давлению Наблюдения показывают, что при простейшем волновом движении отдельные частицы свободной поверхности воды описывают траектории, приближенно совпадающие с окружностью. В системе отсчета, движущейся вместе с волнами со скоростью их распространения, волновое движение является, очевидно, установившимся движением (рис. 80). Пусть скорость распространения волн равна с, радиус окружности, описываемой частицей воды, расположенной на свободной поверхности, равен а период обращения этой частицы по своей траектории равен Тогда в указанной системе отсчета скорость течения на гребнях волн будет равна

а во впадинах волн

Так как разность высот между наивысшим и наинизшим положениями точек свободной поверхности равна то, применяя уравнение Бернулли к линии тока, расположенной на свободной поверхности, мы получим:

или, после подстановки вместо и их значений,

откуда следует, что

Радиус в эту формулу не входит, следовательно, скорость распространения волн не зависит от высоты волн. При распростраении волн гребень волны продвигается за время на расстояние называемое длиной волны, следовательно,

Исключая из равенств (60) и (61) период мы получим:

Таким образом, для волн на поверхности воды скорость их распространения, в отличие от звуковых волн, сильно зависит от длины волны. Длинные волны распространяются быстрее, чем короткие. Волны с разной длиной могут налагаться друг на друга без заметного взаимного возмущения. При этом короткие волны как бы приподнимаются длинными волнами, но затем длинные волны уходят вперед, а короткие остаются позади них. Линии тока в системе отсчета, неподвижной относительно невозмущенной воды, показаны на рис. 81. Из расположения линий тока видно, что скорость движения воды очень быстро убывает с увеличением глубины, а именно, пропорционально уменьшению величины следовательно, на глубине, равной длине волны, скорость составляет только скорости на свободной поверхности.

Рис. 81. Линии тока волнового движения

Точная теория показывает, что формула (62) справедлива только для низких волн, причем независимо от их высоты. Для высоких волн скорость с в действительности несколько больше того значения, которое дает формула (62). Кроме того, при высоких волнах траектории частиц воды, расположенных на свободной поверхности, получаются незамкнутыми: вода на гребне волны уходит вперед на большее расстояние, чем на то, на которое она возвращается назад во впадине волны (см. правую часть рис. 81). Следовательно, при высоких волнах происходит перенос воды вперед.

Для волн с небольшой длиной важным фактором является, кроме силы тяжести, также поверхностное натяжение. Оно стремится сгладить волновую поверхность, и поэтому скорость распространения волн увеличивается. Теория показывает, что в этом случае скорость распространения волн равна

где С есть капиллярная постоянная. Для длинных волн преобладающую роль играет первый член под знаком корня, а для коротких волн, наоборот, второй член. Для длины волны

скорость распространения с имеет минимальное значение, равное

Для воды дин/см, следовательно,

Волны, длина которых больше называются гравитационными, а волны, длина которых меньше капиллярными.

От скорости перемещения гребней волн, называемой фазовой скоростью (выше мы ее называли скоростью распространения волн и обозначали через с), следует отличать скорость распространения группы

волн, называемую групповой скоростью и обозначаемую через с. Проще всего разъяснить смысл этого понятия на примере движения, возникающего в результате наложения двух волн, имеющих равные амплитуды, но немного отличающихся своей длиной. Пусть мы имеем синусоидальную волну

где А есть амплитуда, время, а некоторые коэффициенты. При увеличении на у или на у синус принимает прежнее значение, следовательно, величина

есть длина волны, а величина

есть период колебаний. Если

т. е. если

то аргумент синуса не зависит от времени, поэтому не зависит от времени и ордината у. Это означает, что вся волна, не изменяя своей формы, перемещается вправо со скоростью

Наложим на эту волну вторую волну

т. е. волну с той же амплитудой А, но с несколько иными значениями Результирующим движением будет

В тех точках оси х, в которых фазы обоих колебаний совпадают, амплитуда равна в тех же точках, в которых фазы обоих колебаний

противоположны, амплитуда равна нулю. Такое явление называется биением. Применив известную формулу

мы получим:

В этом равенстве член

представляет собой волну, для которой коэффициенты при равны средним значениям от и соответственно от Множитель же

который при малых значениях разностей изменяется медленно, можно рассматривать как переменную амплитуду (рис. 82).

Рис. 82. Биение

Группа волн кончается в той точке, где косинус делается равным нулю. Скорость перемещения этой точки, называемая групповой скоростью с, на основании соображений, аналогичных предыдущим, равна

Для длинных групп, т.е. для медленных биений, с достаточной точностью можно принять, что

Для волн, возникающих под действием силы тяжести, из формулы (60) мы имеем:

Но, согласно равенству (65),

следовательно,

С другой стороны, подставив в формулу (62) значение из равенства (64), мы получим:

Отсюда, диференцируя по и имея в виду равенство (67), мы найдем:

Таким образом, группы волн распространяются со скоростью с, равной половине фазовой скорости, иными словами, гребни в группе волн перемещаются со скоростью, в два раза большей, чем сама группа волн; на заднем конце группы все время возникают новые волны, а на переднем конце группы они исчезают. Это явление очень легко наблюдать на волнах, вызванных падением камня в неподвижную воду.

Все сказанное относится не только к волнам на поверхности воды, но и к любым другим волнам, фазовая скорость которых зависит от длины волны.

Другим видом групп волн являются волны, возникающие на поверхности воды при движении корабля. Картину волн, очень похожую на корабельные волны, легко получить, если на поверхности покоящейся глубокой воды заставить двигаться с постоянной скоростью точечный очаг возмущения давления. Возникающее при этом движение может быть исследовано математически. Согласно вычислениям В. Томсона (lord Kelvin), Экмана (Ekman) и других, получается система волн, изображенная на рис. 83, на котором наклонными линиями обозначены гребни волн. Эта система волн перемещается вместе с очагом возмущения. Длина поперечных волн на основании формулы (62) равна

где с есть скорость перемещения очага возмущения. При движении корабля образуются две системы таких волн - одна около носа, другая около кормы корабля, причем волны обеих систем интерферируют друг с другом.

Рис. 83. Система волн, образующихся при равномерном движении на поверхности воды очага возмущения давления

Групповая скорость капиллярных волн, как нетрудно показать путем расчета, аналогичного сделанному для гравитационных волн, больше фазовой скорости, а именно, в предельном случае очень малых волн, в 1,5 раза. Следовательно, если очаг возмущения движется с постоянной скоростью, то группы волн его опережают. Около лески удочки, опущенной в реку, скорость течения которой больше 23,3 см/сек, образуются вверх по течению капиллярные волны, а вниз по течению - гравитационные волны, причем последние имеют приблизительно такую же форму, как на рис. 83, а первые расходятся вверх по течению в виде дуг окружностей. При скоростях движения очага возмущения, меньших 23,3 см/сек, волны не образуются.

На поверхности соприкосновения двух жидкостей различной плотности, расположенных одна над другой, также могут возникать волны. Если обе жидкости неподвижны и плотности их равны то теоретический расчет дает для фазовой скорости волн величину

Если верхняя жидкость течет со скоростью относительно нижней, то теория показывает, что возникающие волны устойчивы только в том случае, если их длина достаточно велика. Короткие же волны, подобно тому, как это было показано в § 7 для движения двух потоков жидкости вдоль поверхности раздела, неустойчивы, что приводит к перемешиванию обеих жидкостей в промежуточной зоне; это перемешивание восстанавливает устойчивость течения. При увеличении скорости граница между неустойчивостью и устойчивостью перемещается в сторону волн с большей длиной. Волны такого рода могут возникать также в атмосфере на границе двух слоев воздуха разной плотности, движущихся относительно друг друга; иногда эти волны делаются видимыми благодаря образованию так называемых волнистых облаков.

При движении воздуха над поверхностью воды также образуются волны. Однако теория таких волн, основанная на предположении отсутствия трения, приводит к результатам, противоречащим

действительности. Так, например, вычисления В. Томсона показали, что минимальная скорость ветра, необходимая для образования на поверхности воды волн, должна составлять круглым числом причем возникают волны, обладающие минимальной скоростью распространения см/сек и длиной волны см (при большей скорости ветра получаются, конечно, волны с большей длиной). Между тем в действительности для образования волн достаточно ветра со скоростью Согласно исследованию Джеффри это объясняется тем, что вследствие трения распределение давления на поверхности волны делается несимметричным, и поэтому ветер, если его скорость больше фазовой скорости волн, совершает на гребне каждой волны работу. Мотцфельд, измерив распределение давления на поверхности моделей водяных волн, нашел, что сопротивление, которое воздух оказывает движению волн, пропорционально полуторной степени наклона поверхности волны в точке перегиба относительно горизонта, а также квадрату разности между скоростью ветра и фазовой скоростью волн. Далее, Мотцфельд путем расчета нашел, что наклон поверхности волны в точке перегиба, зависящий от фазовой скорости с, получается наибольшим при

Этой скорости с соответствует, на основании формулы (62), волна длиной

Если принять во внимание поверхностное натяжение, которое Мотцфельд не учитывал, то расчет показывает, что для возникновения легкого волнения на поверхности воды достаточно, в полном соответствии с наблюдениями, ветра со скоростью, немного превышающей 23,3 см/сек.

Формулы, выведенные выше, пригодны только для волн на глубокой воде. Они еще достаточно точны, если глубина воды равна половине длины волны. При меньшей глубине частицы воды на поверхности волны описывают не круговые траектории, а эллиптические, и зависимость между длиной и скоростью распространения волн получается более сложной, чем для волн на глубокой воде. Однако для волн на

очень мелкой воде, а также для очень длинных волн на средней воде только что указанная зависимость принимает опять более простой вид. В обоих последних случаях вертикальные перемещения частиц воды на свободной поверхности весьма незначительны по сравнению с горизонтальными перемещениями. Поэтому можно опять считать, что волны имеют приблизительно синусоидальную форму. Так как (траектории частиц представляют собой очень сплющенные эллипсы, то влиянием вертикального ускорения на распределение давления можно пренебречь. Тогда на каждой вертикали давление будет изменяться по статическому закону, и разности высот жидкости будут обусловливать практически только горизонтальные ускорения. Мы ограничимся здесь вычислениями лишь для случая движения «вала» воды, изображенного на рис. 84. Эти вычисления очень простые и в дальнейшем будут нами использованы для исследования распространения возмущения давления в сжимаемой среде (см. § 2 гл. IV).

Рис. 84. Вал на поверхности воды

Пусть на поверхности воды над плоским дном распространяется со скоростью с справа налево вал шириной повышающий уровень воды от до Предположим, что до прихода вала вода находилась в покое. Скорость ее движения после повышения уровня обозначим через Эта скорость, отнюдь не совпадающая со скоростью с распространения вала, необходима для того, чтобы вызвать боковое перемещение объема воды в переходной зоне шириной вправо и тем самым поднять уровень воды с высоты до высоты Примем для простоты, что наклон вала по всей его ширине постоянен, следовательно, он равен Тогда, при условии, что скорость достаточно мала, чтобы ею можно было пренебречь по сравнению со скоростью с распространения вала, вертикальная скорость подъема воды в области вала будет равна должна быть мала также разность высот следовательно, это уравнение применимо только к низким валам, и поэтому только что упомянутое условие вполне оправдано.

К кинематическому соотношению (72) следует присоединить динамическое соотношение, которое легко вывести следующим образом. Объем воды шириной в области вала находится в ускоренном движении, так как частицы, составляющие этот объем, начинают свое движение на правом краю со скоростью нуль, а на левом краю имеют скорости Возьмем какую-нибудь частицу воды в области вала. Время, в течение которого над этой частицей проходит вал, очевидно, равно

поэтому ускорение частицы будет

Объем воды в области вала, если его толщину в направлении, перпендикулярном к плоскости рисунка, принять равной единице, имеет массу где Кроме того, каждый последующий вал распространяется не в неподвижной воде, а в воде, уже движущейся вправо со скоростью Это приводит к тому, что последующие валы догоняют предыдущие, в результате чего возникает крутой вал конечной высоты.

Исследование распространения вала конечной высоты можно выполнить при помощи теоремы о количестве движения совершенно таким же образом, как это было сделано в § 13 при рассмотрении внезапного расширения потока. Для того чтобы движение воды при распространении вала можно было рассматривать как установившееся, расчет следует вести в системе отсчета, движущейся вместе с валом. Скорость распространения вала конечной высоты больше чем

Которых убывает с удалением от поверхности. Волны на поверхности жидкости могут заполнять большие площади, состоять из нескольких волн (цуг) и даже одного гребня или впадины (уединённая волна, солитон). Периоды волн на поверхности жидкости лежат в диапазоне от нескольких суток до долей секунды, длины - от тысяч километров до долей миллиметра, амплитуды - от десятков метров до долей микрометра. Тип волны, фазовая и групповая скорости задаются дисперсионным соотношением ω = ω(k) - функцией частоты ω от волнового вектора k. Наиболее низкочастотные волны на поверхности жидкости - инерционные волны - обусловлены силой Кориолиса; волны промежуточной частоты - гравитационные волны на поверхности жидкости - силой тяжести с ускорением g. Короткие и высокочастотные волны на поверхности жидкости - капиллярные волны - создаются силами поверхностного натяжения. У коротких гравитационных волн на поверхности жидкости (λ < 5Н, где λ = 2π/k - длина волны, Н - глубина водоёма) фазовая скорость больше групповой и растёт с длиной волны (прямая дисперсия). Частицы в них описывают окружности, радиус которых убывает с глубиной. Скорость длинных волн на поверхности жидкости (λ> 10Н) не зависит от λ (волны без дисперсии); частицы в них движутся по эллипсам с убывающей вертикальной осью. Капиллярные волны на поверхности жидкости обладают обратной дисперсией, их групповая скорость больше фазовой. Быстрые капиллярные волны на поверхности жидкости располагаются перед препятствием, медленные гравитационные - позади него. Скорость наиболее медленных волн на поверхности жидкости определяет размер области спокойной воды, отделяющей цуг нестационарных волн от импульсного источника, например брошенного в воду камня. Вблизи поверхности вязкой жидкости волны образуют периодический пограничный слой толщиной δ = √2 ν/ω, где V - кинематическая вязкость. Волны на поверхности жидкости и сопутствующие пограничные слои переносят энергию и вещество.

Картину волн на поверхности жидкости усложняет интерференция волн (наложение волн от различных источников), рефлексия (отражение от неровностей дна и берегов), рефракция (искривление и поворот волновых фронтов на неровном дне), дифракция (проникновение в область геометрической тени), а также нелинейное взаимодействие с волнами на поверхности и внутри жидкости, пограничными слоями, течениями, вихрями и ветром. С ростом амплитуды различия в свойствах волны и пограничного слоя стираются, формируется единая волновихревая система («кипящая стена воды», «волна-убийца»), обладающая большой разрушительной силой. Волны на поверхности жидкости распадаются, если ускорение в них превосходит g и амплитуда А >λ/2π.

Волны на поверхности жидкости в океанах образуются под действием притяжения Луны и Солнца (наиболее выражены приливные волны с периодами, кратными 12 ч 25 мин - половине лунных суток), землетрясений и оползней, меняющих форму дна и берегов (цунами с периодом 10-30 мин), из-за воздействия атмосферы, обтекания препятствий. Ветровые волны с периодом 2-16 с распространяются со скоростью 3-25 м/с на большие расстояния, образуя регулярную зыбь и прибой. Амплитуда цунами, бегущих в океане со скоростью около 700 км/ч, возрастает при подходе к берегу, они смывают города и опустошают прибрежные зоны.

Волны на поверхности жидкости влияют на обмен веществом, энергией и импульсом между атмосферой и гидросферой, способствуют насыщению воды кислородом. Возобновляемая энергия волн на поверхности жидкости используется приливными электростанциями и установками, непосредственно преобразующими её в электрическую.

Смотри также Волны в океане.

Лит.: Уизем Дж. Линейные и нелинейные волны. М., 1977.